69 research outputs found

    The Coarse Geometry of Merger Trees in \Lambda CDM

    Full text link
    We introduce the contour process to describe the geometrical properties of merger trees. The contour process produces a one-dimensional object, the contour walk, which is a translation of the merger tree. We portray the contour walk through its length and action. The length is proportional to to the number of progenitors in the tree, and the action can be interpreted as a proxy of the mean length of a branch in a merger tree. We obtain the contour walk for merger trees extracted from the public database of the Millennium Run and also for merger trees constructed with a public Monte-Carlo code which implements a Markovian algorithm. The trees correspond to halos of final masses between 10^{11} h^{-1} M_sol and 10^{14} h^{-1} M_sol. We study how the length and action of the walks evolve with the mass of the final halo. In all the cases, except for the action measured from Markovian trees, we find a transitional scale around 3 \times 10^{12} h^{-1} M_sol. As a general trend the length and action measured from the Markovian trees show a large scatter in comparison with the case of the Millennium Run trees.Comment: 7 pages, 5 figures, submitted to MNRA

    Conditional Mass Functions and Merger Rates of Dark Matter Halos in the Ellipsoidal Collapse Model

    Full text link
    Analytic models based on spherical and ellipsoidal gravitational collapse have been used to derive the mass functions of dark matter halos and their progenitors (the conditional mass function). The ellipsoidal model generally provides a better match to simulation results, but there has been no simple analytic expression in this model for the conditional mass function that is accurate for small time steps, a limit that is important for generating halo merger trees and computing halo merger rates. We remedy the situation by deriving accurate analytic formulae for the first-crossing distribution, the conditional mass function, and the halo merger rate in the ellipsoidal collapse model in the limit of small look-back times. We show that our formulae provide a closer match to the Millennium simulation results than those in the spherical collapse model and the ellipsoidal model of Sheth & Tormen (2002).Comment: 5 pages, 3 figures, accepted by MNRAS letter

    Accretion of gas onto nearby spiral galaxies

    Full text link
    We present evidence for cosmological gas accretion onto spiral galaxies in the local universe. The accretion is seen through its effects on the dynamics of the extra-planar neutral gas. The accretion rates that we estimate for two nearby spiral galaxies are of the order of their star formation rates. Our model shows that most of the extra-planar gas is produced by supernova feedback (galactic fountain) and only 10-20 % comes from accretion. The accreting material must have low specific angular momentum about the disc's spin axis, although the magnitude of the specific angular-momentum vector can be higher. We also explore the effects of a hot corona on the dynamics of the extra-planar gas and find that it is unlikely to be responsible for the observed kinematical pattern and the source of accreted gas. However, the interaction with the fountain flow should profoundly affect the hydrodynamics of the corona.Comment: 11 pages, 6 figures, accepted for publication in MNRA

    Cold streams in early massive hot haloes as the main mode of galaxy formation

    Full text link
    The massive galaxies in the young universe, ten billion years ago, formed stars at surprising intensities. Although this is commonly attributed to violent mergers, the properties of many of these galaxies are incompatible with such events, showing gas-rich, clumpy, extended rotating disks not dominated by spheroids (Genzel et al. 2006, 2008). Cosmological simulations and clustering theory are used to explore how these galaxies acquired their gas. Here we report that they are stream-fed galaxies, formed from steady, narrow, cold gas streams that penetrate the shock-heated media of massive dark matter haloes (Dekel & Birnboim 2006; Keres et al. 2005). A comparison with the observed abundance of star-forming galaxies implies that most of the input gas must rapidly convert to stars. One-third of the stream mass is in gas clumps leading to mergers of mass ratio greater than 1:10, and the rest is in smoother flows. With a merger duy cycle of 0.1, three-quarters of the galaxies forming stars at a given rate are fed by smooth streams. The rarer, submillimetre galaxies that form stars even more intensely are largely merger-induced starbursts. Unlike destructive mergers, the streams are likely to keep the rotating disk configuration intact, although turbulent and broken into giant star-forming clumps that merge into a central spheroid (Noguchi 1999; Genzel et al. 2008, Elmegreen, Bournaud & Elmegreen 2008, Dekel, Sari & Ceverino 2009). This stream-driven scenario for the formation of disks and spheroids is an alternative to the merger picture.Comment: Improved version, 25 pages, 13 figures, Letter to Nature with Supplementary Informatio

    The Excursion Set Theory of Halo Mass Functions, Halo Clustering, and Halo Growth

    Get PDF
    I review the excursion set theory (EST) of dark matter halo formation and clustering. I recount the Press-Schechter argument for the mass function of bound objects and review the derivation of the Press-Schechter mass function in EST. The EST formalism is powerful and can be applied to numerous problems. I review the EST of halo bias and the properties of void regions. I spend considerable time reviewing halo growth in the EST. This section culminates with descriptions of two Monte Carlo methods for generating halo mass accretion histories. In the final section, I emphasize that the standard EST approach is the result of several simplifying assumptions. Dropping these assumptions can lead to more faithful predictions and a more versatile formalism. One such assumption is the constant height of the barrier for nonlinear collapse. I review implementations of the excursion set approach with arbitrary barrier shapes. An application of this is the now well-known improvement to standard EST that follows from the ellipsoidal-collapse barrier. Additionally, I emphasize that the statement that halo accretion histories are independent of halo environments is a simplifying assumption, rather than a prediction of the theory. I review the method for constructing correlated random walks of the density field in more general cases. I construct a simple toy model with correlated walks and I show that excursion set theory makes a qualitatively simple and general prediction for the relation between halo accretion histories and halo environments: regions of high density preferentially contain late-forming halos and conversely for regions of low density. I conclude with a brief discussion of this prediction in the context of recent numerical studies of the environmental dependence of halo properties. (Abridged)Comment: 62 pages, 19 figures. Review article based on lectures given at the Sixth Summer School of the Helmholtz Institute for Supercomputational Physics. Accepted for Publication in IJMPD. Comments Welcom

    Ram pressure profiles in galaxy groups and clusters

    Get PDF
    Using a hybrid method which combines non-radiative hydrodynamical simulations with a semi-analytic model of galaxy formation, we determine the ram pressure as a function of halocentric distance experienced by galaxies in haloes with virial masses 12.5 <= log (M_200 h/M_Sun) < 15.35, for redshifts 0 <= z <= 3. The ram pressure is calculated with a self-consistent method which uses the simulation gas particles to obtain the properties of the intergalactic medium. The ram pressure profiles obtained can be well described by beta profile models, with parameters that depend on redshift and halo virial mass in a simple fashion. The fitting formulae provided here will prove useful to include ram pressure effects into semi-analytic models based on methods which lack gas physics, such as dark matter-only simulations or the Press-Schechter formalism.Comment: 7 pages, 6 figures. Accepted for publication in MNRA

    The dynamics of S0 galaxies and their Tully-Fisher relation

    Get PDF
    This paper investigates the detailed dynamical properties of a relatively homogeneous sample of disc-dominated S0 galaxies, with a view to understanding their formation, evolution and structure. By using high signal-to-noise ratio long-slit spectra of edge-on systems, we have been able to reconstruct the complete line-of-sight velocity distributions of stars along the galaxies' major axes. From these data, we have derived both model distribution functions (the phase density of their stars) and the approximate form of their gravitational potentials. The derived distribution functions are all consistent with these galaxies being simple disc systems, with no evidence for a complex formation history. Essentially no correlation is found between the characteristic mass scale-lengths and the photometric scale-lengths in these galaxies, suggesting that they are dark-matter dominated even in their inner parts. Similarly, no correlation is found between the mass scale-lengths and asymptotic rotation speed, implying a wide range of dark matter halo properties. By comparing their asymptotic rotation speeds with their absolute magnitudes, we find that these S0 galaxies are systematically offset from the Tully-Fisher relation for later-type galaxies. The offset in luminosity is what one would expect if star formation had been suddenly switched off a few Gyrs ago, consistent with a simple picture in which these S0s were created from ordinary later-type spirals which were stripped of their star-forming ISM when they encountered a dense cluster environment.Comment: 8 pages, 16 figures, accepted by MNRA

    Structure of the Galaxies in the NGC 80 Group

    Full text link
    BV-bands photometric data obtained at the 6-m telescope of the Special Astrophysical Observatory are used to analyze the structure of 13 large disk galaxies in the NGC 80 group. Nine of the 13 galaxies under consideration are classified by us as lenticular galaxies. The stellar populations in the galaxies are very different, from old ones with ages of T>10 Gyrs (IC 1541) to relatively young, with the ages of T<2-3 Gyr (IC 1548, NGC 85). In one case, current star formation is known (UCM 0018+2216). In most of the galaxies, more precisely in all of them more luminous than M(B) -18, two-tiered (`antitruncated') stellar disks are detected, whose radial surface brightness profiles can be fitted by two exponential segments with different scalelengths -- shorter near the center and longer at the periphery. All dwarf S0 galaxies with single-scalelength exponential disks are close companions to giant galaxies. Except for this fact, no dependence of the properties of S0 galaxies on distance from the center of the group is found. Morphological traces of minor merger are found in the lenticular galaxy NGC 85. Basing on the last two points, we conclude that the most probable mechanisms for the transformation of spirals into lenticular galaxies in groups are gravitational ones, namely, minor mergers and tidal interactions.Comment: 24 pages, 9 figures, slightly improved version of the paper published in the December, 2009, issue of the Astronomy Report

    The Millennium Run Observatory: First Light

    Full text link
    Simulations of galaxy evolution aim to capture our current understanding as well as to make predictions for testing by future experiments. Simulations and observations are often compared in an indirect fashion: physical quantities are estimated from the data and compared to models. However, many applications can benefit from a more direct approach, where the observing process is also simulated and the models are seen fully from the observer's perspective. To facilitate this, we have developed the Millennium Run Observatory (MRObs), a theoretical virtual observatory which uses virtual telescopes to `observe' semi-analytic galaxy formation models based on the suite of Millennium Run dark matter simulations. The MRObs produces data that can be processed and analyzed using the standard software packages developed for real observations. At present, we produce images in forty filters from the rest-frame UV to IR for two stellar population synthesis models, three different models of IGM absorption, and two cosmologies (WMAP1/7). Galaxy distributions for a large number of mock lightcones can be `observed' using models of major ground- and space-based telescopes. The data include lightcone catalogues linked to structural properties of galaxies, pre-observation model images, mock telescope images, and Source Extractor products that can all be traced back to the higher level dark matter, semi-analytic galaxy, and lightcone catalogues available in the Millennium database. Here, we describe our methods and announce a first public release of simulated surveys (e.g., SDSS, CFHT-LS, GOODS, GOODS/ERS, CANDELS, and HUDF). The MRObs browser, an online tool, further facilitates exploration of the simulated data. We demonstrate the benefits of a direct approach through a number of example applications (galaxy number counts in CANDELS, clusters, morphologies, and dropout selections).Comment: MNRAS, in press. Millennium Run Observatory data products, online tools, and more available through http://galformod.mpa-garching.mpg.de/mrobs

    Gravitational stability and dynamical overheating of stellar disks of galaxies

    Full text link
    We use the marginal stability condition for galactic disks and the stellar velocity dispersion data published by different authors to place upper limits on the disk local surface density at two radial scalelengths R=2hR=2h. Extrapolating these estimates, we constrain the total mass of the disks and compare these estimates to those based on the photometry and color of stellar populations. The comparison reveals that the stellar disks of most of spiral galaxies in our sample cannot be substantially overheated and are therefore unlikely to have experienced a significant merging event in their history. The same conclusion applies to some, but not all of the S0 galaxies we consider. However, a substantial part of the early type galaxies do show the stellar velocity dispersion well in excess of the gravitational stability threshold suggesting a major merger event in the past. We find dynamically overheated disks among both seemingly isolated galaxies and those forming pairs. The ratio of the marginal stability disk mass estimate to the total galaxy mass within four radial scalelengths remains within a range of 0.4---0.8. We see no evidence for a noticeable running of this ratio with either the morphological type or color index.Comment: 25 pages, 5 figures, accepted to Astronomy Letter
    • 

    corecore