62 research outputs found

    Families of IIB duals for nonrelativistic CFTs

    Full text link
    We show that the recent string theory embedding of a spacetime with nonrelativistic Schrodinger symmetry can be generalised to a twenty one dimensional family of solutions with that symmetry. Our solutions include IIB backgrounds with no three form flux turned on, and arise as near horizon limits of branewave spacetimes. We show that there is a hypersurface in the space of these theories where an instability appears in the gravitational description, indicating a phase transition in the nonrelativistic field theory dual. We also present simple embeddings of duals for nonrelativistic critical points where the dynamical critical exponent can take many values z \neq 2.Comment: 1+25 pages. References adde

    Penrose Limits, Deformed pp-Waves and the String Duals of N=1 Large n Gauge Theory

    Full text link
    A certain conformally invariant N=1 supersymmetric SU(n) gauge theory has a description as an infra-red fixed point obtained by deforming the N=4 supersymmetric Yang-Mills theory by giving a mass to one of its N=1 chiral multiplets. We study the Penrose limit of the supergravity dual of the large n limit of this N=1 gauge theory. The limit gives a pp-wave with R-R five-form flux and both R-R and NS-NS three-form flux. We discover that this new solution preserves twenty supercharges and that, in the light-cone gauge, string theory on this background is exactly solvable. Correspondingly, this latter is the stringy dual of a particular large charge limit of the large n gauge theory. We are able to identify which operators in the field theory survive the limit to form the string's ground state and some of the spacetime excitations. The full string model, which we exhibit, contains a family of non-trivial predictions for the properties of the gauge theory operators which survive the limit.Comment: 39 pages, Late

    User-friendly tail bounds for sums of random matrices

    Get PDF
    This paper presents new probability inequalities for sums of independent, random, self-adjoint matrices. These results place simple and easily verifiable hypotheses on the summands, and they deliver strong conclusions about the large-deviation behavior of the maximum eigenvalue of the sum. Tail bounds for the norm of a sum of random rectangular matrices follow as an immediate corollary. The proof techniques also yield some information about matrix-valued martingales. In other words, this paper provides noncommutative generalizations of the classical bounds associated with the names Azuma, Bennett, Bernstein, Chernoff, Hoeffding, and McDiarmid. The matrix inequalities promise the same diversity of application, ease of use, and strength of conclusion that have made the scalar inequalities so valuable.Comment: Current paper is the version of record. The material on Freedman's inequality has been moved to a separate note; other martingale bounds are described in Caltech ACM Report 2011-0

    Deformations of Holographic Duals to Non-Relativistic CFTs

    Full text link
    We construct the non-relativistic counterparts of some well-known supergravity solutions dual to relevant and marginal deformations of N=4 super Yang-Mills. The main tool we use is the null Melvin twist and we apply it to the N=1 and N=2* Pilch-Warner RG flow solutions as well as the Lunin-Maldacena solution dual to beta-deformations of N=4 super Yang-Mills. We also obtain a family of supergravity solutions with Schrodinger symmetry interpolating between the non-relativistic version of the N=1 Pilch-Warner and Klebanov-Witten fixed points. A generic feature of these non-relativistic backgrounds is the presence of non-vanishing internal fluxes. We also find the most general, three-parameter, null Melvin twist of the AdS_5xS^5 black hole. We briefly comment on the field theories dual to these supergravity solutions.Comment: 34 pages, 1 figure, LaTe

    Professional closure by proxy: the impact of changing educational requirements on class mobility for a cohort of Big 8 partners

    Get PDF
    Closure events impacting on class mobility may include mechanisms initiated by bodies other than the professional body. The research examines if the introduction of full-time study requirements at universities for aspiring accountants effectively introduced a closure mechanism in the accounting profession. Data was derived from an Oral History study of partners in large firms. The younger partners (born after the Second World War) completed full-time degree study at university, but did not provide evidence of class mobility into the profession. The older cohort, born between 1928 and 1946, completed part-time studies only, few completed a degree, and, in contrast to the younger cohort, shows a perceptible upward movement from lower socio-economic classes into the professional class. This suggests that changing the preferred educational routes for new accountants entering the large chartered accounting (CA) firms compromised the "stepping stone" function of accounting as a portal into the professional class

    Probing Universality in the Gravity Duals of N=1 SYM by gamma-deformations

    Full text link
    Recently, a one-parameter deformation of the Maldacena-Nunez dual of the N=1 SYM theory was constructed in hep-th/0505100. According to the Lunin-Maldacena conjecture, the background is dual to pure N=1 SYM in the IR coupled to a KK sector whose dynamics is altered by a dipole deformation that is proportional to the deformation parameter gamma. Thus, the deformation serves to identify the aspects of the gravity backgrounds that bear the effects of the KK sector, hence non-universal in the dual gauge theory. We make this idea concrete by studying a Penrose limit of the deformed MN theory. We obtain an exactly solvable pp-wave that is conjectured to describe the IR dynamics of KK-hadrons in the field theory. The spectrum, the thermal partition function and the Hagedorn temperature are calculated. The Hagedorn temperature turns out to be independent of the deformation parameter.Comment: 29 pages, 1 figure, refs. added, typos corrected, v3: discussion extended and modified v4: discussion section modified, typos corrceted, v5: referencing correcte

    A Novel Mass Hierarchy and Discrete Excitation Spectra from Quantum-Fluctuating D-branes

    Get PDF
    We elaborate further on a recently proposed scenario for generating a mass hierarchy through quantum fluctuations of a single D3 brane, which represents our world embedded in a bulk five-dimensional space time. In this scenario, the quantum fluctuations of the D3-brane world in the bulk direction, quantified to leading order via a `recoil' world-sheet logarithmic conformal field theory approach, result in the dynamical appearance of a supersymmetry breaking (obstruction) scale alpha. This may be naturally taken to be at the TeV range, in order to provide a solution to the conventional gauge-hierarchy problem. The bulk spatial direction is characterized by the dynamical appearance of an horizon located at +- 1/alpha, inside which the positive energy conditions for the existence of stable matter are satisfied. To ensure the correct value of the four-dimensional Planck mass, the bulk string scale M_s is naturally found to lie at an intermediate energy scale of 10^{14} GeV. As an exclusive feature of the D3-brane quantum fluctuations (`recoil') we find that, for any given M_5, there is a discrete mass spectrum for four-dimensional Kaluza-Klein (KK) modes of bulk graviton and/or scalar fields. KK modes with masses 0 <= m < sqrt{2}alpha << M_s are found to have wavefunctions peaked, and hence localized, on the D3 brane at z=0.Comment: 21 pages latex, three eps figures incorporate

    Age at symptom onset and death and disease duration in genetic frontotemporal dementia : an international retrospective cohort study

    Get PDF
    Background: Frontotemporal dementia is a heterogenous neurodegenerative disorder, with about a third of cases being genetic. Most of this genetic component is accounted for by mutations in GRN, MAPT, and C9orf72. In this study, we aimed to complement previous phenotypic studies by doing an international study of age at symptom onset, age at death, and disease duration in individuals with mutations in GRN, MAPT, and C9orf72. Methods: In this international, retrospective cohort study, we collected data on age at symptom onset, age at death, and disease duration for patients with pathogenic mutations in the GRN and MAPT genes and pathological expansions in the C9orf72 gene through the Frontotemporal Dementia Prevention Initiative and from published papers. We used mixed effects models to explore differences in age at onset, age at death, and disease duration between genetic groups and individual mutations. We also assessed correlations between the age at onset and at death of each individual and the age at onset and at death of their parents and the mean age at onset and at death of their family members. Lastly, we used mixed effects models to investigate the extent to which variability in age at onset and at death could be accounted for by family membership and the specific mutation carried. Findings: Data were available from 3403 individuals from 1492 families: 1433 with C9orf72 expansions (755 families), 1179 with GRN mutations (483 families, 130 different mutations), and 791 with MAPT mutations (254 families, 67 different mutations). Mean age at symptom onset and at death was 49\ub75 years (SD 10\ub70; onset) and 58\ub75 years (11\ub73; death) in the MAPT group, 58\ub72 years (9\ub78; onset) and 65\ub73 years (10\ub79; death) in the C9orf72 group, and 61\ub73 years (8\ub78; onset) and 68\ub78 years (9\ub77; death) in the GRN group. Mean disease duration was 6\ub74 years (SD 4\ub79) in the C9orf72 group, 7\ub71 years (3\ub79) in the GRN group, and 9\ub73 years (6\ub74) in the MAPT group. Individual age at onset and at death was significantly correlated with both parental age at onset and at death and with mean family age at onset and at death in all three groups, with a stronger correlation observed in the MAPT group (r=0\ub745 between individual and parental age at onset, r=0\ub763 between individual and mean family age at onset, r=0\ub758 between individual and parental age at death, and r=0\ub769 between individual and mean family age at death) than in either the C9orf72 group (r=0\ub732 individual and parental age at onset, r=0\ub736 individual and mean family age at onset, r=0\ub738 individual and parental age at death, and r=0\ub740 individual and mean family age at death) or the GRN group (r=0\ub722 individual and parental age at onset, r=0\ub718 individual and mean family age at onset, r=0\ub722 individual and parental age at death, and r=0\ub732 individual and mean family age at death). Modelling showed that the variability in age at onset and at death in the MAPT group was explained partly by the specific mutation (48%, 95% CI 35\u201362, for age at onset; 61%, 47\u201373, for age at death), and even more by family membership (66%, 56\u201375, for age at onset; 74%, 65\u201382, for age at death). In the GRN group, only 2% (0\u201310) of the variability of age at onset and 9% (3\u201321) of that of age of death was explained by the specific mutation, whereas 14% (9\u201322) of the variability of age at onset and 20% (12\u201330) of that of age at death was explained by family membership. In the C9orf72 group, family membership explained 17% (11\u201326) of the variability of age at onset and 19% (12\u201329) of that of age at death. Interpretation: Our study showed that age at symptom onset and at death of people with genetic frontotemporal dementia is influenced by genetic group and, particularly for MAPT mutations, by the specific mutation carried and by family membership. Although estimation of age at onset will be an important factor in future pre-symptomatic therapeutic trials for all three genetic groups, our study suggests that data from other members of the family will be particularly helpful only for individuals with MAPT mutations. Further work in identifying both genetic and environmental factors that modify phenotype in all groups will be important to improve such estimates. Funding: UK Medical Research Council, National Institute for Health Research, and Alzheimer's Society

    Age at first birth in women is genetically associated with increased risk of schizophrenia

    Get PDF
    Prof. Paunio on PGC:n jäsenPrevious studies have shown an increased risk for mental health problems in children born to both younger and older parents compared to children of average-aged parents. We previously used a novel design to reveal a latent mechanism of genetic association between schizophrenia and age at first birth in women (AFB). Here, we use independent data from the UK Biobank (N = 38,892) to replicate the finding of an association between predicted genetic risk of schizophrenia and AFB in women, and to estimate the genetic correlation between schizophrenia and AFB in women stratified into younger and older groups. We find evidence for an association between predicted genetic risk of schizophrenia and AFB in women (P-value = 1.12E-05), and we show genetic heterogeneity between younger and older AFB groups (P-value = 3.45E-03). The genetic correlation between schizophrenia and AFB in the younger AFB group is -0.16 (SE = 0.04) while that between schizophrenia and AFB in the older AFB group is 0.14 (SE = 0.08). Our results suggest that early, and perhaps also late, age at first birth in women is associated with increased genetic risk for schizophrenia in the UK Biobank sample. These findings contribute new insights into factors contributing to the complex bio-social risk architecture underpinning the association between parental age and offspring mental health.Peer reviewe

    Genetic determinants of telomere length from 109,122 ancestrally diverse whole-genome sequences in TOPMed

    Get PDF
    Genetic studies on telomere length are important for understanding age-related diseases. Prior GWASs for leukocyte TL have been limited to European and Asian populations. Here, we report the first sequencing-based association study for TL across ancestrally diverse individuals (European, African, Asian, and Hispanic/Latino) from the NHLBI Trans-Omics for Precision Medicine (TOPMed) program. We used whole-genome sequencing (WGS) of whole blood for variant genotype calling and the bioinformatic estimation of telomere length in n = 109,122 individuals. We identified 59 sentinel variants (p &lt; 5 × 10−9) in 36 loci associated with telomere length, including 20 newly associated loci (13 were replicated in external datasets). There was little evidence of effect size heterogeneity across populations. Fine-mapping at OBFC1 indicated that the independent signals colocalized with cell-type-specific eQTLs for OBFC1 (STN1). Using a multi-variant gene-based approach, we identified two genes newly implicated in telomere length, DCLRE1B (SNM1B) and PARN. In PheWAS, we demonstrated that our TL polygenic trait scores (PTSs) were associated with an increased risk of cancer-related phenotypes
    corecore