656 research outputs found

    The influence of molecular rotation on the direct subsurface absorption of H2 on Pd(111)

    Get PDF
    Within the generalized gradient approximation (GGA) of density functional theory (DFT) we have calculated a three-dimensional (3D) potential energy surface (PES) including an angular degree of freedom for a

    Open Heterotic Strings

    Full text link
    We classify potential cosmic strings according to the topological charge measurable outside the string core. We conjecture that in string theory it is this charge that governs the stability of long strings. This would imply that the SO(32) heterotic string can have endpoints, but not the E_8 x E_8 heterotic string. We give various arguments in support of this conclusion.Comment: 15 pages. v.2: typos, references correcte

    Cosmological Creation of D-branes and anti-D-branes

    Full text link
    We argue that the early universe may be described by an initial state of space-filling branes and anti-branes. At high temperature this system is stable. At low temperature tachyons appear and lead to a phase transition, dynamics, and the creation of D-branes. These branes are cosmologically produced in a generic fashion by the Kibble mechanism. From an entropic point of view, the formation of lower dimensional branes is preferred and D3D3 brane-worlds are exponentially more likely to form than higher dimensional branes. Virtually any brane configuration can be created from such phase transitions by adjusting the tachyon profile. A lower bound on the number defects produced is: one D-brane per Hubble volume.Comment: 30 pages, 5 eps figures; v2 more references added; v3 section 4 slightly improve

    The SAMPLE Experiment and Weak Nucleon Structure

    Full text link
    One of the key elements to understanding the structure of the nucleon is the role of its quark-antiquark sea in its ground state properties such as charge, mass, magnetism and spin. In the last decade, parity-violating electron scattering has emerged as an important tool in this area, because of its ability to isolate the contribution of strange quark-antiquark pairs to the nucleon's charge and magnetism. The SAMPLE experiment at the MIT-Bates Laboratory, which has been focused on s-sbar contributions to the proton's magnetic moment, was the first of such experiments and its program has recently been completed. In this paper we give an overview of some of the experimental aspects of parity-violating electron scattering, briefly review the theoretical predictions for strange quark form factors, summarize the SAMPLE measurements, and place them in context with the program of experiments being carried out at other electron scattering facilities such as Jefferson Laboratory and the Mainz Microtron.Comment: 61 pages, review articl

    Heavy quarkonium: progress, puzzles, and opportunities

    Get PDF
    A golden age for heavy quarkonium physics dawned a decade ago, initiated by the confluence of exciting advances in quantum chromodynamics (QCD) and an explosion of related experimental activity. The early years of this period were chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in 2004, which presented a comprehensive review of the status of the field at that time and provided specific recommendations for further progress. However, the broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles could only be partially anticipated. Since the release of the YR, the BESII program concluded only to give birth to BESIII; the BB-factories and CLEO-c flourished; quarkonium production and polarization measurements at HERA and the Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the deconfinement regime. All these experiments leave legacies of quality, precision, and unsolved mysteries for quarkonium physics, and therefore beg for continuing investigations. The plethora of newly-found quarkonium-like states unleashed a flood of theoretical investigations into new forms of matter such as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the spectroscopy, decays, production, and in-medium behavior of c\bar{c}, b\bar{b}, and b\bar{c} bound states have been shown to validate some theoretical approaches to QCD and highlight lack of quantitative success for others. The intriguing details of quarkonium suppression in heavy-ion collisions that have emerged from RHIC have elevated the importance of separating hot- and cold-nuclear-matter effects in quark-gluon plasma studies. This review systematically addresses all these matters and concludes by prioritizing directions for ongoing and future efforts.Comment: 182 pages, 112 figures. Editors: N. Brambilla, S. Eidelman, B. K. Heltsley, R. Vogt. Section Coordinators: G. T. Bodwin, E. Eichten, A. D. Frawley, A. B. Meyer, R. E. Mitchell, V. Papadimitriou, P. Petreczky, A. A. Petrov, P. Robbe, A. Vair
    • 

    corecore