13 research outputs found
On the visual detection of non-natural records in streamflow time series: challenges and impacts
Large datasets of long-term streamflow measurements are widely used to infer and model hydrological processes. However, streamflow measurements may
suffer from what users can consider anomalies, i.e. non-natural records that may be erroneous streamflow values or anthropogenic influences that
can lead to misinterpretation of actual hydrological processes. Since identifying anomalies is time consuming for humans, no study has investigated
their proportion, temporal distribution, and influence on hydrological indicators over large datasets. This study summarizes the results of a large
visual inspection campaign of 674Â streamflow time series in France made by 43Â evaluators, who were asked to identify anomalies falling under five
categories, namely, linear interpolation, drops, noise, point anomalies, and other. We examined the evaluators' individual behaviour in terms of
severity and agreement with other evaluators, as well as the temporal distributions of the anomalies and their influence on commonly used
hydrological indicators. We found that inter-evaluator agreement was surprisingly low, with an average of 12 % of overlapping periods reported as
anomalies. These anomalies were mostly identified as linear interpolation and noise, and they were more frequently reported during the low-flow
periods in summer. The impact of cleaning data from the identified anomaly values was higher on low-flow indicators than on high-flow indicators,
with change rates lower than 5 % most of the time. We conclude that the identification of anomalies in streamflow time series is highly dependent
on the aims and skills of each evaluator, which raises questions about the best practices to adopt for data cleaning.</p
HyGenSys: a Flexible Process for Hydrogen and Power Production with Reduction of CO2 Emission
International audienceThis paper presents the latest development of HyGenSys, a new sustainable process and technology for the conversion of natural gas to hydrogen and power. The concept combines a specific steam reforming reactor-exchanger with a gas turbine. The heat necessary for the steam reforming reaction comes from hot pressurized flue gases produced in a gas turbine instead of a conventional furnace. Thanks to this high level of heat integration, the overall efficiency is improved and the natural gas consumption is reduced which represents an advantage with regard to economics and CO2 emission reduction. In addition to the efficient HyGenSys process scheme itself, the technology of the reactorexchanger also offers a high level of heat integration for even more energy saving.Two main alternatives are examined in order to meet two different requirements. The first one, named HyGenSys-0, focuses on the hydrogen production for the refining and petrochemical application. The second one named HyGenSys-1, concerns the centralized power production with pre-combustion CO2capture. In that case, the produced hydrogen is fully used to fuel a power gas turbine. HyGenSys-1 has been developed and optimised in CACHET, a European Community funded project. The CACHET electrical power objective was 400 MW at the minimum.HyGenSys-0 and HyGenSys-1 are described in detail with challenges and advantages compared to existing technologies.For both alternatives, the heart of the technology is the reactor-exchanger. The reactor-exchanger design relies on an innovative arrangement of bayonet tubes that allows, at large scale, multiple heat exchanges between hot pressurized flue gas, natural gas feed and hydrogen rich stream produced.HyGenSys : un procédé flexible de production d'hydrogène et d'électricité avec réduction des émissions de CO 2-Cet article présente les développements récents d'HyGenSys, nouvel éco-procédé de conversion du gaz naturel en hydrogène et électricité. Le concept combine un réacteur-échangeur spécifique de reformage à la vapeur avec une turbine à gaz. En fait, la chaleur nécessaire pour la réaction de reformage à la vapeur provient des fumées pressurisées produites dans une turbine à gaz au lieu d'un four conventionnel. Grâce à cette intégration thermique poussée, l'efficacité globale est améliorée et la consommation de gaz naturel réduite, ce qui représente un avantage d'un point de vue économique et environnemental notamment vis-à -vis de la réduction des émissions de CO 2. Deux déclinaisons du procédé sont détaillées, elles répondent chacune à des besoins différents. La première, appelée HyGenSys-0, correspond à la production d'hydrogène pour le raffinage et la pétrochimique. La deuxième, appelée HyGenSys-1, permet la production d'énergie centralisée avec la capture de CO 2 en précombustion. Dans ce cas, l'hydrogène produit est entièrement utilisé pour alimenter une turbine de production d'électricité. HyGenSys-1 a été développé et optimisé au cours du projet CACHET, financé par la Communauté européenne, avec comme objectif de fournir une puissance de 400 MW minimum. Les versions HyGenSys-0 et HyGenSys-1 du procédé sont décrites en détail avec les défis et avantages comparés aux technologies existantes. Dans les deux cas, le coeur de la technologie est le réacteur-échangeur dont le développement est également présenté en détail. La conception de réacteur-échangeur est basée sur un arrangement innovant de tubes à baïonnette autorisant une conception à grande échelle, de l'échange thermique multiple entre la fumée pressurisée chaude, l'alimentation de gaz naturel et l'effluent riche en hydrogène. Abstract-HyGenSys: a Flexible Process for Hydrogen and Power Production with Reduction of CO 2 Emission-This paper presents the latest development of HyGenSys, a new sustainable process and technology for the conversion of natural gas to hydrogen and power. The concept combines a specific steam reforming reactor-exchanger with a gas turbine. The heat necessary for the steam reforming reaction comes from hot pressurized flue gases produced in a gas turbine instead of a conventional furnace. Thanks to this high level of heat integration, the overall efficiency is improved and the natura
HyGenSys: a Flexible Process for Hydrogen and Power Production with Reduction of CO2 Emission HyGenSys : un procédé flexible de production d’hydrogène et d’électricité avec réduction des émissions de CO2
This paper presents the latest development of HyGenSys, a new sustainable process and technology for the conversion of natural gas to hydrogen and power. The concept combines a specific steam reforming reactor-exchanger with a gas turbine. The heat necessary for the steam reforming reaction comes from hot pressurized flue gases produced in a gas turbine instead of a conventional furnace. Thanks to this high level of heat integration, the overall efficiency is improved and the natural gas consumption is reduced which represents an advantage with regard to economics and CO2 emission reduction. In addition to the efficient HyGenSys process scheme itself, the technology of the reactorexchanger also offers a high level of heat integration for even more energy saving. Two main alternatives are examined in order to meet two different requirements. The first one, named HyGenSys-0, focuses on the hydrogen production for the refining and petrochemical application. The second one named HyGenSys-1, concerns the centralized power production with pre-combustion CO2capture. In that case, the produced hydrogen is fully used to fuel a power gas turbine. HyGenSys-1 has been developed and optimised in CACHET, a European Community funded project. The CACHET electrical power objective was 400 MW at the minimum. HyGenSys-0 and HyGenSys-1 are described in detail with challenges and advantages compared to existing technologies. For both alternatives, the heart of the technology is the reactor-exchanger. The reactor-exchanger design relies on an innovative arrangement of bayonet tubes that allows, at large scale, multiple heat exchanges between hot pressurized flue gas, natural gas feed and hydrogen rich stream produced. Cet article présente les développements récents d’HyGenSys, nouvel éco-procédé de conversion du gaz naturel en hydrogène et électricité. Le concept combine un réacteur-échangeur spécifique de reformage à la vapeur avec une turbine à gaz. En fait, la chaleur nécessaire pour la réaction de reformage à la vapeur provient des fumées pressurisées produites dans une turbine à gaz au lieu d’un four conventionnel. Grâce à cette intégration thermique poussée, l’efficacité globale est améliorée et la consommation de gaz naturel réduite, ce qui représente un avantage d’un point de vue économique et environnemental notamment vis-à -vis de la réduction des émissions de CO2. Deux déclinaisons du procédé sont détaillées, elles répondent chacune à des besoins différents. La première, appelée HyGenSys-0, correspond à la production d’hydrogène pour le raffinage et la pétrochimique. La deuxième, appelée HyGenSys-1, permet la production d’énergie centralisée avec la capture de CO2 en précombustion. Dans ce cas, l’hydrogène produit est entièrement utilisé pour alimenter une turbine de production d’électricité. HyGenSys-1 a été développé et optimisé au cours du projet CACHET, financé par la Communauté européenne, avec comme objectif de fournir une puissance de 400 MW minimum. Les versions HyGenSys-0 et HyGenSys-1 du procédé sont décrites en détail avec les défis et avantages comparés aux technologies existantes. Dans les deux cas, le coeur de la technologie est le réacteuréchangeur dont le développement est également présenté en détail. La conception de réacteur-échangeur est basée sur un arrangement innovant de tubes à baïonnette autorisant une conception à grande échelle, de l’échange thermique multiple entre la fumée pressurisée chaude, l’alimentation de gaz naturel et l’effluent riche en hydrogène