48 research outputs found

    Deformation and magnetic fabrics in ductile shear zones: A review

    Get PDF
    The Anisotropy of Magnetic Susceptibility (AMS) is a well-established petrofabric tool for indicating relative strain and microstructural character and has been validated on various rock types and different structural settings. The magnetic susceptibility of a rock (K) depends primarily on the nature and abundance of magnetic minerals. The physical arrangement and lattice-preferred orientation of these magnetic minerals give rise to magnetic anisotropy. The AMS scalar parameters most commonly used to constrain strain include the corrected degree of anisotropy (P'> 1), a proxy for fabric intensity, and the shape factor (- 1 ≤ T≤ + 1), an indicator of the magnetic fabric symmetry (prolate vs. oblate).A number of studies have shown that a positive correlation generally exists between P' and strain. Thus, the AMS shows a great potential as a tool for examining deformation in geologic structures characterized by large strain gradients such as shear zones. However, a number of caveats exist: (i) The increase of P' with strain cannot be solely attributed to deformation because P' also increases with K regardless of deformation; (ii) Strain across shear zones is typically heterogeneous and is often localized in units of different lithology, thus making the separation of the lithological and strain controls on AMS difficult; also, deformation is commonly accompanied by mineral segregation or fluid-rock interaction that induces changes in magnetic mineralogy; (iii) Even if the undeformed lithology was uniform across a shear zone, variations in strain rate or temperature may result in different deformation mechanisms; hence, the relationship between P' and strain depends strongly on both the mineral carriers of AMS and on deformation mechanisms; and (iv) The AMS is unable to resolve composite fabrics, such as those resulting from S-C structures, where minerals on the C and S planes, respectively, contribute to AMS

    Deformation coupling between the Archean Pukaskwa intrusive complex and the Hemlo shear zone, Superior Province, Canada

    Get PDF
    Archean greenstone belts typically form narrow sheared basins separating bulbous tonalo-trondjhemo-granodioritic (TTG) intrusive complexes. The role played by gravity in the development of such dome-and-keel structures constitutes a key question in Archean tectonics. The Pukaskwa intrusive complex (PIC)-Hemlo greenstone belt system stands as a remarkable example of the dome-and-keel architecture that commonly occurs in Archean terrains. Abundant strain markers in the greenstone belt and in the Hemlo shear zone (HSZ) attest of late sinistral strike-slip kinematics (D2) whereas, in general, the quartzofeldspathic coarse-grained rocks of the Pukaskwa intrusive complex bear little macroscopically visible kinematic indicators, most likely due to pervasive recrystallization. The PIC consists dominantly of a heterogeneous assemblage of TTG plutonic rocks and gneisses, which overall are less dense than the greenstone rocks. The study of anisotropy of magnetic susceptibility (AMS), based on 120 stations and 1947 specimens from the PIC, reveals east-west trending prolate and plano-linear fabrics across the northern margin of the complex, i.e., along the HSZ. Since geotherms were higher in the Archean than in the present, the effective viscosity of the TTG units would have been sufficiently low to allow their diapiric ascent through denser greenstone rocks. Here we propose an alternative model where thrust tectonics is responsible for the early structuration of the PIC. Later transpressive tectonics causes strain localization along internal strike-slip shear zones and along lithological boundaries. © 2013 Elsevier B.V

    Global maps of the magnetic thickness and magnetization of the Earth’s lithosphere

    Get PDF
    International audienceWe have constructed global maps of the large-scale magnetic thickness and magnetization of Earth's lithosphere. Deriving such large-scale maps based on lithospheric magnetic field measurements faces the challenge of the masking effect of the core field. In this study, the maps were obtained through analyses in the spectral domain by means of a new regional spatial power spectrum based on the Revised Spherical Cap Harmonic Analysis (R-SCHA) formalism. A series of regional spectral analyses were conducted covering the entire Earth. The R-SCHA surface power spectrum for each region was estimated using the NGDC-720 spherical harmonic (SH) model of the lithospheric magnetic field, which is based on satellite, aeromagnetic, and marine measurements. These observational regional spectra were fitted to a recently proposed statistical expression of the power spectrum of Earth's lithospheric magnetic field, whose free parameters include the thickness and magnetization of the magnetic sources. The resulting global magnetic thickness map is compared to other crustal and magnetic thickness maps based upon different geophysical data. We conclude that the large-scale magnetic thickness of the lithosphere is on average confined to a layer that does not exceed the Moho

    Behavioral and Cognitive Improvement Induced by Novel Imidazoline I2 Receptor Ligands in Female SAMP8 Mice

    Full text link
    As populations increase their life expectancy, age-related neurodegenerative disorders such as Alzheimer's disease have become more common. I2-Imidazoline receptors (I2-IR) are widely distributed in the central nervous system, and dysregulation of I2-IR in patients with neurodegenerative diseases has been reported, suggesting their implication in cognitive impairment. This evidence indicates that high-affinity selective I2-IR ligands potentially contribute to the delay of neurodegeneration. In vivo studies in the female senescence accelerated mouse-prone 8 mice have shown that treatment with I2-IR ligands, MCR5 and MCR9, produce beneficial effects in behavior and cognition. Changes in molecular pathways implicated in oxidative stress, inflammation, synaptic plasticity, and apoptotic cell death were also studied. Furthermore, treatments with these I2-IR ligands diminished the amyloid precursor protein processing pathway and increased Aβ degrading enzymes in the hippocampus of SAMP8 mice. These results collectively demonstrate the neuroprotective role of these new I2-IR ligands in a mouse model of brain aging through specific pathways and suggest their potential as therapeutic agents in brain disorders and age-related neurodegenerative diseases. Keywords Imidazoline I2 receptors (2-imidazolin-4-yl)phosphonates Behavior Cognition Neurodegeneration Neuroprotection Agin

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    Relative contributions of crust and mantle to generation of Campanian high-K calc-alkaline I-type granitoids in a subduction setting, with special reference to the Harsit Pluton, Eastern Turkey

    Get PDF
    We present elemental and Sr-Nd-Pb isotopic data for the magmatic suite (similar to 79 Ma) of the Harsit pluton, from the Eastern Pontides (NE Turkey), with the aim of determining its magma source and geodynamic evolution. The pluton comprises granite, granodiorite, tonalite and minor diorite (SiO(2) = 59.43-76.95 wt%), with only minor gabbroic diorite mafic microgranular enclaves in composition (SiO(2) = 54.95-56.32 wt%), and exhibits low Mg# (<46). All samples show a high-K calc-alkaline differentiation trend and I-type features. The chondrite-normalized REE patterns are fractionated [(La/Yb)(n) = 2.40-12.44] and display weak Eu anomalies (Eu/Eu* = 0.30-0.76). The rocks are characterized by enrichment of LILE and depletion of HFSE. The Harsit host rocks have weak concave-upward REE patterns, suggesting that amphibole and garnet played a significant role in their generation during magma segregation. The host rocks and their enclaves are isotopically indistinguishable. Sr-Nd isotopic data for all of the samples display I(Sr) = 0.70676-0.70708, epsilon(Nd)(79 Ma) = -4.4 to -3.3, with T(DM) = 1.09-1.36 Ga. The lead isotopic ratios are ((206)Pb/(204)pb) = 18.79-18.87, ((207)Pb/(204)Pb) = 15.59-15.61 and ((208)Pb/(204)Pb) = 38.71-38.83. These geochemical data rule out pure crustal-derived magma genesis in a post-collision extensional stage and suggest mixed-origin magma generation in a subduction setting. The melting that generated these high-K granitoidic rocks may have resulted from the upper Cretaceous subduction of the Izmir-Ankara-Erzincan oceanic slab beneath the Eurasian block in the region. The back-arc extensional events would have caused melting of the enriched subcontinental lithospheric mantle and formed mafic magma. The underplating of the lower crust by mafic magmas would have played a significant role in the generation of high-K magma. Thus, a thermal anomaly induced by underplated basic magma into a hot crust would have caused partial melting in the lower part of the crust. In this scenario, the lithospheric mantle-derived basaltic melt first mixed with granitic magma of crustal origin at depth. Then, the melts, which subsequently underwent a fractional crystallization and crustal assimilation processes, could ascend to shallower crustal levels to generate a variety of rock types ranging from diorite to granite. Sr-Nd isotope modeling shows that the generation of these magmas involved similar to 65-75% of the lower crustal-derived melt and similar to 25-35% of subcontinental lithospheric mantle. Further, geochemical data and the Ar-Ar plateau age on hornblende, combined with regional studies, imply that the Harsit pluton formed in a subduction setting and that the back-arc extensional period started by least similar to 79 Ma in the Eastern Pontides.Geochemistry & GeophysicsMineralogySCI(E)33ARTICLE4467-48716

    Estimulação tátil-cinestésica: uma integração entre pele e sistema endócrino? Tactile-kinesthetic stimulation: integration between skin and endocrine system?

    Get PDF
    Apresenta-se uma revisão da literatura sobre os aspectos neuroendócrinos da pele e as conseqüências da estimulação tátil-cinestésica sobre o córtex adrenal. Os artigos foram identificados a partir das bases de dados MEDLINE e LILACS, usando as palavras-chave "córtex supra-renal", "pele", "massagem", "lactentes", "glicocorticóide" e "ritmo circadiano". O período pesquisado foi de 1990 a 2003. Foram também consultados artigos de destaque publicados antes desse período. Estudos reconhecem o hipotálamo, a hipófise e a glândula adrenal como órgãos dinâmicos durante o desenvolvimento fetal e neonatal, e que respostas de estresse estão presentes ao nascer. A maioria dos estudos revisados, utilizando a estimulação tátil-cinestésica, seja em humanos ou animais, evidencia a capacidade da pele em metabolizar, coordenar e organizar estímulos externos, procurando manter a homeostase interna e externa, demonstrando a interação entre sistema neuroendócrino e a pele. A estimulação tátil-cinestésica parece ter um efeito sobre a reatividade hormonal, porém essa questão merece uma investigação mais aprofundada.<br>A literature review on skin neuroendocrine aspects and the consequences of the tactile- kinesthetic stimulation on the adrenal cortex are presented. The articles were identified through MEDLINE and LILACS data bases, using the keywords "suprarenal cortex", "skin", "massage", "infants", "glucocorticoid" and "circadian rhythm". Single articles published between 1990 and 2003 were considered, as well as outstanding ones prior to this period. Studies recognize that the hypothalamus, the pituitary and the adrenal gland are dynamic organs during fetal and neonatal development, and that stress responses are active at birth. Most of the studies reviewed, using tactile-kinesthetic stimulation, both in humans and animals, confirm skin's ability to metabolize, coordinate and organize external stimuli, attempting to maintain both external and internal homeostasis, demonstrating an interaction between the neuroendocrine system and tactile stimulation. Tactile-kinesthetic stimulation seems to have an effect on hormonal reactivity, although the issue demands further investigation
    corecore