201 research outputs found

    In situ TEM observations of plastic deformation in quartz crystals

    Get PDF
    With in situ nanocompression experiments in a transmission electron microscope, we investigated plastic deformation in natural quartz crystals and observed both dislocation plasticity as well as mechanical twinning. Through this experimental method, we are able to provide direct evidence of Dauphiné twin nucleation and could measure the intrinsic twinning stress. The twinning phenomena appear to include a memory effect, where the same twin can reappear upon successive loading and unloading events. The data provide insight into this twin generation mechanism and can be used as a benchmark for the use of twins in quartz for paleopiezometry. Together, the observation of room-temperature dislocation plasticity and reversible twinning adds new insight into the extensive field of quartz plasticity and demonstrates the usefulness of small-scale testing techniques for mineral physics

    Loss of Wwox Perturbs Neuronal Migration and Impairs Early Cortical Development

    Get PDF
    Mutations in the WWOX gene cause a broad range of ultra-rare neurodevelopmental and brain degenerative disorders, associated with a high likelihood of premature death in animal models as well as in humans. The encoded Wwox protein is a WW domain-containing oxidoreductase that participates in crucial biological processes including tumor suppression, cell growth/differentiation and regulation of steroid metabolism, while its role in neural development is less understood. We analyzed the exomes of a family affected with multiple pre- and postnatal anomalies, including cerebellar vermis hypoplasia, severe neurodevelopmental impairment and refractory epilepsy, and identified a segregating homozygous WWOX mutation leading to a premature stop codon. Abnormal cerebral cortex development due to a defective architecture of granular and molecular cell layers was found in the developing brain of a WWOX-deficient human fetus from this family. A similar disorganization of cortical layers was identified in lde/lde rats (carrying a homozygous truncating mutation which disrupts the active Wwox C-terminal domain) investigated at perinatal stages. Transcriptomic analyses of Wwox-depleted human neural progenitor cells showed an impaired expression of a number of neuronal migration-related genes encoding for tubulins, kinesins and associated proteins. These findings indicate that loss of Wwox may affect different cytoskeleton components and alter prenatal cortical development, highlighting a regulatory role of the WWOX gene in migrating neurons across different species

    Thirty Years with EoS/G<sup>E</sup> Models - What Have We Learned?

    Get PDF

    Identification and Characterization of Novel Genotoxic Stress-Inducible Nuclear Long Noncoding RNAs in Mammalian Cells

    Get PDF
    Whole transcriptome analyses have revealed a large number of novel transcripts including long and short noncoding RNAs (ncRNAs). Currently, there is great interest in characterizing the functions of the different classes of ncRNAs and their relevance to cellular processes. In particular, nuclear long ncRNAs may be involved in controlling various aspects of biological regulation, such as stress responses. By a combination of bioinformatic and experimental approaches, we identified 25 novel nuclear long ncRNAs from 6,088,565 full-length human cDNA sequences. Some nuclear long ncRNAs were conserved among vertebrates, whereas others were found only among primates. Expression profiling of the nuclear long ncRNAs in human tissues revealed that most were expressed ubiquitously. A subset of the identified nuclear long ncRNAs was induced by the genotoxic agents mitomycin C or doxorubicin, in HeLa Tet-off cells. There were no commonly altered nuclear long ncRNAs between mitomycin C- and doxorubicin-treated cells. These results suggest that distinct sets of nuclear long ncRNAs play roles in cellular defense mechanisms against specific genotoxic agents, and that particular long ncRNAs have the potential to be surrogate indicators of a specific cell stress

    Ablation of Mrds1/Ofcc1 Induces Hyper-γ-Glutamyl Transpeptidasemia without Abnormal Head Development and Schizophrenia-Relevant Behaviors in Mice

    Get PDF
    Mutations in the Opo gene result in eye malformation in medaka fish. The human ortholog of this gene, MRDS1/OFCC1, is a potentially causal gene for orofacial cleft, as well as a susceptibility gene for schizophrenia, a devastating mental illness. Based on this evidence, we hypothesized that this gene could perform crucial functions in the development of head and brain structures in vertebrates. To test this hypothesis, we created Mrds1/Ofcc1-null mice. Mice were examined thoroughly using an abnormality screening system referred to as “the Japan Mouse Clinic”. No malformations of the head structure, eye or other parts of the body were apparent in these knockout mice. However, the mutant mice showed a marked increase in serum γ-glutamyl transpeptidase (GGT), a marker for liver damage, but no abnormalities in other liver-related measurements. We also performed a family-based association study on the gene in schizophrenia samples of Japanese origin. We found five single nucleotide polymorphisms (SNPs) located across the gene that showed significant transmission distortion, supporting a prior report of association in a Caucasian cohort. However, the knockout mice showed no behavioral phenotypes relevant to schizophrenia. In conclusion, disruption of the Mrds1/Ofcc1 gene elicits asymptomatic hyper-γ-glutamyl-transpeptidasemia in mice. However, there were no phenotypes to support a role for the gene in the development of eye and craniofacial structures in vertebrates. These results prompt further examination of the gene, including its putative contribution to hyper-γ-glutamyl transpeptidasemia and schizophrenia

    Polymorphism in the Tyrosine Hydroxylase (TH) Gene Is Associated with Activity-Impulsivity in German Shepherd Dogs

    Get PDF
    We investigated the association between repeat polymorphism in intron 4 of the tyrosine hydroxylase (TH) gene and two personality traits, activity-impulsivity and inattention, in German Shepherd Dogs. The behaviour of 104 dogs was characterized by two instruments: (1) the previously validated Dog-Attention Deficit Hyperactivity Disorder Rating Scale (Dog-ADHD RS) filled in by the dog owners and (2) the newly developed Activity-impulsivity Behavioural Scale (AIBS) containing four subtests, scored by the experimenters. Internal consistency, inter-observer reliability, test-retest reliability and convergent validity were demonstrated for AIBS

    Phosphoproteomic differences in major depressive disorder postmortem brains indicate effects on synaptic function

    Get PDF
    There is still a lack in the molecular comprehension of major depressive disorder (MDD) although this condition affects approximately 10% of the world population. Protein phosphorylation is a posttranslational modification that regulates approximately one-third of the human proteins involved in a range of cellular and biological processes such as cellular signaling. Whereas phosphoproteome studies have been carried out extensively in cancer research, few such investigations have been carried out in studies of psychiatric disorders. Here, we present a comparative phosphoproteome analysis of postmortem dorsolateral prefrontal cortex tissues from 24 MDD patients and 12 control donors. Tissue extracts were analyzed using liquid chromatography mass spectrometry in a data-independent manner (LC-MSE). Our analyses resulted in the identification of 5,195 phosphopeptides, corresponding to 802 non-redundant proteins. Ninety of these proteins showed differential levels of phosphorylation in tissues from MDD subjects compared to controls, being 20 differentially phosphorylated in at least 2 peptides. The majority of these phosphorylated proteins were associated with synaptic transmission and cellular architecture not only pointing out potential biomarker candidates but mainly shedding light to the comprehension of MDD pathobiology

    Gene Expression Changes in the Prefrontal Cortex, Anterior Cingulate Cortex and Nucleus Accumbens of Mood Disorders Subjects That Committed Suicide

    Get PDF
    Suicidal behaviors are frequent in mood disorders patients but only a subset of them ever complete suicide. Understanding predisposing factors for suicidal behaviors in high risk populations is of major importance for the prevention and treatment of suicidal behaviors. The objective of this project was to investigate gene expression changes associated with suicide in brains of mood disorder patients by microarrays (Affymetrix HG-U133 Plus2.0) in the dorsolateral prefrontal cortex (DLPFC: 6 Non-suicides, 15 suicides), the anterior cingulate cortex (ACC: 6NS, 9S) and the nucleus accumbens (NAcc: 8NS, 13S). ANCOVA was used to control for age, gender, pH and RNA degradation, with P≤0.01 and fold change±1.25 as criteria for significance. Pathway analysis revealed serotonergic signaling alterations in the DLPFC and glucocorticoid signaling alterations in the ACC and NAcc. The gene with the lowest p-value in the DLPFC was the 5-HT2A gene, previously associated both with suicide and mood disorders. In the ACC 6 metallothionein genes were down-regulated in suicide (MT1E, MT1F, MT1G, MT1H, MT1X, MT2A) and three were down-regulated in the NAcc (MT1F, MT1G, MT1H). Differential expression of selected genes was confirmed by qPCR, we confirmed the 5-HT2A alterations and the global down-regulation of members of the metallothionein subfamilies MT 1 and 2 in suicide completers. MTs 1 and 2 are neuro-protective following stress and glucocorticoid stimulations, suggesting that in suicide victims neuroprotective response to stress and cortisol may be diminished. Our results thus suggest that suicide-specific expression changes in mood disorders involve both glucocorticoids regulated metallothioneins and serotonergic signaling in different regions of the brain

    Expression Profiling of a Genetic Animal Model of Depression Reveals Novel Molecular Pathways Underlying Depressive-Like Behaviours

    Get PDF
    The Flinders model is a validated genetic rat model of depression that exhibits a number of behavioural, neurochemical and pharmacological features consistent with those observed in human depression.In this study we have used genome-wide microarray expression profiling of the hippocampus and prefrontal/frontal cortex of Flinders Depression Sensitive (FSL) and control Flinders Depression Resistant (FRL) lines to understand molecular basis for the differences between the two lines. We profiled two independent cohorts of Flinders animals derived from the same colony six months apart, each cohort statistically powered to allow independent as well as combined analysis. Using this approach, we were able to validate using real-time-PCR a core set of gene expression differences that showed statistical significance in each of the temporally distinct cohorts, representing consistently maintained features of the model. Small but statistically significant increases were confirmed for cholinergic (chrm2, chrna7) and serotonergic receptors (Htr1a, Htr2a) in FSL rats consistent with known neurochemical changes in the model. Much larger gene changes were validated in a number of novel genes as exemplified by TMEM176A, which showed 35-fold enrichment in the cortex and 30-fold enrichment in hippocampus of FRL animals relative to FSL.These data provide significant insights into the molecular differences underlying the Flinders model, and have potential relevance to broader depression research
    corecore