174 research outputs found

    The Analysis of Iterative Elliptic PDE Solvers Based on The Cubic Hermite Collocation Discretization

    Get PDF
    Abstract. Collocation methods based on bicubic Hermite piecewise polynomials have been proven effective t.echniques for solving second-order linear elliptic PDEs with mixed boundary conditions. The corresponding linear system is in general non-symmetric and non-diagonally dominant. Iterative methods for their solution arc not known and they aTC currently solved using Gauss elimination with scaling and partial pivoting. Point iterat.ive methods do not convcrge even for the collocation equations obtained from model PDE problems. The del/elopment of efficient iterative solvers for these equations is necessary for three-dimensional problems and their parallel solution, since direct solvers tend to be space bound and their parallelization is difficult. In this thesis, we develop block iterative methods for the collocation equations of elliptic PDEs defined on a rectangle and subject to uncoupled mixed boundary conditions. For model problems of this type, we derive analytic expressions for the eigenvalues of the block Jacobi iteration matrix: and determine the optimal parameter for the block SOR method. For the case of general domains, the iterative solution of tile collocation equations is still an open problem. We address this open problem b

    Enhanced mitochondrial superoxide scavenging does not Improve muscle insulin action in the high fat-fed mouse

    Get PDF
    Improving mitochondrial oxidant scavenging may be a viable strategy for the treatment of insulin resistance and diabetes. Mice overexpressing the mitochondrial matrix isoform of superoxide dismutase (sod2(tg) mice) and/or transgenically expressing catalase within the mitochondrial matrix (mcat(tg) mice) have increased scavenging of O2(Ë™-) and H2O2, respectively. Furthermore, muscle insulin action is partially preserved in high fat (HF)-fed mcat(tg) mice. The goal of the current study was to test the hypothesis that increased O2(Ë™-) scavenging alone or in combination with increased H2O2 scavenging (mtAO mice) enhances in vivo muscle insulin action in the HF-fed mouse. Insulin action was examined in conscious, unrestrained and unstressed wild type (WT), sod2(tg), mcat(tg) and mtAO mice using hyperinsulinemic-euglycemic clamps (insulin clamps) combined with radioactive glucose tracers following sixteen weeks of normal chow or HF (60% calories from fat) feeding. Glucose infusion rates, whole body glucose disappearance, and muscle glucose uptake during the insulin clamp were similar in chow- and HF-fed WT and sod2(tg) mice. Consistent with our previous work, HF-fed mcat(tg) mice had improved muscle insulin action, however, an additive effect was not seen in mtAO mice. Insulin-stimulated Akt phosphorylation in muscle from clamped mice was consistent with glucose flux measurements. These results demonstrate that increased O2(Ë™-) scavenging does not improve muscle insulin action in the HF-fed mouse alone or when coupled to increased H2O2 scavenging

    Oleic, Linoleic and Linolenic Acids Increase ROS Production by Fibroblasts via NADPH Oxidase Activation

    Get PDF
    The effect of oleic, linoleic and γ-linolenic acids on ROS production by 3T3 Swiss and Rat 1 fibroblasts was investigated. Using lucigenin-amplified chemiluminescence, a dose-dependent increase in extracellular superoxide levels was observed during the treatment of fibroblasts with oleic, linoleic and γ-linolenic acids. ROS production was dependent on the addition of β-NADH or NADPH to the medium. Diphenyleneiodonium inhibited the effect of oleic, linoleic and γ-linolenic acids on fibroblast superoxide release by 79%, 92% and 82%, respectively. Increased levels of p47phox phosphorylation due to fatty acid treatment were detected by Western blotting analyses of fibroblast proteins. Increased p47phox mRNA expression was observed using real-time PCR. The rank order for the fatty acid stimulation of the fibroblast oxidative burst was as follows: γ-linolenic > linoleic > oleic. In conclusion, oleic, linoleic and γ-linolenic acids stimulated ROS production via activation of the NADPH oxidase enzyme complex in fibroblasts

    N-Acetylcysteine inhibits platelet-monocyte conjugation in patients with type 2 diabetes with depleted intraplatelet glutathione: a randomised controlled trial

    Get PDF
    AIMS/HYPOTHESIS: The aim of this study was to determine whether oral dosing with N-acetylcysteine (NAC) increases intraplatelet levels of the antioxidant, glutathione (GSH), and reduces platelet–monocyte conjugation in blood from patients with type 2 diabetes. METHODS: In this placebo-controlled randomised crossover study, the effect of oral NAC dosing on platelet–monocyte conjugation and intraplatelet GSH was investigated in patients with type 2 diabetes (eligibility criteria: men or post-menopausal women with well-controlled diabetes (HbA(1c) < 10%), not on aspirin or statins). Patients (n = 14; age range 43–79 years, HbA(1c) = 6.9 ± 0.9% [52.3 ± 10.3 mmol/mol]) visited the Highland Clinical Research Facility, Inverness, UK on day 0 and day 7 for each arm of the study. Blood was sampled before and 2 h after oral administration of placebo or NAC (1,200 mg) on day 0 and day 7. Patients received placebo or NAC capsules for once-daily dosing on the intervening days. The order of administration of NAC and placebo was allocated by a central office and all patients and research staff involved in the study were blinded to the allocation until after the study was complete and the data fully analysed. The primary outcome for the study was platelet–monocyte conjugation. RESULTS: Oral NAC reduced platelet–monocyte conjugation (from 53.1 ± 4.5% to 42.5 ± 3.9%) at 2 h after administration and the effect was maintained after 7 days of dosing. Intraplatelet GSH was raised in individuals with depleted GSH and there was a negative correlation between baseline intraplatelet GSH and platelet–monocyte conjugation. There were no adverse events. CONCLUSIONS/INTERPRETATION: The NAC-induced normalisation of intraplatelet GSH, coupled with a reduction in platelet–monocyte conjugation, suggests that NAC might help to reduce atherothrombotic risk in type 2 diabetes. FUNDING: Chief Scientist Office (CZB/4/622), Scottish Funding Council, Highlands & Islands Enterprise and European Regional Development Fund. TRIAL REGISTRATION: isrctn.org ISRCTN89304265 ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00125-012-2685-z) contains peer-reviewed but unedited supplementary material, which is available to authorised users

    A Serum Factor Induces Insulin-Independent Translocation of GLUT4 to the Cell Surface which Is Maintained in Insulin Resistance

    Get PDF
    In response to insulin, glucose transporter GLUT4 translocates from intracellular compartments towards the plasma membrane where it enhances cellular glucose uptake. Here, we show that sera from various species contain a factor that dose-dependently induces GLUT4 translocation and glucose uptake in 3T3-L1 adipocytes, human adipocytes, myoblasts and myotubes. Notably, the effect of this factor on GLUT4 is fully maintained in insulin-resistant cells. Our studies demonstrate that the serum-induced increase in cell surface GLUT4 levels is not due to inhibition of its internalization and is not mediated by insulin, PDGF, IGF-1, or HGF. Similarly to insulin, serum also augments cell surface levels of GLUT1 and TfR. Remarkably, the acute effect of serum on GLUT4 is largely additive to that of insulin, while it also sensitizes the cells to insulin. In accordance with these findings, serum does not appear to activate the same repertoire of downstream signaling molecules that are implicated in insulin-induced GLUT4 translocation. We conclude that in addition to insulin, at least one other biological proteinaceous factor exists that contributes to GLUT4 regulation and still functions in insulin resistance. The challenge now is to identify this factor

    Molecular Basis for Vulnerability to Mitochondrial and Oxidative Stress in a Neuroendocrine CRI-G1 Cell Line

    Get PDF
    Many age-associated disorders (including diabetes, cancer, and neurodegenerative diseases) are linked to mitochondrial dysfunction, which leads to impaired cellular bioenergetics and increased oxidative stress. However, it is not known what genetic and molecular pathways underlie differential vulnerability to mitochondrial dysfunction observed among different cell types.Starting with an insulinoma cell line as a model for a neuronal/endocrine cell type, we isolated a novel subclonal line (named CRI-G1-RS) that was more susceptible to cell death induced by mitochondrial respiratory chain inhibitors than the parental CRI-G1 line (renamed CRI-G1-RR for clarity). Compared to parental RR cells, RS cells were also more vulnerable to direct oxidative stress, but equally vulnerable to mitochondrial uncoupling and less vulnerable to protein kinase inhibition-induced apoptosis. Thus, differential vulnerability to mitochondrial toxins between these two cell types likely reflects differences in their ability to handle metabolically generated reactive oxygen species rather than differences in ATP production/utilization or in downstream apoptotic machinery. Genome-wide gene expression analysis and follow-up biochemical studies revealed that, in this experimental system, increased vulnerability to mitochondrial and oxidative stress was associated with (1) inhibition of ARE/Nrf2/Keap1 antioxidant pathway; (2) decreased expression of antioxidant and phase I/II conjugation enzymes, most of which are Nrf2 transcriptional targets; (3) increased expression of molecular chaperones, many of which are also considered Nrf2 transcriptional targets; (4) increased expression of β cell-specific genes and transcription factors that specify/maintain β cell fate; and (5) reconstitution of glucose-stimulated insulin secretion.The molecular profile presented here will enable identification of individual genes or gene clusters that shape vulnerability to mitochondrial dysfunction and thus represent potential therapeutic targets for diabetes and neurodegenerative diseases. In addition, the newly identified CRI-G1-RS cell line represents a new experimental model for investigating how endogenous antioxidants affect glucose sensing and insulin release by pancreatic β cells

    Exercise training with dietary counselling increases mitochondrial chaperone expression in middle-aged subjects with impaired glucose tolerance

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Insulin resistance and diabetes are associated with increased oxidative stress and impairment of cellular defence systems. Our purpose was to investigate the interaction between glucose metabolism, antioxidative capacity and heat shock protein (HSP) defence in different skeletal muscle phenotypes among middle-aged obese subjects during a long-term exercise and dietary intervention. As a sub-study of the Finnish Diabetes Prevention Study (DPS), 22 persons with impaired glucose tolerance (IGT) taking part in the intervention volunteered to give samples from the <it>vastus lateralis </it>muscle. Subjects were divided into two sub-groups (IGTslow and IGTfast) on the basis of their baseline myosin heavy chain profile. Glucose metabolism, oxidative stress and HSP expressions were measured before and after the 2-year intervention.</p> <p>Results</p> <p>Exercise training, combined with dietary counselling, increased the expression of mitochondrial chaperones HSP60 and glucose-regulated protein 75 (GRP75) in the <it>vastus lateralis </it>muscle in the IGTslow group and that of HSP60 in the IGTfast group. In cytoplasmic chaperones HSP72 or HSP90 no changes took place. In the IGTslow group, a significant positive correlation between the increased muscle content of HSP60 and the oxygen radical absorbing capacity values and, in the IGTfast group, between the improved VO<sub>2max </sub>value and the increased protein expression of GRP75 were found. Serum uric acid concentrations decreased in both sub-groups and serum protein carbonyl concentrations decreased in the IGTfast group.</p> <p>Conclusion</p> <p>The 2-year intervention up-regulated mitochondrial HSP expressions in middle-aged subjects with impaired glucose tolerance. These improvements, however, were not correlated directly with enhanced glucose tolerance.</p

    Bioinorganic Chemistry of Alzheimer’s Disease

    Get PDF
    • …
    corecore