50 research outputs found

    Effective Rheology of Bubbles Moving in a Capillary Tube

    Full text link
    We calculate the average volumetric flux versus pressure drop of bubbles moving in a single capillary tube with varying diameter, finding a square-root relation from mapping the flow equations onto that of a driven overdamped pendulum. The calculation is based on a derivation of the equation of motion of a bubble train from considering the capillary forces and the entropy production associated with the viscous flow. We also calculate the configurational probability of the positions of the bubbles.Comment: 4 pages, 1 figur

    Alignment of the ALICE Inner Tracking System with cosmic-ray tracks

    Get PDF
    37 pages, 15 figures, revised version, accepted by JINSTALICE (A Large Ion Collider Experiment) is the LHC (Large Hadron Collider) experiment devoted to investigating the strongly interacting matter created in nucleus-nucleus collisions at the LHC energies. The ALICE ITS, Inner Tracking System, consists of six cylindrical layers of silicon detectors with three different technologies; in the outward direction: two layers of pixel detectors, two layers each of drift, and strip detectors. The number of parameters to be determined in the spatial alignment of the 2198 sensor modules of the ITS is about 13,000. The target alignment precision is well below 10 micron in some cases (pixels). The sources of alignment information include survey measurements, and the reconstructed tracks from cosmic rays and from proton-proton collisions. The main track-based alignment method uses the Millepede global approach. An iterative local method was developed and used as well. We present the results obtained for the ITS alignment using about 10^5 charged tracks from cosmic rays that have been collected during summer 2008, with the ALICE solenoidal magnet switched off.Peer reviewe

    Tandem differential mobility spectrometry with chemical modification of ions

    No full text
    Closed access.A tandem ion mobility spectrometer with two sequential differential mobility spectrometry (DMS) drift tubes and with detectors at ambient pressure is described and modes of operation are demonstrated. Separate but coordinated electronic control for each drift tube allows several modes of operation including: all ions passing; compensation voltage (CV) scanning; and ion selection over a narrow CV range. Any of these modes can be applied to each drift tube allowing several combinations of analytical measurements, analogous to tandem mass spectrometry, with ions entered into a gas atmosphere containing reagents between the mobility regions. Ions may be changed by cluster or displacement reactions and characterized in the second DMS analyzer. Proton bound dimers of compounds appearing near 0 V CV in DMS1 were isolated in DMS1, introduced into 1 % isopropanol vapors, and resolved at characteristic CV values in the DMS2. This is achieved with analyzer dimensions little greater than a single DMS instrument. © 2012 Springer-Verlag
    corecore