205 research outputs found

    Laboratory study on the mobility of major species in fly ash–brine co-disposal systems: up-flow percolation test

    Get PDF
    Apart from the generation of fly ash, brine (hyper-saline wastewater) is also a waste material generated in South African power stations as a result of water re-use. These waste materials contain major species such as Al, Si, Na, K, Ca, Mg, Cl and SO4. The co-disposal of fly ash and brine has been practiced by some power stations in South Africa with the aim of utilizing the fly ash to capture the salts in brine. The effect of the chemical interaction of the species contained in both fly ash and brine, when co-disposed, on the mobility of species in the fly ash–brine systems is the focus of this study. The up-flow percolation test was employed to determine the mobility of some major species in the fly ash–brine systems. The results of the analysed eluates from the up-flow percolation tests revealed that some species such as Al, Ca and Na were leached from the fly ash into the brine solution while some species such as Mg, Cl and SO4 were removed to some extent from the brine solution during the interaction with fly ash. The pH of the up-flow percolation systems was observed to play a significant role on the mobility of major species from the fly ash–brine systems. The study showed that some major species such as Mg, Cl and SO4 could be removed from brine solution using fly ash when certain amount of brine percolates through the ash.Web of Scienc

    Discrepancies between the medical record and the reports of patients with acute coronary syndrome regarding important aspects of the medical history

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many critical treatment decisions are based on the medical history of patients with an acute coronary syndrome (ACS). Discrepancies between the medical history documented by a health professional and the patient's own report may therefore have important health consequences.</p> <p>Methods</p> <p>Medical histories of 117 patients with an ACS were documented. A questionnaire assessing the patient's health history was then completed by 62 eligible patients. Information about 13 health conditions with relevance to ACS management was obtained from the questionnaire and the medical record. Concordance between these two sources and reasons for discordance were identified.</p> <p>Results</p> <p>There was significant variation in agreement, from very poor in angina (kappa < 0) to almost perfect in diabetes (kappa = 0.94). Agreement was substantial in cerebrovascular accident (kappa = 0.76) and hypertension (kappa = 0.73); moderate in cocaine use (kappa = 0.54), smoking (kappa = 0.46), kidney disease (kappa = 0.52) and congestive heart failure (kappa = 0.54); and fair in arrhythmia (kappa = 0.37), myocardial infarction (kappa = 0.31), other cardiovascular diseases (kappa = 0.37) and bronchitis/pneumonia (kappa = 0.31). The odds of agreement was 42% higher among individuals with at least some college education (OR = 1.42; 95% CI, 1.00 - 2.01, p = 0.053). Listing of a condition in medical record but not in the questionnaire was a common cause of discordance.</p> <p>Conclusion</p> <p>Discrepancies in aspects of the medical history may have important effects on the care of ACS patients. Future research focused on identifying the most effective and efficient means to obtain accurate health information may improve ACS patient care quality and safety.</p

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pTβ‰₯20 GeV and pseudorapidities {pipe}Ξ·{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}Ξ·{pipe}<0. 8) for jets with 60≀pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≀{pipe}Ξ·{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. Β© 2013 CERN for the benefit of the ATLAS collaboration

    A Key Role for E-cadherin in Intestinal Homeostasis and Paneth Cell Maturation

    Get PDF
    E-cadherin is a major component of adherens junctions. Impaired expression of E-cadherin in the small intestine and colon has been linked to a disturbed intestinal homeostasis and barrier function. Down-regulation of E-cadherin is associated with the pathogenesis of infections with enteropathogenic bacteria and Crohn's disease. To genetically clarify the function of E-cadherin in intestinal homeostasis and maintenance of the epithelial defense line, the Cdh1 gene was conditionally inactivated in the mouse intestinal epithelium. Inactivation of the Cdh1 gene in the small intestine and colon resulted in bloody diarrhea associated with enhanced apoptosis and cell shedding, causing life-threatening disease within 6 days. Loss of E-cadherin led cells migrate faster along the crypt-villus axis and perturbed cellular differentiation. Maturation and positioning of goblet cells and Paneth cells, the main cell lineage of the intestinal innate immune system, was severely disturbed. The expression of anti-bacterial cryptidins was reduced and mice showed a deficiency in clearing enteropathogenic bacteria from the intestinal lumen. These results highlight the central function of E-cadherin in the maintenance of two components of the intestinal epithelial defense: E-cadherin is required for the proper function of the intestinal epithelial lining by providing mechanical integrity and is a prerequisite for the proper maturation of Paneth and goblet cells

    Enhanced prefrontal serotonin 5-HT1A currents in a mouse model of Williams-Beuren syndrome with low innate anxiety

    Get PDF
    Williams-Beuren syndrome (WBS) is a neurodevelopmental disorder caused by the hemizygous deletion of 28 genes on chromosome 7, including the general transcription factor GTF2IRD1. Mice either hemizygously (Gtf2ird1+/βˆ’) or homozygously (Gtf2ird1βˆ’/βˆ’) deleted for this transcription factor exhibit low innate anxiety, low aggression and increased social interaction, a phenotype that shares similarities to the high sociability and disinhibition seen in individuals with WBS. Here, we investigated the inhibitory effects of serotonin (5-HT) on the major output neurons of the prefrontal cortex in Gtf2ird1βˆ’/βˆ’ mice and their wildtype (WT) siblings. Prefrontal 5-HT receptors are known to modulate anxiety-like behaviors, and the Gtf2ird1βˆ’/βˆ’ mice have altered 5-HT metabolism in prefrontal cortex. Using whole cell recording from layer V neurons in acute brain slices of prefrontal cortex, we found that 5-HT elicited significantly larger inhibitory, outward currents in Gtf2ird1βˆ’/βˆ’ mice than in WT controls. In both genotypes, these currents were resistant to action potential blockade with TTX and were suppressed by the selective 5-HT1A receptor antagonist WAY-100635, suggesting that they are mediated directly by 5-HT1A receptors on the recorded neurons. Control experiments suggest a degree of layer and receptor specificity in this enhancement since 5-HT1A receptor-mediated responses in layer II/III pyramidal neurons were unchanged as were responses mediated by two other inhibitory receptors in layer V pyramidal neurons. Furthermore, we demonstrate GTF2IRD1 protein expression by neurons in layer V of the prefrontal cortex. Our finding that 5-HT1A-mediated responses are selectively enhanced in layer V pyramidal neurons of Gtf2ird1βˆ’/βˆ’ mice gives insight into the cellular mechanisms that underlie reduced innate anxiety and increased sociability in these mice, and may be relevant to the low social anxiety and disinhibition in patients with WBS and their sensitivity to serotonergic medicines

    SIRT1 Promotes N-Myc Oncogenesis through a Positive Feedback Loop Involving the Effects of MKP3 and ERK on N-Myc Protein Stability

    Get PDF
    The N-Myc oncoprotein is a critical factor in neuroblastoma tumorigenesis which requires additional mechanisms converting a low-level to a high-level N-Myc expression. N-Myc protein is stabilized when phosphorylated at Serine 62 by phosphorylated ERK protein. Here we describe a novel positive feedback loop whereby N-Myc directly induced the transcription of the class III histone deacetylase SIRT1, which in turn increased N-Myc protein stability. SIRT1 binds to Myc Box I domain of N-Myc protein to form a novel transcriptional repressor complex at gene promoter of mitogen-activated protein kinase phosphatase 3 (MKP3), leading to transcriptional repression of MKP3, ERK protein phosphorylation, N-Myc protein phosphorylation at Serine 62, and N-Myc protein stabilization. Importantly, SIRT1 was up-regulated, MKP3 down-regulated, in pre-cancerous cells, and preventative treatment with the SIRT1 inhibitor Cambinol reduced tumorigenesis in TH-MYCN transgenic mice. Our data demonstrate the important roles of SIRT1 in N-Myc oncogenesis and SIRT1 inhibitors in the prevention and therapy of N-Myc–induced neuroblastoma

    Hypoxia-inducible factor-1Ξ± expression in the gastric carcinogenesis sequence and its prognostic role in gastric and gastro-oesophageal adenocarcinomas

    Get PDF
    Hypoxia-inducible factor-1 (HIF-1)Ξ± expression was studied in the gastric carcinogenesis sequence and as a prognostic factor in surgically resected gastric and gastro-oesophageal junction tumours. Protein expression was examined using immunohistochemistry on formalin-fixed biopsies of normal mucosa (n=20), Helicobacter pylori associated gastritis (n=24), intestinal metaplasia (n=24), dysplasia (n=12) and intestinal (n=19) and diffuse (n=21) adenocarcinoma. The relationship between HIF-1Ξ± expression and prognosis was assessed in resection specimens from 177 patients with gastric and gastro-oesophageal junction adenocarcinoma. Hypoxia-inducible factor-1Ξ± expression was not observed in normal gastric mucosa but increased in density (P<0.01) and intensity (P<0.01) with progression from H. pylori-associated gastritis, intestinal metaplasia, dysplasia to adenocarcinoma. The pattern of staining in the resection specimens was focally positive in 49 (28%) and at the invasive tumour edge in 41 (23%). Invasive edge expression was associated with lymph node metastases (P=0.034), advanced TNM stage (P=0.001) and was an adverse prognostic factor for cancer-specific survival (P=0.019). In univariate analysis and in comparison with tumours not expressing HIF-1Ξ±, invasive edge staining was associated with a hazard ratio of 1.6 (95% CI 1.0βˆ’2.5) and focally positive staining a hazard ratio of 0.7 (95% CI 0.5βˆ’1.2). Hypoxia-inducible factor-1Ξ± lost prognostic significance in multivariate analysis. The results suggest HIF-1Ξ± is involved in gastric carcinogenesis and disease progression, but is only a weak prognostic factor for survival
    • …
    corecore