25 research outputs found

    On non-equilibrium in arid and semi-arid grazing systems

    No full text

    Substance Abuse

    No full text

    Molecular genetics of cardiomyopathies and myocarditis

    No full text

    Ice-Ocean Exchange Processes in the Jovian and Saturnian Satellites

    No full text

    Comparative map for mice and humans.

    No full text

    Search for heavy, long-lived, charged particles with large ionisation energy loss in pppp collisions at s=13 TeV\sqrt{s} = 13~\text{TeV} using the ATLAS experiment and the full Run 2 dataset

    Get PDF
    International audienceThis paper presents a search for hypothetical massive, charged, long-lived particles with the ATLAS detector at the LHC using an integrated luminosity of 139 fb−1^{−1} of proton–proton collisions at s \sqrt{s} = 13 TeV. These particles are expected to move significantly slower than the speed of light and should be identifiable by their high transverse momenta and anomalously large specific ionisation losses, dE/dx. Trajectories reconstructed solely by the inner tracking system and a dE/dx measurement in the pixel detector layers provide sensitivity to particles with lifetimes down to O \mathcal{O} (1) ns with a mass, measured using the Bethe–Bloch relation, ranging from 100 GeV to 3 TeV. Interpretations for pair-production of R-hadrons, charginos and staus in scenarios of supersymmetry compatible with these particles being long-lived are presented, with mass limits extending considerably beyond those from previous searches in broad ranges of lifetime.[graphic not available: see fulltext

    Differential tt‟ t\overline{t} cross-section measurements using boosted top quarks in the all-hadronic final state with 139 fb−1^{−1} of ATLAS data

    Get PDF
    International audienceMeasurements of single-, double-, and triple-differential cross-sections are presented for boosted top-quark pair-production in 13 TeV proton–proton collisions recorded by the ATLAS detector at the LHC. The top quarks are observed through their hadronic decay and reconstructed as large-radius jets with the leading jet having transverse momentum (pT_{T}) greater than 500 GeV. The observed data are unfolded to remove detector effects. The particle-level cross-section, multiplied by the tt‟→WWbb‟ t\overline{t}\to WWb\overline{b} branching fraction and measured in a fiducial phase space defined by requiring the leading and second-leading jets to have pT_{T}> 500 GeV and pT_{T}> 350 GeV, respectively, is 331 ± 3(stat.) ± 39(syst.) fb. This is approximately 20% lower than the prediction of 398−49+48 {398}_{-49}^{+48} fb by Powheg+Pythia 8 with next-to-leading-order (NLO) accuracy but consistent within the theoretical uncertainties. Results are also presented at the parton level, where the effects of top-quark decay, parton showering, and hadronization are removed such that they can be compared with fixed-order next-to-next-to-leading-order (NNLO) calculations. The parton-level cross-section, measured in a fiducial phase space similar to that at particle level, is 1.94 ± 0.02(stat.) ± 0.25(syst.) pb. This agrees with the NNLO prediction of 1.96−0.17+0.02 {1.96}_{-0.17}^{+0.02} pb. Reasonable agreement with the differential cross-sections is found for most NLO models, while the NNLO calculations are generally in better agreement with the data. The differential cross-sections are interpreted using a Standard Model effective field-theory formalism and limits are set on Wilson coefficients of several four-fermion operators.[graphic not available: see fulltext

    Search for new phenomena in final states with photons, jets and missing transverse momentum in pp collisions at s \sqrt{s} = 13 TeV with the ATLAS detector

    Get PDF
    International audienceA search for new phenomena has been performed in final states with at least one isolated high-momentum photon, jets and missing transverse momentum in proton–proton collisions at a centre-of-mass energy of s \sqrt{s} = 13 TeV. The data, collected by the ATLAS experiment at the CERN LHC, correspond to an integrated luminosity of 139 fb−1^{−1}. The experimental results are interpreted in a supersymmetric model in which pair-produced gluinos decay into neutralinos, which in turn decay into a gravitino, at least one photon, and jets. No significant deviations from the predictions of the Standard Model are observed. Upper limits are set on the visible cross section due to physics beyond the Standard Model, and lower limits are set on the masses of the gluinos and neutralinos, all at 95% confidence level. Visible cross sections greater than 0.022 fb are excluded and pair-produced gluinos with masses up to 2200 GeV are excluded for most of the NLSP masses investigated.[graphic not available: see fulltext
    corecore