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Archean greenstone belts typically form narrow sheared basins separating bulbous tonalo–trondjhemo–
granodioritic (TTG) intrusive complexes. The role played by gravity in the development of such dome-and-keel
structures constitutes a key question in Archean tectonics. The Pukaskwa intrusive complex (PIC)–Hemlo green-
stone belt system stands as a remarkable example of the dome-and-keel architecture that commonly occurs in
Archean terrains. Abundant strain markers in the greenstone belt and in the Hemlo shear zone (HSZ) attest of
late sinistral strike-slip kinematics (D2) whereas, in general, the quartzofeldspathic coarse-grained rocks of the
Pukaskwa intrusive complex bear little macroscopically visible kinematic indicators, most likely due to pervasive
recrystallization. The PIC consists dominantly of a heterogeneous assemblage of TTG plutonic rocks and gneisses,
which overall are less dense than the greenstone rocks. The study of anisotropy of magnetic susceptibility
(AMS), based on 120 stations and 1947 specimens from the PIC, reveals east–west trending prolate and
plano-linear fabrics across the northernmargin of the complex, i.e., along the HSZ. Since geotherms were higher
in the Archean than in the present, the effective viscosity of the TTG units would have been sufficiently low to
allow their diapiric ascent through denser greenstone rocks. Herewe propose an alternativemodel where thrust
tectonics is responsible for the early structuration of the PIC. Later transpressive tectonics causes strain localiza-
tion along internal strike-slip shear zones and along lithological boundaries.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Density contrasts in a thin and hot lithosphere might have been
the main force driving Archean orogenesis rather than plate tectonics
(e.g., Chardon et al., 2009; Hamilton, 1998). Yet evidence for early
plate tectonics makes this issue rather controversial (de Wit, 1998;
Percival, 1994). The dynamic relationship between greenstone belts
and tonalo–trondjhemo–granodioritic (TTG) complexes appears cen-
tral in the “vertical tectonics” vs “horizontal tectonics” debate. The rela-
tively low density of TTG complexes and associated anatectic gneisses
might have allowed their diapiric rise through an overburden made of
higher density mafic to ultramafic greenstone volcano-sedimentary
rocks (Dixon and Summers, 1983). The geometry resulting from such
process would resemble that of metamorphic core complexes (Lister
and Davis, 1989). Alternatively, greenstone belts may have provided a
buttress against which TTG complexes were emplaced. These two tec-
tonic scenarios are not fundamentally incompatible andmight have oc-
curred simultaneously in the same region (Lin, 2005). Density-driven
tectonics resulted in formation of large-scale dome-and-keel structures
1 6184537393.

rights reserved.
that characterize Archean terrains (Chardon et al., 1996; Harris et al.,
2012; Lana et al., 2010; Lin, 2005; Sandiford et al., 2004; Shackleton,
1995; Van Kranendonk et al., 2010). Interference folding has also been
proposed as amechanism to explain structural domeswithin theArchean
Chinamora batholith in Zimbabwe (Snowden and Bickle, 1976).

In order to advance our understanding of these important tectonic
issues, we chose to study a representative example of a dome-and-
keel structure in the Archean Superior Province, the Pukaskwa intru-
sive complex (PIC)–Hemlo shear zone (HSZ) system (Fig. 1). The
Hemlo greenstone belt is part of the Wawa subprovince to the south
of the Superior Province and is bounded to the south by the Pukaskwa
granodiorite. A strong deformation can be defined along the northern
margin of the granitic complex while moving away from the contact
zone macroscopic structural markers become scarce. With the anisot-
ropy of magnetic susceptibility study (AMS) being recognized as a
powerful technique for quantifying strain in weakly deformed rocks,
particularly in granitic, gneissic and migmatitic domains (Charles
et al., 2009; Ferré et al., 2003, 2004; Gébelin et al., 2006; Hasalova
et al., 2008; Kruckenberg et al., 2010, 2011; Polteau et al., 2008;
Schulmann et al., 2009), we conducted a AMS study in the northern
margin of the PIC to better understand its mechanism of emplacement
and to investigate the role played by vertical and horizontal tectonics

http://dx.doi.org/10.1016/j.tecto.2013.06.022
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Fig. 1. Simplified geological map of the Hemlo greenstone belt modified after Lin (2001) showing the location of the Hemlo Shear Zone (H.S.Z.) and foliations and lineations mea-
sured in the northern margin of the Pukaskwa Granitic Complex (PIC). Small black dots indicate the locations of AMS data.
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in Archean times. In these types of rocks, the AMS records the shape-
preferred orientation of paramagnetic or ferromagnetic s.l. grains,
which is generally acquired during plastic flow either at high- or
low-temperatures. The AMS scalar parameters are calculated from
the second rank tensor of magnetic susceptibility while the AMS vec-
torial parameters are given with respect to the geographic orientation
of the specimen (Pokorny et al., 2004). The chosen example is not only
representative of Archean processes but also relevant from an eco-
nomic standpoint owing to the gold deposits hosted by the HSZ. The
results of these investigations will advance our knowledge of Archean
tectonics in the Superior Province, and potentially aid in the explora-
tion of other prospective shear zones and intrusive complexes.

2. Regional setting

The Hemlo greenstone belt and the PIC are both located in the
Wawa subprovince of the Superior Province in Ontario (Canada)
(Fig. 1). The Superior Province forms the largest Archean terrain on
Earth, covering an area of ≈1500 × 2500 km (e.g., Hamilton, 2007)
and, like most Archean cratons, it originated from an amalgamation of
different igneous and metamorphic terranes ranging in age between
3.10 and 2.65 Ga (e.g., Calvert and Ludden, 1999; Card, 1990). Geochro-
nological data suggest that terrane assembly began with accretion of
a magmatic arc (Card, 1990; Corfu and Muir, 1989a, 1989b; Percival
et al., 2001; Williams et al., 1991).

2.1. Hemlo greenstone belt

The east–west striking Hemlo greenstone belt is bounded to the
north and south by the two main large Black-Pic and Pukaskwa late
Archean (~2720 Ma) tonalite–granodiorite granitoids (Beakhouse and
Davis, 2005.), respectively. It is well known for containing one of
the largest gold deposits in Canada localized along the HSZ (Fig. 1).
The E–W trending HSZ affects over a ~2-km wide zone Archean
supracrustal rocks of the greenstone belt aswell as the northernmargin
of the PIC. Themap pattern of the HSZmost likely results from the irreg-
ular contact between one of the intrusives in the PIC and the Hemlo
greenstone belt rather than from post-shearing folding. The greenstone
belt is composed of mylonitic Archean metasedimentary and felsic, in-
termediate and mafic metavolcanic rocks (e.g., Lin, 2001) which are in-
truded by late Archean (~2680 Ma; Beakhouse and Davis, 2005)
granodiorite–quartz monzodiorite plutons (Fig. 1; Heron Bay, Gowan
and Cedar Lake). The supracrustal rocks deposited from ≥2720 Ma to
2688 Ma (Corfu and Muir, 1989a, 1989b; Jackson, 1998) experienced
three main ductile deformation events. The regional deformational fab-
ric (D1) is overprinted by a second and main regional event (D2) that
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Fig. 3. Photographs of the Pukaskwa intrusive complex. (A) Amphibolite intruded by fine-grained leucocratic layers. Note the boudinage deforming the two rock types; (B) Biotite–
hornblende–alkali feldspar–plagioclase–quartz–magnetite paragenesis observed on granodiorite to quartz monzodiorite rocks; (C) amphibolite facies metamorphic rocks
experiencing partial melting. (D) Migmatite outcrop on the shoreline of Lake Superior (Oiseau Bay).
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affects rocks within the HSZ. The foliation (S2) dips steeply to the north
(Fig. 1) and the lineation (L2) defined by a preferred orientation of bio-
tite and hornblende (Fig. 2A) and/or by elongate clasts in conglomerate
(Fig. 2B) and/or volcaniclastic rocks (Fig. 2C) plunges steeply to the
northwest in the shear zone center (Fig. 2D) tomoderatelymove south-
ward to the contact with the PIC (Fig. 2A). The foliation (S2) is very well
observed at the contact between the HSZ and the PICwhere it is defined
by compositional layering with layers rich in biotite and/or hornblende
alternating with those rich in feldspar ± quartz (Fig. 2E). Associated
folds F2 are tight to isoclinal (Fig. 2F) and present a well-developed
axial planar foliation (S2). Kinematic criteria such as asymmetric
folds (Fig. 2F) or boudins (Fig. 2G) indicate a top-to-the west sense of
shearing. Based on the geometry of the main and possibly syn-D2 ore
deposit and observation of both cigar-shaped and pancake-shaped
strain markers within the HSZ, Lin (2001) described it as a sinistral
transpressional zone. A third event D3, characterized by open to tight
folds with a well-developed axial planar crenulation cleavage
(Fig. 2H) is coeval with an oblique dextral shearing event (Lin, 2001).
The peak metamorphism of amphibolite facies that characterized
rocks of this region is dated at ~2677 Ma (Corfu and Muir, 1989a,
1989b), late or after D2 but before D3 (Lin, 2001).
Fig. 2. Field photographs of the Hemlo shear zone. (A) Mineral lineation defined by biotite a
PIC contact); (B) elongate clasts in conglomerate; (C) elongate clasts in volcaniclastic rocks; (
layering of mafic (tonalite to granodiorite) and felsic layers at the contact between the HSZ
and fine-grained leucocratic layers, HSZ/PIC); (G) and (G′) Asymmetric boudins displaying a
and fine-grained leucocratic layers. Note the well-developed axial planar crenulation cleava
2.2. Pukaskwa intrusive complex (PIC)

The PIC is bounded to the north by the Hemlo greenstone belt
(Fig. 1) and to the south by the Mishibishu and Michipicoten green-
stone belts. The lithologic diversity relates to the presence of pre-,
syn-, and post-tectonic phases emplaced over an interval of 50 Ma
from 2718 to 2667 Ma (Beakhouse and Davis, 2005; Beakhouse et
al., 2011; Corfu and Muir, 1989a, 1989b). Five main lithologic units
are distinguished based on their petrological and geochemical fea-
tures: 1) mafic amphibolite (Fig. 3A); 2) foliated to gneissic tonalite
to granodiorite (Fig. 2E); 3) granodiorite to quartz monzodiorite
(Fig. 2A); 4) granite to granodiorite; and 5) pegmatite to aplite. The
amphibolites of probablemaficmetavolcanic origin are usually associ-
ated with granitic pegmatitic to aplitic dikes (Fig. 3A). The gneissic
tonalites to granodiorites are thought to represent the pre-tectonic
phases and derive from partial melting of basaltic crust at lower crustal
or upper mantle depths. The granodiorite to quartz monzodiorite,
which are more Mg-rich than the tonalite–granodiorite, but similar
with respect to the high-Al, show evidences of increasing ultramafic
components in their petrogenesis. Biotite and hornblende are the dom-
inant minerals in equilibrium with titanomagnetite, alkali feldspar,
nd hornblende plunging gently to the west (granodiorite to quartz monzodiorite, HSZ/
D) Graywacke displaying northwesterly plunging down-dip lineation; (E) Near vertical
and the PIC; (F) Asymmetric fold indicating a sinistral sense of shearing (amphibolitic
-top-to-the west; (H) Third fold generation overprinting the S2 foliation in amphibolitic
ge.
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plagioclase and quartz (Fig. 3B). Granites and granodiorites represent
the youngest phase and typically display a medium grained texture as-
sociated with a weak foliation. These granites and granodiorites most
likely derive from partial melting of intermediate to felsic
meta-igneous rocks. The lithological heterogeneities observed within
the PIC must have caused significant rheological contrasts between
rock types at high temperature leading to strain partitioning, particular-
ly in areas around large amphibolite masses.

Most rocks show mineral assemblages typical of high-grade am-
phibolite facies metamorphic rocks (Fig. 3B) with abundant evidence
of partial melting (Fig. 3C), giving rise to spectacular migmatites partic-
ularly well exposed on the shoreline of Lake Superior (Fig. 3D). Most
outcrops exhibit a prominent and constant metamorphic foliation dip-
ping steeply to the north at the contact with the greenstone belt that
become variable away from it (Fig. 1). Mineral lineations trending
~E–W and plunging from 25° to 60° preferentially to the west in the
northern margin are hardly definable within the granitic complex.

At the microscopic scale, a few areas display distinctively small
grain size (5–50 μm). Quartz rarely displays undulose extinction and
plagioclase does not exhibit mechanical twins. Plagioclase is commonly
partially sericitized. Both hornblende and biotite form large subhedral,
non-recrystallized grains (50–300 μm) that collectively mark a meta-
morphic foliation (Fig. 3B). Titanomagnetite forms stocky to prismatic,
euhedral grains ranging in size from 5 to 200 μm. These elongated
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grains are free of exsolutions and are generally parallel to the long
axis of mafic minerals (Fig. 3B).

Samples for AMS measurements were collected as most represen-
tative in volume and attitude of metamorphic/plutonic structure for
the whole outcrop. This structural study excludes amphibolites, peg-
matites and aplite dikes because these lithologic types represent less
than 5% in volume of themain lithological phase. Due to limited acces-
sibility in certain areas, sampling sites are heterogeneously distributed
and concentrated on the northern margin of the PIC (Fig. 4).

3. Methods

3.1. Sampling procedure and sample preparation

A hundred and twenty oriented blocks (2–5 kg) were collected in
the northwestern part of the PIC for AMS measurements. The scarcity
of rock exposure in this heavily forested region constitutes a problem
for sampling along a uniform grid. Oriented blocks were collected
mostly along the lake shore, creeks and a few rare roadcuts. Samples
were located using a portable global positioning system unit and
oriented with respect to true north using a Brunton compass with
accuracy better than 2°. At least two blocks were collected at each
sampling locality. Each blocked yielded between 15 and 25 cubes.
The sampleswere first reoriented and cut into 18.5 mm-thick horizontal
usive

Creek Cedar Lake Pluton
Stock

Cedar 48
°4

5'
N

48
°3

5'
N

85°30'W

White Lake

2688 Ma

2677 Ma

2697 Ma

2679 Ma

2698 Ma

684 Ma

Hemlo deposit

Ma

Coldwell Alkalic Complex
(Proterozoic)

Archean

Ultramafic intrusions

Mafic intrusions

dominated granodiorite
dominated tonalite

Metasedimentary rocks

& related metasedimentary rocks
Intermediate to felsic metavolcanic
Mafic metavolcanic rocks

Fault

Stations

Hemlo gold deposit

U-Pb zircon age2688 Ma

Hemlo shear zone
(H.S.Z.)

1 12

2

H.S.Z.

H.S.Z.

20 65

70A

118A
117A

116A

56A

115A

69B

72B

83A
24A
25A

26A

29A

27A
28A

33B

30A,B
31B
32A

91B 89A 04A

05A

10A

08C 09A

07A

03B

67A
66A

80A
76A

37A
39A
42B

35A

36A
43A

44B

52A

50A 49A

48A
47A 45A

57A

74B
62A

61A

60A

59A

63A

38C

70A

.3C
ig.2H

Fig.2C-2D

1) showing the location of sampling sites and photographs seen in Figs. 2 and 3.



1231N.T. Liodas et al. / Tectonophysics 608 (2013) 1226–1237
slabs, then cut into cubes. This process yielded 1947 oriented cubic
specimens.

3.2. Measurements

AMS measurements were carried out on a KLY-4S Kappabridge
magnetic susceptometer (Agico, Brno) under an alternating field of
300 A/m, 875 Hz. Each specimen was measured while slowly rotating
about three mutually perpendicular axes (Pokorny et al., 2004). We
provide the complete set of AMS data (AMS station averages of scalar
and directional parameters) in Supplementary data 2; and AMS
stereonets with confidence ellipses in Supplementary data 4. Ther-
momagnetic experiments (25–700 °C), under a field of 80 A/m and
an operating frequency of 0.696 Hz, using a Bartington MS2 furnace,
provided the Curie temperature of the representative specimens. The
magnetic hysteresis properties were measured on the same cubes as
for AMS using a Princeton Measurements Micromag 3900-04 vibrating
sample magnetometer with a sensitivity of ≈5 · 10−9 Am2, up to
an applied direct field of 1.2 × 106 A/m. First Order Reversal Curve
(FORC) data were processed using FORCinel (Harrison and Feinberg,
2008).

4. Results

4.1. Thermomagnetic experiment

Thermomagnetic experiments were performed in air on a repre-
sentative crushed specimen up to 700 °C (Fig. 5) to determine the
main carrier of magnetic susceptibility (K). This figure shows K nor-
malized to K0, the room-temperature low-field magnetic susceptibil-
ity, and expressed in percentage. The heating and cooling curves are
broadly similar although the cooling curve attests to a slight gain in
K. This phenomenon, common in plutonic rocks, results from addi-
tional magnetite formation from other mineral phases (Tarling and
Hrouda, 1993). The magnetic susceptibility drops abruptly at 551 °C.
This value, which is lower than the typical Curie temperature of
pure magnetite (578 °C), indicates the presence of titanium in this
titanomagnetite (Clark, 1997). We estimate the ulvöspinel content
(x) in this titanomagnetite to 0.045, using the following empirical
formula: Tc (°C) = 578 − 578x − 150x2, where x is the ulvöspinel
content (Clark, 1997). We interpret the distinct increase in magnetic
susceptibility as the Hopkinson peak, a characteristic property of
multi-domain magnetites (King and Ranganai, 2001). The increase in
magnetic susceptibility observed between 600 and 700 °C is attributed
to instrumental drift commonly observed on the Bartington furnace.
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2001). The Curie temperature (551 °C) is defined as the abrupt drop in magnetic suscepti-
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4.2. Magnetic hysteresis experiments and FORC analysis

We determined the magnetic hysteresis properties of 113 cubic
specimens to evaluate magnetic domain grain size (Fig. 6). All speci-
mens saturate magnetically below 16 · 103 A/m. The high-field mag-
netic susceptibility, Khf, ranges from 3 · 10−6 [SI] to 510 · 10−6 [SI]
with a mean of 127 · 10−6 [SI] and a standard deviation of 91 · 10−6

[SI]. For specimens with Km N 10−3 [SI], the magnetic hysteresis loops
and parameters (Mr/Ms andHcr/Hc) indicate that titanomagnetite grains
display various grain sizes ranging from pseudo-single domain (PSD) to
multidomain (MD) (Fig. 6). Specimens with Km b 10−3 [SI], exhibit a
broader scatter of hysteresis parameters mostly typical of PSD grains,
although minor contributions from other ferromagnetic s.l. phases
such as hematite or pyrrhotite cannot be excluded. The two groups
overlap. FORC analysis confirms the hysteresis results and shows that
coercivities have unimodal distributions. The PSD hysteresis values
shown by specimen PU83A11 indicate only a minor contribution from
interacting grains and therefore do not result from mixture between
single-domain (SD) and multidomain grains. The ratio of high-field
magnetic susceptibility to low-field magnetic susceptibility provides
an approximation for the percentage of paramagnetic susceptibility.
The percentage of paramagnetic susceptibility ranges widely with a
median at 4% (Supplementary data 1).

4.3. Low-field magnetic susceptibility

The bulk magnetic susceptibility (Km) of 1947 cubes and 120
stations ranges widely from 12 · 10−6 [SI] to 31,600 · 10−6 [SI],
with an average of 4655 · 10−6 [SI] (Figs. 7 and 8A and B; Supple-
mentary data 2). Km, both at the cube level and at the station level,
shows a broadly bimodal pattern hence defining two subgroups:
(A) with Km b 1000 · 10−6 [SI]; (B) with Km ≥ 1000 · 10−6 [SI]
(Figs. 7 and 8A). The theoretical maximum paramagnetic magnetic
susceptibility (Kpara) is calculated using Syono's (1960) method,
which deduces the total Bohr magnetons from percentages of Fe2+,
Fe3+ and Mn2+ cations. Using whole-rock geochemical data from
Beakhouse et al. (2011), and following the approach of Aydin et al.
(2007), we obtain Kpara = 130 · 10−6 [SI]. Any specimenwith a mag-
netic susceptibility higher than this value must host ferromagnetic
phases (Fig. 8A and B).

4.4. Anisotropy of magnetic susceptibility

The corrected degree of anisotropy (P′) ranges widely from 1.008
to 1.827, although most values fall below 1.300 (Fig. 8A and C;
Supplementary data 2). P′ displays a slight positive correlation with
Km in subgroups A and B. The maximum value of paramagnetic an-
isotropy Ppara is defined by the most abundant paramagnetic mineral
which, in general, is biotite with a Pbiot = 1.30 (Tarling and Hrouda,
1993). Any specimen with a degree of magnetic anisotropy higher
than this value must have an AMS controlled by ferromagnetic phases
(Fig. 8A and C). Few specimens (≈4%) fall into the paramagnetic
range defined by Kpara b 130 · 10−6 [SI] and Ppara b 1.30 (Fig. 8A).
The shape parameter, T, covers the entire spectrum from +1 to −1
with no clear dominance of either prolate or oblate fabric (Fig. 8B).
The two subgroups A and B faintly appear on this plot. The variation
of the three AMS scalar parameters Km, T and P′ can also be visualized
in 3-D in an animation produced with the 3D Data Visualizer Pro
1.0.8. software (Supplementary data 3).

The macroscopic foliation of 10 randomly selected specimens was
measured with a Brunton compass on three mutually perpendicular
faces of the oriented samples used for preparation of the AMS cubes.
The macroscopic foliation plots less than 20° away from the magnetic
foliation which confirms that the AMS constitutes a valid proxy for
macroscopic foliation (Fig. 9).
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Three types of AMS fabric can be distinguished based on their
symmetry (Fig. 10, Supplementary data 2 and 4): (A) dominantly
oblate AMS fabrics at the cube scale define planar symmetry at the
station scale; the symmetry is illustrated by a relatively wide girdle
of K1 lineations and tightly clustered K3 foliations (Fig. 10A); (B) dom-
inantly prolate AMS fabrics at the cube scale define linear symmetry at
the station scale; the symmetry is shown by a cluster of K1 lineations
and a relatively wide girdle of K3 foliations (Fig. 10B); and (C) other
AMS fabrics display relatively clustered K1 and K3 axes that define a
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Fig. 7. Histogram of bulk magnetic susceptibility, Km. The bimodal distribution defines
two subgroups, A and B, above and below 10−3 [SI] respectively.
plano-linear symmetry (Fig. 10C). Seventy seven percent of stations
display a plano-linear symmetry, while planar and linear symmetries
respectively account for 17% and 7% of stations.

Most stations near the HSZ show a plano-linear symmetry, with K1

lineations parallel to the HSZ contact (Fig. 11). This fabric defines
structural domain B. Away from the contact with the greenstone belt,
lineations and foliations are generally oriented in different attitudes in
a less organized fashion and generally show a planar symmetry fabric.
Magnetic lineations consistently trend SW–NE and are relatively
shallow within a 3 to 5 km-wide domain referred to as domain C
(Fig. 11). Magnetic lineations broadly trend NS along the shoreline of
Lake Superior (Domain A in Fig. 11). The degree of magnetic anisotropy
(P′) in all three structural domains remains similar to the rest of the
complex. Conversely, microstructures in these domains are highly
equilibrated and similar to the main part of the complex. These micro-
structures support the absence of low- to medium temperature defor-
mation and to the contrary indicate magmatic to high-temperature
plastic deformation.

5. Interpretation and discussion

The relatively large grain size of titanomagnetite grains (5–200 μm,
Fig. 3B) along with their euhedral shape supports a primary magmatic
origin. The thermomagnetic data in Fig. 5 establishes the presence of
a strongly ferromagnetic phase with a Curie temperature of 551 °C.
Further, the distinct Hopkinson peak characterizes populations of
multidomain titanomagnetite (King and Ranganai, 2001). Also, the
magnetic hysteresis data in Fig. 6 supports that mixtures of pseudo-
single domain and multidomain titanomagnetite form the main ferro-
magnetic source. The contributions of ferromagnetic and paramagnetic
phases to magnetic susceptibility, deduced from magnetic hysteresis
data (Supplementary data 1) vary greatly between specimens but
have medians at about 96% and 4% respectively. The paramagnetic con-
tribution, evaluated through the method of Syono, yields a maximum
value of Kpara ≈ 130 · 10−6 [SI]. This value also corresponds to 4%
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of the median low-field magnetic susceptibility of 3180 · 10−6 [SI]
(Supplementary data 2). Out of 1947 specimens, 150 (7.7%) have a
magnetic susceptibility less than 130 · 10−6 [SI] and therefore could
potentially be paramagnetic only. In summary, all magnetic measure-
ments and calculations point to multidomain titanomagnetite as the
main source of low-field magnetic susceptibility.

Since titanomagnetite grains dominate the magnetic susceptibility
and form elongate grains parallel to mafic silicates (Fig. 3B), they should
collectively form a magnetostatic anisotropy and control the AMS. Con-
sidering that the intrinsicmagnetic anisotropies of biotite and amphibole
are Pbiot = 1.35 and Pamph = 1.65 (Tarling andHrouda, 1993), and that a
volume x ≈ 0.15% at most of these minerals would contribute to lattice
preferred orientation (LPO), the anisotropic component ofmagnetic sus-
ceptibility due to these silicates (Kpara) would range approximately
between (x · (Pbiot − 1)). PparaMax in biotite-dominated gneisses and
(x · (Pamph − 1)). PparaMax, in amphibole-dominated rocks, i.e., a mod-
est directional variation of magnetic susceptibility (7 to 13 · 10−6

[SI]). Therefore, even if the PIC rocks had preserved a strong silicate
lattice-preferred orientation (LPO) of paramagnetic silicates through re-
crystallization, the modest contribution of paramagnetic minerals to
AMS would be insignificant in comparison to the large contribution of
titanomagnetite.

The Pukaskwa quartzo-feldspathic gneisses exhibit microstruc-
tures similar to those formed during high-temperature plastic flow



Fig. 9. Lower hemisphere, equal area stereonets comparing macroscopic foliation mea-
sured on three mutually perpendicular faces of 10 oriented samples with the magnetic
foliation (plane to K3). The excellent correspondence (b20° departure) validates the
use of AMS as a proxy for macroscopic structures.
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in a magma or in a metamorphic rock (e.g., Ferré and Améglio, 2000;
Ferré et al., 2003; Gébelin et al., 2006; Kruckenberg et al., 2010,
2011). In general, plutonic rocks emplaced near shear zones display
microstructures indicative of high strain-rate and high-temperature
(e.g., Nouar et al., 2011). In contrast, most PIC rocks exhibit highly
equilibrated microstructures. Also, previous studies on similar rocks
have shown that multidomain titanomagnetite grains, deformed in
similar high-temperature and low strain rate conditions, develop a
shape-preferred orientation (SPO) due to dislocation creep, which in
turn causes the magnetostatic anisotropy of titanomagnetite (Charles
et al., 2009; Ferré et al., 2003, 2004; Kruckenberg et al., 2010, 2011;
Schulmann et al., 2009; Till et al., 2012). The same studies also showed
that magnetite-controlled AMS fabrics display general AMS ellipsoids,
such as those shown in Fig. 10A and B, instead of planar and linear ellip-
soids that more commonly originate from magnetocrystalline anisot-
ropy. Also, the increase of P′ with increasing Km observed mostly for
subgroup B is typical of AMS carried by magnetite (e.g., Bouchez,
1997). The variations in degree of magnetic anisotropy (P′) or shape
factor (T) across the PIC do not display a consistent spatial pattern.
The lack of significant post-emplacement deformation in the PIC
(Beakhouse et al., 2011; Lin, 2001) suggests that the AMS represents a
fabric acquired during high-temperature plastic or magmatic deforma-
tion in the Archean.

In this study, the AMS provides new structural information on
finite strain in the PIC that, away from the HSZ, lacks macroscopic
strain markers. The AMS principal axes, obtained from a large number
of specimens (about 20), are statistically significant as illustrated by
AMS ellipses (Fig. 10 and Supplementary data 4). Previous studies
show that in high-grade gneisses, the AMS K1 axis parallels the mineral
stretching lineation (Charles et al., 2009; Ferré et al., 2003, 2004;
Kruckenberg et al., 2010, 2011; Schulmann et al., 2009) and therefore
provides precious kinematic information on high-temperature flow. In
general, in the PIC, K1 axes plunge shallowly to moderately (Fig. 10A),
including in the vicinity of the HSZ.

The AMS of granitic and metamorphic rocks always records finite
strain, including the last increment of deformation. In the case of
the PIC, AMS fabrics are very consistent at the scale of several square
kilometers. The lack of medium or low-temperature plastic deforma-
tion in these rocks indicates that these AMS fabrics actually represent
late Archean (D2) high-temperature plastic flow. The dip-slip
stretching lineations observed in somemetasedimentary rocks within
the HSZ (Fig. 2D) may reflect early kinematics (D1) or syn D2
transpressional deformation. The corridors of homogeneous magnetic
fabric orientation (e.g., domain C in Figs. 11 and 12) may record ductile
strain localization, a structural feature documented in other anatectic
domes in Brazil (Archanjo et al., 2013).

The structural and AMS fabric data indicate a systematic vergence
of foliations dipping 40–45° to the North (Fig. 10). The dip angle of
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foliation across the entire northern half of the Pukaskwa intrusive
complex does not become shallower toward the center of the region
referred to as Pukaskwa batholith by Lin and Beakhouse (2013). We
also note that domain B displays significantly less steep foliations
than in their diapirism–sagduction model. We propose an alternative
structural interpretation in which the Hemlo shear zone, and domains
B and C of the Pukaskwa intrusive complex share similar structural
vergence to the SSE (Fig. 12). This model is characterized by early
thrust tectonics with dip-slip lineations (domain A) followed by mod-
erate strike-slip strain localization within the Pukaskwa intrusive com-
plex (domain C) and intense strike-slip strain localization along major
lithological contacts, along the Hemlo greenstone belt (domain B).
Our model appears to be consistent with sinistral transpressive tecton-
ics documented by Lin (2001) and Beakhouse and Davis (2005).

Archean migmatitic domains generally appear structurally complex
(e.g., Hopgood, 1998) but here we show that these domains hold an
internal fabric organization that can be unraveled by the use of magnet-
ic methods.

6. Conclusions

AMS investigation allows a better understanding of the Pukaskwa
emplacement. Three main domains characterize the northern margin
of the PIC: Domain B, at the contact between the greenstone belt and
the PIC, shows near horizontal magnetic lineations parallel to the
Hemlo shear zone; Domain C, to the east-southeast of the study area,
displays shallow magnetic lineations consistently trending SW–NE;
and finally Domain A, defined along the shoreline of Lake Superior,
indicates near consistent NS trending magnetic lineations. There is
a general tendency for magnetic foliations to dip to the north. Yet,
these domains are not characterized by either stronger magnetic fab-
rics or important solid-state deformation, to the contrary, all of them



Fig. 12. Schematic tectonic model for the Hemlo shear zone and Pukaskwa intrusive complex. Foliations in the Pukaskwa intrusive complex generally dip NNWwith dip-slip lineations,
except along domain C where lineations display a strike-slip attitude.
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exhibit fabrics acquired at high temperature. Our AMS data support
the idea that the Pukaskwa emplacement occurred by rapid succes-
sive and small heterogeneous magma increments. The new dataset
does not support a diapiric emplacement as suggested by Lin and
Beakhouse (2013). Rather our AMS data indicate that the PIC was
emplaced within a sinistral transpressive setting (Fig. 12) as recorded
by mylonitic Archean metasedimentary and mafic metavolcanic rocks
of the greenstone belt.

Supplementary data to this article can be found online at http://
dx.doi.org/10.1016/j.tecto.2013.06.022.
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