5 research outputs found

    Limited exchange between the deep Pacific and Atlantic oceans during the warm mid-Pliocene and Marine Isotope Stage M2 “glaciation”

    Get PDF
    The Piacenzian stage (3.6–2.6 Ma) of the Pliocene is the most recent period where Earth experienced sustained intervals of global warmth analogous to predicted near-future climates. Despite considerable efforts to characterize and understand the climate dynamics of the Piacenzian, the deep ocean and its response to this warming remain poorly understood. Here we present new mid-Piacenzian Mg/Ca and Δ47 (“clumped isotope”) temperatures from the deep Pacific and North Atlantic oceans. These records cover the transition from Marine Isotope Stage (MIS) M2 – considered the most pronounced “glacial” stage of the Pliocene prior to the intensification of Northern Hemisphere glaciation – to the warm KM5 interglacial. We find that a large (&gt; 4 ∘C) temperature gradient existed between these two basins throughout that interval, with the deep North Atlantic considerably warmer and likely saltier than at present. We interpret our results to indicate that the deep Pacific and North Atlantic oceans were bathed by water masses with very different physical properties during the mid-Piacenzian, and that only a limited deep oceanic exchange occurred between the two basins. Our results point to a fundamentally different mode of ocean circulation or mixing compared to the present, where heat and salt are distributed from the North Atlantic into the Pacific. The amplitude of cooling observed at both sites during MIS M2 suggests that changes in benthic δ18O associated with this cold stage were mostly driven by temperature change in the deep ocean rather than by ice volume.</p

    Sequence of events from the onset to the demise of the Last Interglacial: Evaluating strengths and limitations of chronologies used in climatic archives

    Get PDF
    The Last Interglacial (LIG) represents an invaluable case study to investigate the response of components of the Earth system to global warming. However, the scarcity of absolute age constraints in most archives leads to extensive use of various stratigraphic alignments to different reference chronologies. This feature sets limitations to the accuracy of the stratigraphic assignment of the climatic sequence of events across the globe during the LIG. Here, we review the strengths and limitations of the methods that are commonly used to date or develop chronologies in various climatic archives for the time span (similar to 140 -100 ka) encompassing the penultimate deglaciation, the LIG and the glacial inception. Climatic hypotheses underlying record alignment strategies and the interpretation of tracers are explicitly described. Quantitative estimates of the associated absolute and relative age uncertainties are provided. Recommendations are subsequently formulated on how best to define absolute and relative chronologies. Future climato-stratigraphic alignments should provide (1) a clear statement of climate hypotheses involved, (2) a detailed understanding of environmental parameters controlling selected tracers and (3) a careful evaluation of the synchronicity of aligned paleoclimatic records. We underscore the need to (1) systematically report quantitative estimates of relative and absolute age uncertainties, (2) assess the coherence of chronologies when comparing different records, and (3) integrate these uncertainties in paleoclimatic interpretations and comparisons with climate simulations. Finally, we provide a sequence of major climatic events with associated age uncertainties for the period 140-105 ka, which should serve as a new benchmark to disentangle mechanisms of the Earth system's response to orbital forcing and evaluate transient climate simulations

    Sequence of events from the onset to the demise of the Last Interglacial: Evaluating strengths and limitations of chronologies used in climatic archives

    No full text
    corecore