8 research outputs found

    Investigations of the Mars Upper Atmosphere with ExoMars Trace Gas Orbiter

    Get PDF
    The Martian mesosphere and thermosphere, the region above about 60 km, is not the primary target of the ExoMars 2016 mission but its Trace Gas Orbiter (TGO) can explore it and address many interesting issues, either in-situ during the aerobraking period or remotely during the regular mission. In the aerobraking phase TGO peeks into thermospheric densities and temperatures, in a broad range of latitudes and during a long continuous period. TGO carries two instruments designed for the detection of trace species, NOMAD and ACS, which will use the solar occultation technique. Their regular sounding at the terminator up to very high altitudes in many different molecular bands will represent the first time that an extensive and precise dataset of densities and hopefully temperatures are obtained at those altitudes and local times on Mars. But there are additional capabilities in TGO for studying the upper atmosphere of Mars, and we review them briefly. Our simulations suggest that airglow emissions from the UV to the IR might be observed outside the terminator. If eventually confirmed from orbit, they would supply new information about atmospheric dynamics and variability. However, their optimal exploitation requires a special spacecraft pointing, currently not considered in the regular operations but feasible in our opinion. We discuss the synergy between the TGO instruments, specially the wide spectral range achieved by combining them. We also encourage coordinated operations with other Mars-observing missions capable of supplying simultaneous measurements of its upper atmosphere

    In situ preparation of rhodium/N-heterocyclic carbene complexes and use for addition of arylboronic acids to aldehydes

    No full text
    (Chemical Equation Presented) The in situ prepared three component system [RhCl(COD)]2/imidazolidinium salts (2, 4) and KOBut catalyses the addition of phenylboronic acid to sterically hindered aldehydes affording the corresponding arylated secondary alcohols in good yields. Four novel 1,3-dialkylimidazolidinium (2-4) salts as NHC precursors were synthesized from N,N′-dialkylethylenediamine

    Morphometric and genetic structure of the edible dormouse (Glis glis): A consequence of forest fragmentation in Turkey

    Full text link
    Past climatic fluctuations influenced forest habitats and impacted heavily the distribution of forest species, such as the edible dormouse, by changing the distribution and composition of forests themselves. Such effects may be valid for ongoing climate change as well. To improve our understanding of the edible dormouse's history and how it responded to changes in its environment, we investigated its variation across the understudied zone of Northern Turkey using two complementary markers of differentiation: the mitochondrial cytochrome b gene for genetics, and size and shape of the first upper molar for phenotypic differences. Genetic and morphometric results were strongly discrepant. Genetic analyses evidenced an amazing homogeneity throughout the Eurasian range of the edible dormouse, whereas morphometrics pointed to a complex, step-wise differentiation along the Black Sea coast, the main signal being an opposition between Easternmost and Westernmost Turkish dormice. The genetic homogeneity suggests that this phenotypic differentiation is not the inheritance of glacial refuges, but the consequence of a more recent post-glacial isolation. The transition between the European and Asian groups is located eastwards from the Marmara straits, undermining its claimed role as an efficient barrier but stressing the importance of climatic and vegetational factors. A secondary differentiation between populations from the Central Black Sea coast and Easternmost regions was evidenced, attributed to a complex interplay of climatic, topographic, anthropogenic, and ecological factors. Turkey, at the crossroad of European and Asian species, heavily impacted by the current global change including climatic and anthropogenic factors, appears of importance for understanding the historical dynamics of differentiation and exchanges between populations that shaped the current distribution of Eurasian species and their future survival. © 2012 The Linnean Society of London

    Mathematics education graduate students’ understanding of trigonometric ratios

    No full text
    This study describes mathematics education graduate students' understanding of relationships between sine and cosine of two base angles in a right triangle. To explore students' understanding of these relationships, an elaboration of Skemp's views of instrumental and relational understanding using Tall and Vinner's concept image and concept definition was developed. Nine students volunteered to complete three paper and pencil tasks designed to elicit evidence of understanding and three students among these nine students volunteered for semi-structured interviews. As a result of fine-grained analysis of the students' responses to the tasks, the evidence of concept image and concept definition as well as instrumental and relational understanding of trigonometric ratios was found. The unit circle and a right triangle were identified as students' concept images, and the mnemonic was determined as their concept definition for trigonometry, specifically for trigonometric ratios. It is also suggested that students had instrumental understanding of trigonometric ratios while they were less flexible to act on trigonometric ratio tasks and had limited relational understanding. Additionally, the results indicate that graduate students' understanding of the concept of angle mediated their understanding of trigonometry, specifically trigonometric ratios
    corecore