528 research outputs found
Landscape as Heritage: Negotiating European Cultural Identity
environmental policy; identity; European identity
Approaching the Coverability Problem Continuously
The coverability problem for Petri nets plays a central role in the
verification of concurrent shared-memory programs. However, its high
EXPSPACE-complete complexity poses a challenge when encountered in real-world
instances. In this paper, we develop a new approach to this problem which is
primarily based on applying forward coverability in continuous Petri nets as a
pruning criterion inside a backward coverability framework. A cornerstone of
our approach is the efficient encoding of a recently developed polynomial-time
algorithm for reachability in continuous Petri nets into SMT. We demonstrate
the effectiveness of our approach on standard benchmarks from the literature,
which shows that our approach decides significantly more instances than any
existing tool and is in addition often much faster, in particular on large
instances.Comment: 18 pages, 4 figure
The Hubble Deep Field South Flanking Fields
As part of the Hubble Deep Field South program, a set of shorter 2-orbit
observations were obtained of the area adjacent to the deep fields. The WFPC2
flanking fields cover a contiguous solid angle of 48 square arcminutes.
Parallel observations with the STIS and NICMOS instruments produce a patchwork
of additional fields with optical and near-infrared (1.6 micron) response.
Deeper parallel exposures with WFPC2 and NICMOS were obtained when STIS
observed the NICMOS deep field. These deeper fields are offset from the rest,
and an extended low surface brightness object is visible in the deeper WFPC2
flanking field. In this data paper, which serves as an archival record of the
project, we discuss the observations and data reduction, and present SExtractor
source catalogs and number counts derived from the data. Number counts are
broadly consistent with previous surveys from both ground and space. Among
other things, these flanking field observations are useful for defining slit
masks for spectroscopic follow-up over a wider area around the deep fields, for
studying large-scale structure that extends beyond the deep fields, for future
supernova searches, and for number counts and morphological studies, but their
ultimate utility will be defined by the astronomical community.Comment: 46 pages, 15 figures. Images and full catalogs available via the
HDF-S at http://www.stsci.edu/ftp/science/hdfsouth/hdfs.html at present. The
paper is accepted for the February 2003 Astronomical Journal. Full versions
of the catalogs will also be available on-line from AJ after publicatio
Long-term effects of chronic light pollution on seasonal functions of European blackbirds (turdus merula)
Light pollution is known to affect important biological functions of wild animals, including daily and annual cycles. However, knowledge about long-term effects of chronic exposure to artificial light at night is still very limited. Here we present data on reproductive physiology, molt and locomotor activity during two-year cycles of European blackbirds (Turdus merula) exposed to either dark nights or 0.3 lux at night. As expected, control birds kept under dark nights exhibited two regular testicular and testosterone cycles during the two-year experiment. Control urban birds developed testes faster than their control rural conspecifics. Conversely, while in the first year blackbirds exposed to light at night showed a normal but earlier gonadal cycle compared to control birds, during the second year the reproductive system did not develop at all: both testicular size and testosterone concentration were at baseline levels in all birds. In addition, molt sequence in light-treated birds was more irregular than in control birds in both years. Analysis of locomotor activity showed that birds were still synchronized to the underlying light-dark cycle. We suggest that the lack of reproductive activity and irregular molt progression were possibly the results of i) birds being stuck in a photorefractory state and/or ii) chronic stress. Our data show that chronic low intensities of light at night can dramatically affect the reproductive system. Future studies are needed in order to investigate if and how urban animals avoid such negative impact and to elucidate the physiological mechanisms behind these profound long-term effects of artificial light at night. Finally we call for collaboration between scientists and policy makers to limit the impact of light pollution on animals and ecosystems
Recommended from our members
2017 pest management guide for wine grapes in Oregon
Second revision March 24, 2017.
Facts and recommendations in this publication may no longer be valid. Please look for up-to-date information in the OSU Extension Catalog: http://extension.oregonstate.edu/catalogThis pest management guide is developed for use by vineyard managers in Oregon. It provides recommendations for chemicals, formulations, and usage rates of products that are intended to prevent, manage, and control vineyard diseases, insects, mites, weeds, and vertebrate pests. When considering a pesticide, evaluate its efficacy and its impact on beneficial arthropods, honey bees, and the environment. Not all registered pesticides are listed in this guide. These recommendations are based on research, label directions, and vineyard-use experience for Oregon
Recommended from our members
2018 pest management guide for wine grapes in Oregon
This publication reviews the growth stages of grapes. For each growth stage (or group of growth stages), the document lists the more effective pesticides used to control insects, weeds, and disease, their rates, and application timing for Oregon grape growers. It also covers the effectiveness of various fungicides for control of grape diseases; strategies for controlling powdery mildew, botrytis bunch rot, and spider mites; methods of controlling vertebrate pests and weeds in vineyards; and resources for organic growers. It also includes a vineyard airblast sprayer calibration worksheet.A more recent revision exists. Facts and recommendations in this publication may no longer be valid. Please look for up-to-date information in the OSU Extension Catalog: http://extension.oregonstate.edu/catalo
Recommended from our members
Risk measures for direct real estate investments with non-normal or unknown return distributions
The volatility of returns is probably the most widely used risk measure for real estate. This is rather surprising since a number of studies have cast doubts on the view that volatility can capture the manifold risks attached to properties and corresponds to the risk attitude of investors. A central issue in this discussion is the statistical properties of real estate returns—in contrast to neoclassical capital market theory they are mostly non-normal and often unknown, which render many statistical measures useless. Based on a literature review and an analysis of data from Germany we provide evidence that volatility alone is inappropriate for measuring the risk of direct real estate.
We use a unique data sample by IPD, which includes the total returns of 939 properties across different usage types (56% office, 20% retail, 8% others and 16% residential properties) from 1996 to 2009, the German IPD Index, and the German Property Index. The analysis of the distributional characteristics shows that German real estate returns in this period were not normally distributed and that a logistic distribution would have been a better fit. This is in line with most of the current literature on this subject and leads to the question which indicators are more appropriate to measure real estate risks. We suggest that a combination of quantitative and qualitative risk measures more adequately captures real estate risks and conforms better with investor attitudes to risk. Furthermore, we present criteria for the purpose of risk classification
The XMM Cluster Survey: The interplay between the brightest cluster galaxy and the intra-cluster medium via AGN feedback
Using a sample of 123 X-ray clusters and groups drawn from the XMM-Cluster
Survey first data release, we investigate the interplay between the brightest
cluster galaxy (BCG), its black hole, and the intra-cluster/group medium (ICM).
It appears that for groups and clusters with a BCG likely to host significant
AGN feedback, gas cooling dominates in those with Tx > 2 keV while AGN feedback
dominates below. This may be understood through the sub-unity exponent found in
the scaling relation we derive between the BCG mass and cluster mass over the
halo mass range 10^13 < M500 < 10^15Msol and the lack of correlation between
radio luminosity and cluster mass, such that BCG AGN in groups can have
relatively more energetic influence on the ICM. The Lx - Tx relation for
systems with the most massive BCGs, or those with BCGs co-located with the peak
of the ICM emission, is steeper than that for those with the least massive and
most offset, which instead follows self-similarity. This is evidence that a
combination of central gas cooling and powerful, well fuelled AGN causes the
departure of the ICM from pure gravitational heating, with the steepened
relation crossing self-similarity at Tx = 2 keV. Importantly, regardless of
their black hole mass, BCGs are more likely to host radio-loud AGN if they are
in a massive cluster (Tx > 2 keV) and again co-located with an effective fuel
supply of dense, cooling gas. This demonstrates that the most massive black
holes appear to know more about their host cluster than they do about their
host galaxy. The results lead us to propose a physically motivated, empirical
definition of 'cluster' and 'group', delineated at 2 keV.Comment: Accepted for publication in MNRAS - replaced to match corrected proo
The XMM Cluster Survey: Forecasting cosmological and cluster scaling-relation parameter constraints
We forecast the constraints on the values of sigma_8, Omega_m, and cluster
scaling relation parameters which we expect to obtain from the XMM Cluster
Survey (XCS). We assume a flat Lambda-CDM Universe and perform a Monte Carlo
Markov Chain analysis of the evolution of the number density of galaxy clusters
that takes into account a detailed simulated selection function. Comparing our
current observed number of clusters shows good agreement with predictions. We
determine the expected degradation of the constraints as a result of
self-calibrating the luminosity-temperature relation (with scatter), including
temperature measurement errors, and relying on photometric methods for the
estimation of galaxy cluster redshifts. We examine the effects of systematic
errors in scaling relation and measurement error assumptions. Using only (T,z)
self-calibration, we expect to measure Omega_m to +-0.03 (and Omega_Lambda to
the same accuracy assuming flatness), and sigma_8 to +-0.05, also constraining
the normalization and slope of the luminosity-temperature relation to +-6 and
+-13 per cent (at 1sigma) respectively in the process. Self-calibration fails
to jointly constrain the scatter and redshift evolution of the
luminosity-temperature relation significantly. Additional archival and/or
follow-up data will improve on this. We do not expect measurement errors or
imperfect knowledge of their distribution to degrade constraints significantly.
Scaling-relation systematics can easily lead to cosmological constraints 2sigma
or more away from the fiducial model. Our treatment is the first exact
treatment to this level of detail, and introduces a new `smoothed ML' estimate
of expected constraints.Comment: 28 pages, 17 figures. Revised version, as accepted for publication in
MNRAS. High-resolution figures available at http://xcs-home.org (under
"Publications"
- …