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THE ANALYSIS OF ITERATIVE ELLIPTIC PDE SOLVERS BASED ON
THE CUBIC HERMITE COLLOCATION DISCRETIZATION*

YU.LING LAI', APOSTOLOS HADJIDIMOS!, ELIAS N. HOUSTIS!, AND JOHN R. RICE!

Abstract. Collocation methods based on bicubic Hermite piecewise polynomials have been proven
effective techniques for solving second-order linear elliptic PDEs with mixed boundary conrditions. The
corresponding linear system is in general non-symmetric and non-diagonally dominant. Iterative methods
for their solulion are not known and they are currenily solved using Gauss elimination with scaling and
pariial pivoling. Point iteralive methods do not converge even for the collocation equations obtained from
model PDE problems. The development of efficient iterative solvers for these equalions is necessary for
three-dimensional problems and their parallel solution, since direct solvers Ltend to be space bound and their
parallelization is difficalt. In this thesis, we develop block ilerative methods for the collocation equations
of elliptic PDEs defined on a reclangle and subject Lo uncoupled mixed boundary condilions. For model
problems of this type, we derive analylic expressions for the eigenvalues of the block Jacobi iteration matrix
and delermine the optimal parameter for the block SOR methed. For the case of general domains, the
iterative solution of the collocation equations is still an open problem. We address this open problem by
generalizing interior collocation method for PDEs defined on reclilinear regions, study the structure of these
equations under different ordering schemes, and apply AOR and €@ type iterative solvers to them. Anoiber
objective of this thesis is lo study the applicabilily and effectiveness of geometry splitting methods coupled
with cellocation discretization schemes. Specifically, we consider the Generalized Schwarz Splitiing (GSS)
method, which is an exlension of the Schwarz Alternaling Method, for solving elliplic PDE problems with
generalized interface condilions. The main focus is the iterative solulion of the corresponding enhanced
GS8 linear system for a model problem. For this we carry oul the speciral analysis of the enhanced block
Jacobi iteration mairix. In the case of one-dimensional problems, we determine Lhe convergence interval of
one-parameter G55 and find a subinterval of it where the optimal parameter lies; moreover, we obtain sets
of optimal parameters for the multi-parameter GSS case. We aslo analyze Lhe convergence properties of the

one-parameler GSS [or a two-dimensional mode] problem.
Key words. elliptic partial differential equations, collocation methods, SOR. iterative method

Introduction
An open problem is to find a method for the iterative solution of the discrete equations
obtained from applying the collocation method based on bicubic Hermite piecewise polyno-
mials to discretize a2 general second-order linear elliptic partial differential equation of the
form
Lu = aups + cuyy + dus +euy, + fu=g, (z,¥) € R, (1.1)

subject to the boundary conditions

BuEau+ﬁg—:=6, (z,vy) € OR, (1.2)
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where R is a general domain while all the coefficients and the right hand sides in (1.1) and
(1.2) may depend on z and y.

One of the objectives of this thesis is to analyze theoretically and experimentally iter-
ative methods for the solution of Hermite collocation equations associated with the PDE
equation (1.1) defined on a rectangular domain with Dirichlet or Neumann conditions on
parts of the boundary. A “natural” ordering of the collocation equations and unknowns [22]
leads to a banded coefficient matrix which is in general non-symmetric and non-diagonally
dominant whose diagonal elements are almost all zero. Thus a straightforward applica-
tion of the classical point iterative methods to solve these equations is not possible. These
systems are currently solved by Gauss elimination with scaling and partial pivoting [9].
Some “customized” direct and iterative solvers have been developed for solving the Hermite
collocation equations for special elliptic PDE operators and boundary conditions on the
unit square [6], [2]. The iterative solution of the Hermite collocation equations was first
addressed in [24] and [30] for the case of interior Hermite collocation applied on the Poisson
PDE problem with Dirichlet boundary conditions defined on the unit square. The appli-
cation of the iterative methods was based on a special reordering of the equations and the
unknowns, which resulted to a block tridiagonal coefficient matrix. In this thesis we extend
the iterative approaches proposed in [24] and [30] for a class of “general” Hermite collocation
equations. These extensions are based on a new partitioning of the corresponding “interior”
collocation matrix which allows us to derive analytically the eigenvalues of the correspond-
ing block Jacobi iteration matrix and determine the optimal overrelaxation factor of the
Successive Overrelaxation (SOR) iterative method [39], {41]. In addition, we improve several
of Papatheodorou’s theoretical results for the “interior” collocation equations [30]. In the
case of a model elliptic PDE problem with uncoupled mixed boundary conditions, we derive
analytic expressions for the eigenvalues of the block Jacobi iteration matrix based on a new
partitioning of the interior collocation matrix, and determine the optimal overrelaxation
factor for the block SDR iterative method. We present numerical results which support the
theoretical analysis of the block SOR method and compare its convergence behavior with
those of the block Jacobi, Gauss-Seidel and AOR used in [30). Furthermore, we compare the
time and memory complexity of the block SOR, LINPACK BAND GE, and GMRES mathematical
software for solving the Hermite collocation equations obtained from the discretization of
several PDE problems. The numerical results indicate that the block SOR method is the
most efficient method for solving these equations.

For the case of general domains, finding methods for the iterative solution of the cor-
responding discrete collocation equations is still an open problem. In a series of papers
{22, 20, 21], Houstis, Mitchell and Rice proposed three algorithms for the numerical so-
lution of the second-order linear elliptic PDEs on general two-dimensional domains using
the cubic Hermite collocation discretization method. Their software is available in the
collected algorithms of the ACM. The most general of these algorithms, called GENCOL,




implements the general exterior cubic Hermite collocation approach where the boundary
collocation equations are coupled with the interior ones. A simplified version of the GEN-
COL algorithm, called INTCOL, implements the interior cubic Hermite collocation method
when the boundary collocation equations are uncoupled {rom the interior collocation equa-
tions. The applicability of the INTCOL algorithm is limited to PDEs defined on rectangular
domains. In order to address the iterative solution of collocation equations we extend the
INTCOL algorithm for general rectilinear domains (by “rectilinear” we mean the boundaries
are parallel to one of the axes). Throughout, we refer to it by the acronym GINCOL. More-
over, haecause the ordering of the unknowns and equations in the collocation discretization
methods plays a vital role for the numerical solution of the linear system produced, we de-
velop two indexing modules for the GINCOL algorithm. One is based on the finite-element
ordering [43] and the other is based on the tensor-product ordering [30]. The collocation
coeflicient matrix based on a finite-element ordering for the GINCOL algorithm is in general
non-symmetric and is not diagonally dominant; many of its diagonal entries are zero. Using
the tensor-product ordering, the linear system derived by the GINCOL algorithm generates
the same block structure that is produced by INTCOL. We explore the applicability and
the convergence properties of the block iterative methods for GINCOL applied to model
problems defined on L-shaped domains as well as on 2 few more general rectilinear domains.
Furthermore, the tensor-product ordering was successfully applied to the discrete equations
produced by GENCOL together with the SOR and CG iterative solvers. A number of experi-
ments were carried out to study the computational behavior of these iterative schemes and
to estimate the various parameters involved.

Another objective of this thesis is to study the mathematical and computational behav-
ior of geometry splitting methods coupled with Hermite collocation discretization schemes.
A well known geometry splitting methodology is the Schwarz Alternating Method (SAM). It
was originally introduced in [35] over a hundred years ago to solve the Dirichlet problem for
Laplace’s equation on a plane domain by iterating over a sequence of Dirichlet subproblems
defined on two overlapping subregions of the original domain. The coupling of these sub-
problems is enforced through the so called inierface conditions defined on the subdomain
boundaries in the interior of the whole domain (interfaces). The original formulation of
SAM assumed Dirichlet interface conditions that depended on the solution of the neighbor
subproblem(s). Its convergence properties are studied in detail in [5] and [25]. One of the
early numerical formulations of SAM for elliptic boundary value problems canr be {ound in
[29]. The numerical SAM approach has recently become very popular in connection with
the parallel solution of elliptic PDEs. This is primarily due to its inherent coarse grain
parallel structure. In this thesis, we consider the SAM method with generalized interface
conditions which are the linear combination of the solution and its normal derivative on the
subdomain interfaces. FEach of these conditions depends on a parameter associated with
each overlapping region. This extension of SAM is called Generalized Schwarz Splitting




(GSS) [38]. The Schwarz Alternating Method has been coupled with either finite difference
or finite element discretization schemes to solve elliptic boundary value problems in complex
geometries by many researchers. In some special cases, the convergence properties of SAM
have been investigated at a functional level. Since its introduction, the convergence proper-
ties of the GSS with finite difference discretization have appeared in many studies including
[38] and [26]. To our knowledge, there are only a few researchers who have considered et-
ther SAM or GSS coupled with collocation discretization schemes. In 3] the authors apply
SAM based on Legendre collocation discretization and spectral methods to solve elliptic
problems and demonstrate its convergence for model problems. In [40] the formulation of
SAM was considered for the Poisson equations with Dirichlet boundary conditions on an
L-shaped region. Only experimental results are reported in [40]. The work in {3, 40] and
our recent work in [26] and [27] has motivated us to study the convergence properties of
GSS associated with the cubic Hermite collocation discretization technique [22]. The SAM
approach can be formulated either on the continuous geometric and functional components
of the PDE problem (referred to as the functional level formulation) or on the corresponding
discrete geometric and algebraic data structures associated with the numerical method se-
lected (referred to as the matrix equation level formulation). In this thesis, we consider the
matrix formulation of SAM and GSS§ for elliptic PDE problems hased on the Hermite col-
location discretization procedure. Specifically, we derive the associated enhanced Hermite
collocation matrix equation problem [38] for GSS and study its iterative solution.

This thesis consists of four chapters.

Chapter 1 presents an overview of the cubic Hermilte collocation method for the second-
order elliptic PDE problems. First, we brieflly describe the formulations of the GENCQL,
INTCOL and HERMCOL algorithms. Then we review the various proposed ordering
schemes for these algorithms and the structure of the resulting systems of algebraic equa-
tions.

Chapter 2 presents the analysis of block iterative methods for the INTCOL and HERM-
COL equations derived from the discretization of second-order elliptic PDEs defined on 2-D
rectangular domains. First, we define two partitionings for INTCOL equations. Then, we
carry out the spectral analysis of the Jacobi iteration matrix corresponding to the two parti-
tionings individually. These results are applicable for Dirichlet model problems on the unit
square. Using these results we analyze the convergence property of the block SOR method.
Finally, we study the numerical behavior of several block iteration methods including opti-
mal and adaptive SDR, Jacobi and Gauss-Seidel and verify some of the theoretical results.
In addition, we compare the block optimal SOR solution, three preconditioning conjugate
gradient methods based on GMRES software and the LINPACK BAND GE solver with respect
to their estimated time and memory complexity for some model PDE problems.

Chapter 8 presents the eztension of INTCOL method lo elliptic PDEs defined on rec-
tilinear domains. We formulate the GINCOL algorithm. Then we develop two different




indexing modules based on finite-element ordering and tensor-product ordering, respec-
tively. Finally, we apply the GINCOL algorithm fo discretize some PDEs and study the
computational behavior of some iterative linear solvers using tensor-product ordering.
Finally, Chapter { presents the formulalion and analysis of the Generalized Schwarz
Splitling method based on cubic Hermile collocation approach. We give a briel description
of the GSS on a rectangle at functional and matrix levels. Then, we derive the block
Jacobi iteration matrix corresponding to applying the GSS coupled with bicubic Hermite
collocation discretization for the solution of 1the Poisson equation with Dirichlet boundary
conditions on a rectangular domain split into overlapping stripes. We carry out a spectral
analysis of the enhanced block Jacobi iteration matrix for one- and two-dimensional model
problems. For one-dimensional problem, we determine the domain of convergence and find
a subinterval of it in which the optimal parameter for the one-parameter GSS case lies;
moreover, we obtain sets of optimal parameters for the multi-parameter GSS case. Finally,
we present a number of numerical examples in the one- and two-dimensional spaces that
verify the theoretical results. In addition, we compare the convergence rates of the SAM

and GSS methods with minimum and maximum overlap and draw several conclusions.




1. OVERVIEW OF THE CUBIC HERMITE COLLOCATION METHOD

In a series of papers Houstis et al [18, 17, 19, 23, 7] have studied the mathematical and
computational behavior of the collocation method based on C! piecewise polynomials for the
numerical solution of the general second-order linear elliptic PDEs. The results indicate that
these type of finite clement techniques are efficient nrumerical solvers for such mathematical
models. Moreover, in {22, 20, 21] Houstis, Mitchell, and Rice proposed three algorithms for
the numerical solution of the second-order linear elliptic PDEs on general two-dimensional
domains using the cubic Hermite collocation discretization method. Their software is avail-
able in the collected algorithms of the ACM. The most general of the algorithms above,
called GENCOL, implements the general exterior cubic Hermite collocation approach where
the boundary collocation equations are coupled with the interior ones. In the case of rectan-
gular domains, GENCOL can be considerably simplified. This implementation is referred to
throughout as HERMCOL which can be simplified further by eliminating a priori some of
the boundary degrees of freedom (dofs). This approach is called interior collocation and it
has been implemented by the INTCOL algorithm. The purpose of this chapter is to present
the general formulation of the cubic Hermite collocation discretization approach and a brief
description of the three algorithms based on the material in [22, 20, 21]. Moreover, because
the ordering of the unknowns and equations in the collocation discretization methods plays
a vital role for the numerical solution of the linear algebraic equations produced, we also
describe the various proposed indexing schemes for these systems and discuss the sparse
structure of them together with the various parameters involved. In this presentation we
introduce most of the notations that are used in the subsequent chapters.

This chapter is organized as follows. In Section 1.1 we describe the idea of the cubic
Iermite collocation discretization procedure. Section 1.2 presents the various formulations
of this collocation method for general and rectangular PDE domains and different type
boundary conditions. In Section 1.3 we review the various proposed ordering schemes of
the cubic Hermite collocation discretization equations and the structure of the resulting

systems of algebraic equations.

1.1 The Cubic Hermite Collocation Method Suppose we are given the second-
order linear elliptic PDE

Lu=auzs +cttyy +duz +euy, + fu=g in Q
Buzau+ﬁg—::=6 on g5




where §2 is a bounded region in the &-dimensional space and 9% is the boundary of Q. The
method of collocation consists of finding a function uy in a finite dimensional approximate
solution subspace of the space of square integrable functions or Q. The function u; is
chosen so that L(zz) = ¢ and B(up) = § are satisfied exactly at certain interior and
boundary points, respectively. These points are called collocation points. There are many
ways to select the approximate solution subspace and the collocation points. Throughout
this thesis we use the subspace of cubic Hermite piecewise polynomials which defines the
the cubic Hermite collocation method. This method has been shown to be highly accurate
for some second-order elliptic PDE problems (see [31] and [32]). For brevity in the sequel,
when we refer to the collocation method without any further explanation, we mean the
cubic Hermile collocation method.

The finite-element mesh §2; is a set of intervals, rectangles and rectangular paral-
lelepiped regions for 1-D, 2-D and 3-D problems, respectively. The exact definition of €2y,
is given in the next section. The approximate solution u is defined on each mesh element
in terms of one-dimensional local basis functions ¢,, 2, ¢s and ¢4 defined on the interval

(tg, 1) as follows:

di(t) == (1= 2= ) (1 +2728), 2() == (t —t0)(1 — £=2)°,

5—tp Y=t
falt) = (14 20021 - 205, (1) o= (1— 1)1 + A0 )
The corresponding expressions for u;, are
un(z) = T, pidi(z), for 1-D elements,
wn(2,9) = Th i piii(2)85(2), for 2D elements,

un(2,9,2) = LF; 1 pijedi(2)b;(y)de(2), for 3-D elements.

Irom the definition of the basis functions it is clear that there are 2, 4 and 8 unknowns
associated with each node for the 1-D, 2-D and 3-D cases, respectively. Furthermore,
one can easily show that the values of the unknown p’s coincide with the values of the
approximate solution and its derivatives at the nodes. I'or example, let (p1, pz, p3, p4) be
the four unknowns associated with a node ¢ on a 2-D domain, then

p1 = up(q), p2 = %i;@), p3 = (Q), a —=(g).

From the definition of the basis functions, we can easily see that the second derivative
of up is not continuous at the element boundaries. On the other hand, using Gaussian
quadrature theory [31], higher accuracy is obtained if the interior collocation points are
located at the Gaussian points of the mesh element rather than at the grid nodes. As for
the placement of the boundary collocation points, we follow the scheme suggested in [22].
One of the restrictions is that the number of these points must be equal to the difference of
the dimension of the approximate solution subspace and the number of interior collocation

points.

1.2 Formulation of Hermite Collocation Methods




1.2.1 GENCOL: Collocation Method for General 2-D Domains The proce-
dure of solving a PDE problem by the general collocation method can be roughly broken
into the five steps indicated below (see [22]):

(1) define the PDE problem,

(2) place a rectangular grid over the domain of definition,
(3) generate the finite-element mesh,

(4) locate the collocation points and form the linear system,

(5) solve the linear system.

Steps (3) and (4) are the ones that constitute the core of the general collocation method.
A detailed description of these two steps follows.

First we overlay the domain & by a rectangular grid G and identify the rectangular
elements of G that are interior or exterior to dQ or that intersect 8Q2. The latter ones
are called boundary elements. It might happen that the intersection of certain boundary
elements with £ is very small. Their inclusion as element of the finite-element mesh £ will
not only enlarge the linear system to be solved but may, in some extreme cases, also cause
numerical instability in its solution. It is thus natural to discard those boundary elements
which may cause trouble. We define the finite-clement mesh 2, as the union of the interior
elements and those boundary elements e for which the ratio of the area of e, N { over the
area ol ep is greater thar a certain amount called DSCARE. The portions of 82 in the
discarded elements are either allocated to neighboring elements or ignored. This is controlled
by a logical variable called GIVOPT (GIVOPT = .TRUE. means allocate to neighboring
elements). Note that by using this "discarding” procedure some elements may change {from
boundary to exterior or from interior to boundary. To assure the implementation of this

procedure, some assumptions must be satisfied (see [22]):

¢ The boundary 92 of €, consisting of at least two pleces, is given in a parameterized

form in a clockwise manner.

¢ A boundary element does not contain a whole boundary piece of £, and there are at

most two boundary pieces in it.

¢ The sides of a2 boundary element which are treated as pieces of the boundary of Q

must be adjacent and the number of them is at most three.

¢ If a boundary element is discarded, then no more than two of its neighboring elements

can be interior elements.

¢ The boundary does not enter an element more than once, except when it leaves the
element and reenters it along the same element edge. Further the neighboring element

to this edge is discarded.




The above assumptions are usually satisfied for a reasonably fine mesh. Below we present a
code outline for the above procedure ([22]). For this a rectangular element of G is identified
by the indices (I X, JY') of its lower left corner grid point, where 1 < IX < number of z-
grid lines and 1 < JY < number of y-grid lines.

LOOP: FOR EACH BOUNDARY POINT 5, DO :
IF THE BOUNDARY LEAVES AN ELEMENT AND ENTERS
A NEW ELEMENT (IX,JY) AT THIS POINT
THEN SAVE THE BOUNDARY POINT INDICES FOR
THE NEW ELEMENT AS
ELTYPE(JX,JY)=IENTER+ 1000 x IEXIT
WHERE IENTER AND ITEXIT ARE THE INDICES OF
THE BOUNDARY POINTS WHERE THE BOUNDARY
ENTERS AND EXITS THE ELEMENT (IX,JY)
ENDIF
ENDLQOOP ;

LOOP: FOR EACH ELEMENT (IX,JY)OF G DO :

CASE TYPE OF ELEMENT (IX,JY)
EXTERIOR: ELTYPE(IX,JY) := —1 /* do not use element %/
INTERIOR: ELTYPE(IX, JY) := 0 /# use element #/

BOUNDARY:

AREA OF ELEMENT INTERSECTION
IF A nFa oF BLEMENT  —— < DSCARE

THEN ELTYPE(IX,JY) := —ELTYPE(I X, JY)
/#* do not use element */
ELSE ELTYPE(IX,JY):= (JENTER+ 1000+« IEXIT)
/* the element is used with ELTY PE unchanged */
ENDIF
ENDCASE;
ENDLQOP;

LOOP: FOR EACH BOUNDARY SEGMENT DO :
/#* if segment is in element (IX,JY) and ELTYPE(IX,Y) < ~-1

then the boundary segment in the discarded element is assigned to

a neighboring element */

IF ANY NEIGHBORING ELEMENTS HAVE NO
ASSOCIATED BOUNDARY SEGMENT
THEN THE BOUNDARY SEGMENT IS SPLIT AMONG
THEM UP TO TWO PIECLES

ELSEIF GIVOPT = .TRUE.
THEN THE BOUNDARY SEGMENT IS SPLIT BETWEEN
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THE TWO ELEMENTS WHOSE ASSOCIATED
BOUNDARY SEGMENTS ARE CONNECTED TO IT
ENDIF
ENDLOOP
/* note : if GIVOPT = .FALSE. then the piece of the boundary in the
discarded element is not used +/

Now, we can determine the interior collocation points on Q; N . We split the points
into two groups. One group consists of all the sets of the four Gaussian points on the
corresponding interior mesh elements. Since the four Gaussian points in a boundary mesh
element e, might nol be in {1, a mapping from e, onto e, N Q is necessary. Thus, the other
group of elements is composed of the images of the four Gaussian points of each boundary
element under this mapping. The map depends on several aspects of the geometry and is
too complicated Lo give a detailed description here (see [22]). However, the main idea is the
following: First, the boundary d(e; N ) is partitioned into four parts and each side of e; is
mapped by a one-to-one mapping onto one of those parts. Then, the map from e, to e, N §2
is determined by linearly blending those four maps of the boundary.

To locate the boundary collocation points, one has to compute the number of boundary
points such that the total number of collocation points is equal to the number of the
unknowns. Let /¥, and N, be the numbers of nodes and mesh elements, respectively, on the
finite-element mesh . Since there are [our unknowns associated with each node and we set
four interior collocation points on each mesh element, it follows that there are 4N, — 4N,
boundary collocation points that need to be determined. On the other hand, it can be
shown using the Euler-Poincaré characteristic of the regular region of a surface ([4]) that
Ne— N+ N, = 1-N;, where N, is the number of element sides of 03, and Ny, is the number
of holes of ;. Furthermore, it is easy to find that ¥; = B, + I, and 4N, = B, + 2I,, where
B; and [; are the numbers of element sides on JF and in the interior of §,, respectively.

A little manipulation using these relations shows that
4N, — 4N, =28, +4(1 — Np).

The procedure of determining the boundary collocation points consists of two passes.
The first pass is to place the collocation points on the boundary of 2. The second pass
is to map the boundary sides of a boundary element of §2; onto the boundary segment of
2 associated with this element. Then the images of the collocation points placed by the
first pass are the boundary collocation points sought to generate the boundary collocation
equations. A more detailed description of these two passes in code form is presented below
(see [22]).

PASS 1: /# associate boundary collocation points (BCPS) with boundary of
finite element mesh /




PLACE TWO BCPS ON EACH BOUNDARY SIDE OF £} IN
THE SAME CONFIGURATION AS PARAMETERS BCP1 AND
BCP2 ARE PLACED IN THE INTERVAL (0,1)

PLACE ONE BCP AT EACH CORNER OF 6N E

IF THE END OF THE LAST BOUNDARY SIDE IS A CONCAVE
CORNER OF THE FINITE ELEMENT MESH
THEN REPLACE THE TWO BCPS OF THE LAST
BOUNDARY SIDE WITH ONE BCP AT THE MIDPOINT OT
THE SIDE

ENDII®

IFF THE BEGINNING OF THE FIRST BOUNDARY SIDE
IS A CONCAVE CORNER OF THE FINITE ELEMENT MESH
THEN MOVE THE TWO BCPS OF THE FIRST SIDE SO
THAT THE FIRST BCP IS AT THE BEGINNING OF THE
FIRST SIDE AND THE SECOND BCP IS AT THE MIDPOINT
Or THE FIRST SIDE

ENDIF

/* this placement is represented by values in (0,1) with 1/2 corresponding to

the corner if there are two boundary sides and 1/3 and 2/3 corresponding to the
corners if there are three boundary sides */

PASS 2 : /+ mapping the BCPS from 9Q; to 9Q # /
/% this is a mapping from (0,1) to the segment of JQ associated with an element
of .Qh * /
IF THE SEGMENT OF 9Q IS CONTAINED IN ONL PIECE OF
THE BOUNDARY
THEN LINEARLY MAP (0,1) TO (PENTER, PEXIT)
DETERMINE THE BCPS FROM THE PASS 1
VALUES AND THE DEFINITION OF 912
ELSEIF THE SEGMENT OF 8 IS CONTAINED IN TWO
PIECES OF THE BOUNDARY
TIIEN LINEARLY MAP (0,1/2) TO (PENTER, By ;) AND

(1/2,1) TO (By,141, PEXIT), WHERE I IS THE NUMBER
OF THE FIRST PIECE AND By, Bi 141 ARE FROM

THE PARAMETRIZED FORM OF BOUNDARY PIECE.
DETERMINE THE BCPS FROM THE PASS 1 VALUES AND
THE DEFINITION OF 992

ELSE ERROR /* allow no more than two boundary pieces

in a element */

ENDIF

11
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It is easy to see that the procedure above does give 28,+4(1— ¥, ) boundary collocation
points. The user is allowed to adjust the placement of the boundary collocation points in
a boundary edge by changing the two parameters BCP1 and BCP2. The default case
(BCP1 = BCP2 = 0) selects two Gaussian points in a boundary edge.

Once the collocation points are determined, to generate the collocation equations is a

simple task. The collocation equations are represented by the following arrays :

COEF(n,l) = lth coeflicient value of equation n
IDCO(n,l) = index of the unknown associated with COEF(n,!)
BBBB(n) = right hand side value of equation n

1.2.2 HERMCOL and INTCOL: Collocation Methods for Rectangular Do-
mains Throughtout this subsection, the domain {2 is assumed to be rectangular and is
denoted by K. In this case, the domain discretization process can be simply defined by the
vectors GRIDX and GRIDY which contain values of z-grid and y-grid lines, respectively.
Thus, the finite-element mesh generator process is not needed. Then, the steps of generating
the collocation equations are considerably simplified. It is developed as another algorithm
in [22] and is called Hermite Collocation (HERMCOL) in {33]. A code skeleton is :

LOOP OVER ELEMENTS E OF R DO:
LOOP OVER INTERIOR COLLOCATION POINTS DO:
FOR N = NROW + 1, NROW + 4 DO:
GENERATE COEF(N,+), IDCO(N, ) and BBBB(N)
ENDLOOP
NROW = NROW + 4
IF ELEMENT IS A BOUNDARY ELEMENT
THEN LOOP OVER K BOUNDARY COLLOCATION POINTS DO:
FOR N = NROW + 1, NROW + K DO :
GENERATE COEF(N,+), IDCO(N,+) and BBBB(N)
ENDLOOP
NROW = NROW + K
ENDIF
ENDLOOP

If the problem has uncoupled boundary conditions, that is, at no point are the boundary

conditions mixed, i.e,

=8 on ORy C IR,
%556 on 3Ry, =0R - OR, C OR,

then the boundary collocation equations can be solved explicitly during the discretizalion of
the boundary conditions. Thus, the HERMCOL can be simplified and the simplified version
is called Interior Collocation (INTCOL) [33]. It consists of two consecutive steps. The first
step is implemented by two parallel asynchronous processes based on the assumption that
the boundary conditions only change type on the boundary nodes. A code skeleton for these

two processes is:
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/* OPERATOR DISCRETIZATION =/

LOOP OVER ALL ELEMENTS OF R DO:
LOOP OVER INTERIOR COLLOCATION POINTS DO:
FOR N = NROW + 1, NROW 4 4 DO:

GENERATE COEF(N,+), IDCO(N, +) and BBBB(N)

ENDLOOP
ENDLOGP

/#+ BOUNDARY DISCRETIZATION «/
LOQP OVER EACH BOUNDARY PIECE:

LOOP1 OVER EACH NODE 7; OF THE BOUNDARY PIECE:
DETERMINE THE LEFT OR RIGHT HALF-INTERVAL
([Ti1/2.T%) OR [T3, Tiy1/5)) WHERE THE BOUNDARY
CONDITION IS OI' THE SAME TYPE AS AT T;.

/* denote the interval by A and its two Gauss points by 7,12 % /
S ={71,m2 AND END POINTS of A};
CASE BOUNDARY CONDITION TYPE IS:
DIRICHLET (U = §): DETERMINE U, (OR U,) AT T;
BY INTERPOLATING é BY A CUBIC POLYNOMIAL AT
THE POINTS S; IDENTIFY THE ACTIVE UNKNOWNS;
NEUMANN (8U/8N = 6): DETERMINE U,, (= U,z) AT T
BY INTERPOLATING é BY A CUBIC POLYNOMIAL AT
THE POINTS S; IDENTIFY THE ACTIVE UNKNQOWNS;
ENDCASE;
ENDLOOPI;
ENDLOOP;

Finally, the nonactive unknowns predetermined in the boundary discretization process are
eliminated from equations generated in the operator discretization process, i.e., JDCO and
BBBB are modified at this stage.

1.3 Ordering and Solution of Collocation Equations The properties of the
coefficient matrix of the linear system arising from the discretization of a PDI problem by
the collocation method strongly depends on the ordering of the unknowns and equations.
A specific ordering may produce a linear system suitable for an iterative solver while the
same iterative solver might not be applicable to the linear system obtained by another
ordering. Conclusively, there are three basic approaches to the ordering of the unknowns
and the equations for the collocation method. Before giving a detailed description of these
three orderings, we depict the numbering of the unknowns and equations on an L-shaped
domain and a rectangular domain with Dirichlet boundary conditions in Figures 1.1, 1.2
and 1.3. Collocation points are shown in Times-Bold font and their numbering indicates the

ordering of the equations. The unknowns are associated with nodal points and are numbered
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in Times-Roman font. Those unknowns eliminated symbolically during the discretization
of bbunda.ry conditions are denoted by x.

The first ordering is obtained by a natural extension of the finite-element ordering in [43]
lo the general domains. We call it the finite-element ordering. It is available for GENCOL,
INTCOL and HERMCOL. More specifically, once the finite-element mesh is defined, the
mesh nodes and the mesh elements are numbered in a natural way from south to north, west
to east. Note that there are four unknowns associated with a mesh node in the algorithms
GENCOL and HERMCOL. Thus, the unknowns are numbered in groups of four (or fewer
than four for INTCOL because some unknowns are eliminated during the discretization of
the boundary equations) in the order of the corresponding mesh node. The four unknowns
associated wilh a mesh node are locally ordered so they respectively represent the values of
U, Uy, Uy ans ug, at the mesh node. In this ordering the collocation points are numbered
element by element following the element numbering in the mesh. In the case of boundary
elements, for GENCOL the interior collocation points are numbered counter-clockwise first
{ollowed Ly the colckwise numbering of boundary collocation points, for HERMCOQL the
boundary collocation points are numbered first followed by the counter-clockwise numbering
of the interior collocation points. Figure 1.1 display this ordering for a finite element mesh
of an L-shaped region for GENCOL and rectangular regions {or INTCOL and HERMCOL.

The second ordering is called the iensor-produci ordering. This scheme was originally
defined in (30) for INTCOL and is extended to be used for HERMCOL in [27]. First,
the - HERMCOL unknowns are split into two sets {u,u,} and {ug,uzy}. Then, on each
x-grid line we number the unknowns {,z,} node by node (south to north) followed by the
numbering of {uz, #-,} unknowns corresponding to the nodal points of the same grid line.
The HERMCOL collocation points are ordered [rom south to north along left edge of B,
z-Gauss grid lines and right edge of R {rom west to east. In the case of INTCOL, we have
only interior collocation points, thus they are ordered from south to north along z-Gauss
grid hnes corresponding to z-coordinadtes of the Gauss points. Then the numbering of the
active unknowns is determined by the indices of the interior collocation points as follows. At
cach nodal point, the active unknowns use the same index as the nearest interior collocation
points. Figure 1.2 illustrates this ordering scheme for a rectangular region.

The third one is called the collorder ordering, which is defined for INTCOL and HERM-
COL in [8]. The idea is that the unknowns are numerbered in the same way as the finite-
element ordering; for the numbering of collocation points, the collocation points are associ-
ated with the nearest grid point and are numbered in groups of four {(or two for INTCOL
collocation points on the edges of R) in the order of their corresponding grid point. The
collocation points may be locally ordered in any way and some collocation points are re-
ordered depending on the boundary conditions (the detailed description in [8]). Figure 1.3

illustrates this ordering of collocation points in a rectangular region.
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The finite-element ordering of the unknowns and equations of the collocation equations
usually gives a banded linear system with a large number of zero diagonal elements (see
Figure 1.4(a)). If the domain 2 is rectangular, then the bandwidth is 4 x NGRIDY + 7
for HERMCOL and 2 x NGRIDY + 3 for INTCOL, respectively, where NGRIDY is the
number of y-grid lines. As for the general domain, the linear system becomes less regular
in pattern and very little can be said about its bandwidth because it depends on both
NGRIDY and the shape of Q. Sometimes, the linear system can be made with efficiency
of bandedness by a widely used frontal method [43]. On the other hand, the presence of
many zero diagonal elements prevents most iterative method from being applied. Thus, the
most reliable and preferable way to solve the linear system corresponding to the collocation
equation using finite-element ordering is Gauss elimination with scaling and partial pivoting
(9]

The tensor-product ordering yields the coefficient matrix of the INTCOL or HERMCOL
equations with bandwidth 4 Xx NGRIDY — 2 or 4 x NGRIDY 4 2 individually and with a
nice block structure shown in Figure 1.5. Furthermore, the coeflicient matrix has non-zero
diagonal elements for INTCOL (see Figure 1.4 (b)) and might have some zero-diagonal
elements corresponding to uncoupled boundary conditions for HERMCQOL. Thus, both di-
rect solvers and iterative solvers can be applied for the solutions of INTCOL equations or
HERMCOL equations with mixed boundary conditions using this ordering. However, direct
solvers tend to require much more memory as well as time and their parallelization is dif-
ficult. It is very desirable to have a suitable iterative solvers for INTCOL and HERMCOL
equations. A detailed description of the application of iterative solvers for the INTCOL and
HERMCOL equations using the tensor-product ordering and a study of their convergence
belavior is presented in the next chapter.

The collorder ordering produces a coefficient matrix of INTCOL (HERMCOL) equa-
tions with bandwidth 4 X NGRIDY (4 x NGRIDY 4+ 7). However, the matrix still has some
zero diagonal elements corresponding to boundary conditions for the HERMCOL equations.
They can be removed from the diagonal easily by a mild reordering of the unknowns as-
sociated with that boundary grid point. Thus, the usual iterative method is applicable
using this ordering. Unfortunately, it diverges rapidly when directly applied. Experiments
indicate that Gauss elimiration without pivoting is safe for the solution of INTCOL or
HERMCOL equations using this ordering.
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18 20 38 40 53 60

56515
17119 37|39 57|59
2] 524 4348 3
223 4647
14]16 J4]36 53|58
13]15 33135 53(55
21 1918 443 45
1617 4142

10]12 30]32 50|52 70 72 82 84

13 1312 4039 6463 7978 H3

14 1011 3738 61 62 T6T7T ®
26]28 46|48 66|68 78|40

43 433 58 57 7069 71
§ 12 3132 5556 5768 12

24 22124 42144 62)64 4|76
5 I35 G559 7574 3
13 2123 4] 43 61 63 73 75
{o) GENCOL
x 6 17 18 2930 x 36 1416 3032 46 48 62 64
B—19—26 35—36 59
Xi{x x|x x|z x|x 13lis 2901 A5H7 G1p3
12 1 24 13 I 35 17 24 23 40 39 64 63
9 10 21 22 3 M 14 21 22 7 38 61 62 6
x|5 14016 2608 x|35 gfiz 2628 42j4 58
x4 1315 5e7 x|34 911 25p7 4113 5769
E 7 20 19 2 u 11 15 14 H B 55 M 1
5 1] I7 148 22 30 1 12 13 k) .4
x|3 1oj12 22p4 x|33 6|8 209 38
x(2 g 21p3 x|32 517 2123 37
4 3 16 15 8 27 85 9 8 3 29
1 2 13 1 25 26 4 6 7 27 28
190 1 214 1820 34
x|I 7|8 90 x|3 LI 3 25
X% xx XX XK 113 17 19 3335 49 51
(b} INTCOL () HERMCOL

FiGg. 1.1. Finile-clemeni orderings of the collocation points and unknowns associated with GENCOL,
INTCOL and HERMCOL.

x 6 i2 18 24 30 x 36 8 16 24 32 40 48 56 64
f—16—2A——32—40— 7 48— 56— §

x |x x| = x| x x| x 7[15 23(31 39|47 55(63
6 12 18 24 30 36 7 15 23 31 39 47 55 3
5 1 17 23 29 35 5 14 22 30 38 46 54 2

x |5 11|17 23|29 x |35 614 22(30 38/46 5462

x 4 1of16 22|28 x [34 5|13 2129 37(45 536
4 10 16 22 2% M 5 13 21 29 37 45 53 61
3 9 15 21 27 3 4 12 20 28 36 4 52 Jn

x|3 9|Is 21|27 x |33 4(12 20(28 36[44 52(60

|2 8|14 20(26 x 32 3l 19[27 35(43 51(59
2 8 14 20 26 32 11 19 27 35 43 51 =
17 1319 25 31 2 10 18 26 34 4 50 38

x|l 7[13 19]25 x |31 2|10 18[26 34|42 50/ 58
t—9—17 25—33 4—d49——37

X X X x X ox x x 19 17 25 33 41 49 57

FiG. 1.2. Tensor-product ordering of the collocation points and unknowns associated with INTCOL and
HERMCOL.
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I2—46 G2 —G4

6 17 15 29 30 36 3 15 2% 31 45 47 61 {3
5 14 16 26 28 35 0 12 26 28 42 44 58 60
4 13 15 25 27 34 b 11 25 27 4 43 57 9
3 10 2 22 24 33 6 8 22 24 38 40 54 56
2 9 11 21 23 32 5 7 21 23 37 3 53 55
1 7 38 19 20 3 z 4 I8 20 34 36 50 32
T—3—17 19—33 I5—4%—351

Fig. 1.3. Collorder ordering of the collocalion peints associated with INTCOL and IERMCOL, respec-
tively

dIx. . XEEEEE . .. v u i mm e, dEX . . EEE . EET ... oo
XdX...XXXXXX. . xdx .. _EXE. . _XEX._... .
xxd, .. AxXXXX._ .. LEdIX. ,XXXX. . XXXX
xxxU. _xxxxxxy._ .. JEXDX . EKXKX. XXX

EXE. . dXX. . XXX, i
XXX, .. xXdX. . XXX L.

Ixx... - -XKK...XXX .
...... xxx, .. .xdx,  .xex... XXX, ..

....... Xxxx. xdxx. . xxXxx..XXxx.......
....... XXXX, . XXAX . .XXEX, . AXKK . vuvs s
......... xxx, .. xdx...xxx.. . xxx

......... xxx...xxd...XXX...XXX
ee-.-IXX...EXIX...dXE...XXX.,.
. -XXIX...EXK,...xXdx...xXxx...
.. xxxx. .x¥yx._ _xdrx. . XX Y.

L XXXR . XdXX. EEYY.
Loaxxxe. xrdry. xxIN.
L. XXX, .xdE. . . IXX
XXX, ..xxd,..xxx
L EXX. . LdXXL L.
..xxx...xdr. ..
................... XXXX . .IXXX. . Xdxx.
................... XXEX, . xxxX,..xxdx.
..................... XXX, ..XXX. .. xXdx
..................... EXK...XXX,..xxd

Fic. 1.4. {a) and (b) display the struclure of the coefficient mairiz of the INTCOL linear system for
the 3 x 3 mesh using finite-clement ordering and tensor-product ordering, respectively, where d denoles a

nonzero diagonal element,
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v x i
A X X " XX XX
XXX XX XX
XXX X XXX X
XX X X XX X X
X XXX X XXX
X XXX X XXX
XXX XXX X
L X X X XXX X
B X XJ
(a) INTCOL (b) HERMCOL

1. 1.5. The structure of INTCOL and HERMCOL equations agsuming tensor-product ordering.
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2. BLOCK ITERATIVE METHODS FOR CUBIC HERMITE
COLLOCATION EQUATIONS

Collocation methods based on bicubic Hermite piecewise polynomials have been proven
effective techniques for solving general second order linear elliptic PDEs with mixed bound-
ary conditions [22]. From Chapter 1, we know that using finite-element ordering the cor-
responding system of discrete collocation equations is in general non-symmetric and non-
diagonally dominant. Their iterative solution is not known and they are currently solved
using Gauss elimination with scaling and partial pivoting. Using collorder ordering the
Point iterative methods like those in ITPACK [36] do not converge even for the collocation
equations obtained from the discretization of model PDE problems. In this chapter we
develop and analyze block iterative methods for the INTCOL and HERMCOL equations
using tensor-product ordering. Papatheodorou was first to determine the exact parameters
of AOR type iterative methods for the case of INTCOL equations associated with a model
problem in [30]. We generalize the results of Papatheodorou for the INTCOL equations and
extend them for a specific class of HERMCOL equations. A number of numerical results
are presented to verily the theoretical ones.

The organization of this chapter is as follows. In Section 2.1, we define two partitionings
for INTCOL equations and introduce a notalion for defining the various block partitionings
of collocation coefficient matrices used in the spectral analysis of the Jacobi iteration matrix.
In Sections 2.2 and 2.3, we carry out the spectral analysis of the Jacobi iteration matrix
corresponding to the partitionings Pr and Py respectively. These results are applicable
for Dirichlet model problems on the unit square. In Section 2.4, we use the results in
Sections 2.2 and 2.3 to study the convergence analysis of the block SOR method.Moreover,
we make some comparisons concerning the two block Jacobl iteration matrices and develop
the corresponding optimal block SOR iterative method. Finally, in Section 2.5 we study
the numerical behavior of block iterative methods including optimal and adaptive SOR,
Jacobi and Gauss-Seidel and verify some of the theoretical results obtained in this chapter.
In addition, we compare the block optimal SOR solution, three preconditicning conjugate
gradient methods based on GMRES software and the LINPACK BAND GE solver with respect
to their estimated time and memory complexity for two model PDE problems with several
types of boundary conditions and a general PDE problem. The numerical results indicate
that the block SOR method developed is an efficient alternative for solving the Hermite
collocation equations obtained from the dicretization of general elliptic PDEs defined on

rectangularregions and subject to uncoupled mixed boundary conditions.
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2.1 Preliminaries Throughout this chapter, the domain R is a rectangle and dis-
cretized by n + 1 z-grid lines and m + 1 y-grid lines. We will focus on iterative methods for
the INTCOL and HERMCOL equations using tensor-product ordering. Under the assump-
tions above, the x in Figure 1.5(2) denotes a 2m x 2m matrix while the coefficient matrix of
the INTCOL equations is a 4mn X 4mn matrix. For this matrix, we consider two different

partitionings for it

[x x| % X|x x
X x| x X[x x
x[x x| x X X |[x x
x| x x|x X X |X x|
PI= '.' ,PII:
X [x x|x |ixxx
x[x x|x X X|x x
x [x x X Xx|x
R X |[x x| . x x[x ]

There is no surprise that we consider the partitioning Prr here, since applying Pr to the
coefficient matrix of HERMCOL equations and using the fact that the INTCOL coefficient
matrix is a principle submatrix of the HERMCOL coefficient matrix we end up with the
partitioning Pry for the INTCOL coefficient matrix. Apparently, both partitionings make
the coefficient matrix be a block 2-cyclic consistently ordered matrix [39]. This property
motivates us to explore the use of block SOR iterative methods to solve the corresponding
linear system.

Before we proceed, some notations for partitioning matrices are introduced. First, we
introduce the block form

521 b22

[A|B] = [011 212
@21 422

bll b12 ]

which we subsequently use to construct the following (2n) X (2r) matrix

o B -
ADB
] a=[012], b= 512]_

[AlBlg(za) = Qa3 b2z

A B
Ab

Note that if all ¢;; and b;; are 2m X 2m matrices, then A and B are matrices of 2 x 2 block
form and of order 4m. So the matrix [A|B]g(zy,) is of order 4mn.

2.2 Spectral Analysis of the Jacobi Matrix Corresponding to Py We consider
the INTCOL coefficient matrix for the case of a Poisson equation on a rectangle with
Dirichlet boundary conditions and a uniform grid. In this case the collocation coefficient

matrix is of the form

As —A4]
5.1
A1 —Aa ] g (2.1)

_[A1 Az
A= [Aa Ay
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with each A; being of order 2m. Note that the partitioning Pr allows us to write A as

D, -0
-, Dy -0,
A=| - (2
-y Dy -0,
-L, D
where
_A2A3 —_Az—Aq _0A1 _—A40
Dl_ |:Al‘l AI:I, Dl_ [A-'l _A2]1 _Ll_ [0 Aa]'.l _Ul_ [_A2 0] (23)

In the subsequent analysis we assume that Dy, Dy are nonsingular. Furthermore, we intro-

duce the matrices

Ry R12] [Az As]_1 [—A4 A1]
= = 2.4
R [Rzl Lo Ay Ay —Az Az’ (2.4)
Rul_[A: —Ad] ' [4
[Raz]_[-‘h —Az] [43]’ (2:5)
and note that
A4 Ay _l0 -I Ag Az I o (2 6)
—Ay A3 " |-T O Ay A 0 -r|" o

From the relations {2.4) and (2.6) we obtain

R Ay As17V [0 —I] [A2 As] [I 0O
T A A 1 0] [A; 4] [o~1

and 70 I 0
-1 _
R ‘[0—1] K [o_;]-

Consequently, we have

-1 _ [ Ry —IRy2
= B ). (27)

As we have obscrved in some applications Ry is invertible. Then it follows from (2.7) that
Ry (= Rngng_l]) is similar to K23 and we prove the following lemma.
LEMMA 2.1. If Ry is nonsingular, then Ra; = —R7;'.
Proof. First we observe that equation (2.4) implies
Az Aa] 1y Rlz] _ [—Aq Al]
Ag A1 | | R By —Az Aa ]’
From equation (2.5) we have that AsRay — AyRas = A; and AyRa; — AzRap = Aa. If we
use the expressions for A; and Aa in the equation above, we obtain

[:‘12 —Aq] I _Raz] [Rn Rl‘z] _ Ay —Aq] [0 Ral]
Aq —As 0 —Rx Ry Ly Ag —Ap I Ry )’




22

Since D is invertible, the equation above can be simplified as follows
I —R3s
0 -z

Comparing both sides, we readily obtain that — Rz; Ry = I. So, our assertion is established.

0

R R12] — [U R:n] .

R!Zl R22 I R32

The block partitioning of A in (2.2) corresponds to the splitting A = D — L - U,

where D = diag(D1, ..., D1, D1) and where L and U are strictly lower and upper triangular
matrices, respectively. Let J = D™1(L +U) be the block Jacobi iteration matrix associated

with this partitioning. An easy calculation using equations (2.3), (2.4) and (2.5) shows that

0 0 |Ryy O 1
0 0 |Ry O
0 Ri2| 0 0(Ryy O
0 Roa| 0 0 [Rnn O

0 Riyz2|/0 O [B11 0

0 Ryp|0 0 [H2 O

0 Ry 0 O

i 0 Ra| 0 0]

Due to the presence of the zeros in the first and last block columns of J and Lemma 2.1, it
is easy to show that the spectrum o(J) of J satisfies o(J) = o(J1) U {0}, where J; is given

by
[ 0 Ry O 1
Ria 0 0 Ry
Rgg 0 0 Rgl 0
0 R12 0 0 R11
Ji= Ce . ] (2.9)
0 Rlz 0 0 Rll
Ry O 0 Ra
! 0 -Ry 0 |
Note that J; has only (n — 1) diagonal blocks. Using (2.7) we obtain that
[ 0 —Ra BHp 1
Ry} 0 0 0
0 0 0 -—‘Rzl Rzg
Iy —-R 0 0 0
I = 11 . 21 . (2.10)

Bin —Hy O 0

0

0 g
R —Rn

0

—Ray

0
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Then, from (2.9) and (2.10), we have that

[ 0 0 Hoa
R 0 0 Rn
Ry 0 0 0 Ry

Ry 0 0 0 R
Juo+Irt = R (2.11)

R]] 0 0 0 R11
Hop O 0 0
By -RB* 0

where " = Ry + Rz_ll. From the directed graph {in Figure 2.1) associated with J, 4 Jfl,

(2n-5) {(2n-4) (2n-3) (2n-2)

M,M

Fi1G. 2.1. The directed graph corresponds to the matriz Jy + J;!

it is readily seen that through a similarity permutation transformation that Jy 4 J;! is

transformed to

[ 0 Ry
Ry 0 Ry 0
Ry 0 Ry
T Hay 0
J=|—= T (2.12)
0 Ry 0 Rn
| — KB Ry 0]
Let ) )
01
10 1
K= et
1 01
- 1 0—

be a square matrix of order (n — 1). Note that from (2.7) Ry is similar to Rj;. So we
have that ¢(J) = o(G) where G = K ® Ry;. The symbol ® denotes Kronecker product
(cf. [16]) and also [28] where tensor products were used for the first time in connection with

discretized PDE problems). Some of its properties used here are

(A® BYC ® D)= (AC)® (BD) and (A® B)™! = A1 @ B!,
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(For the first property to hold it is assumed that the matrix produets AC and BD are
well defined while for the second one that A and B are square nonsingular matrices.) We
know that there always exist nonsingular matrices X and Y such that KX = X Dg and
R3yY =Y Jg, respectively, where Dx = diag(2cos T, --,2cos (%]1) and Jg is the Jordan
canonical form of Ray. It then follows that G(X @ Y) = (X ®Y) (D ® Jr). We see that
Di ® Jgr is an upper triangular matrix and the nonsingularity of X and ¥ implies that
X @Y is nonsingular. So we conclude that

kx
o(G) = Uiz} {2 cos | € o(R2a)).

QOur discussion is summarized in the following theorem.
THEOREM 2.1. Let J be the block Jacobi ileration matriz corresponding to (2.1) based
on the partilioning Pr and assume the relations (2.3}, (2.4) and (2.5) hold. Then the

spectrum of J is given by the following relation
n— 1 kw
o(J) = {0} UiT3 {ulu+ - = 2pcos ==, p € o(Ran)}- (2.13)

As a direct consequence of this theorem we can make the following observations:
Remark 1: Zero is an eigenvalue of J of multiplicity 4m.
Remark 2: The corresponding result in [30] can be obtained as a special case of the theorem
above.

For the justification of Remark 2 we denote by R the corresponding matrix R in [30] and
assume that 2 is the order of J. Then the corresponding result in [30] can be stated as follows
: For every pp € o(J), if u # 0 then p + ﬁ = %cosﬂ, where p € o(R;;) and 8 = (21211)3,
m=12,...,25 k=1,2,...,I. Hweset n = 2! in Theorem 2.1 then we can easily show that
Rulay = =1 and {2}k = 1,2,...,(n - 1)} = {€2210%)m = 1,2,...,2% &k = 1,2,...,1}.
This implies that the corresponding result in [30] is a special case of the theorem above.

2.3 Spectral Analysis of the Jacobi Matrix Corresponding to £;; First,
we apply the block partitioning Pyr to the interior collocation matrix (2.1) and consider
the corresponding splitting A = D — L — U. H we assume that A; and A2 of (2.1) are
nonsingular then D) is invertible and the Jacobi matrix associated with the above splitting
is J = D7I(L 4 U). TFurther, we consider the matrix J' = (L 4 U)D~L. It is clear that the
spectra of J and J' are the same, that is ¢(J) = o(J’). Since J' is much easier to study,
we turn our attention to ¢(J’). The block partitioning and the definition of J' imply that

i 0 Pl ;
P-Q 0|0
0ojo P[Q
QP 0|0
J' = (2.14)
oo PlQ
Q|P 0|0
ofo P-¢Q
Qlp o
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where P = ~3(A3A7" + A4A37Y), @ = —3(A3AT! — AqaA7"). Since P and Q are 2m X 2m
matrices, it is not an easy task to find o(J') directly. Instead, we determine o(J’) when P
and ¢} are real scalars and use this result to find o(J') in the general case.

LeMMma 2.2. If P and Q are real scalars, then the eigenvalues p of J' in (2.14) are
either p = (P — Q) or they satisfy the equation p® — 2Qucos8 + Q% — P? = 0, where
=42 k=12, (a—-1).

Proof. This proof is based on the analysis in [10, pp. 218-230] which has been suc-
cessfully used in [37] and [26]. For this reason we keep the notation established in [10].
For the sake of convenience, we assume that P@Q(P £ Q) # 0. However, our analysis does
essentially carry over to the more general case. The problem of determining the cigenvalues
and eigenvectors of J' is equivalent to solving the boundary value problem of the matrix
difference equation

{Bgzk_1+(31—pf)zk+Bng+1=0, k=1,2,...,n
Z20 = —21,1;  Zinbl = —Zam (2_]_5)

00 o0 P 0 :
BD:[OQ 1-B]=[P 0:|’B2=|:630]’ZL=|:z:‘i-:|,

where u is an eigenvalue of J'. This can be solved by the nonmonic matrix polynomial

theory. The nonmonic matrix polynomial which corresponds to (2.15) is given by

A% pl PA
L(X) := ByA? + (B1 — pI)A + By = [?’A s Q“#/\]' (2.16)
From Theorem 8.3 in [10] we know that the general solution of (2.15) is given by
Zy=Xpdkg, k=0,1,2,.. (2.17)

where (XF, Jr) (cf. [10, Chs 1, 7]} is 2 Jordan pair of the matrix polynomial L{}), g € C",
and » is the degree of det(L(A)). From (2.18) it is readily obtained that

det(L(A)) = ~M(QuA? = (42 + Q* —~ PP)A + Qp). (218)

We distinguish two cases according to whether u is zero or not.

Case 1: g = 0. Then 0 is a double eigenvalue of L(}) and =z = [1,0)7 is the corresponding
eigenvector of L(0). It follows that the Jordan chain associated with the 0 cigenvalue is of
length 2 . For the other vector z» in the Jordan chain we have L'(0)z; + L(0)z2 = 0, where
L'(0) is the matrix of the derivatives of entries of L at A = 0. Consequently, we have

e A I P

Applying the boundary conditions, it follows that g; = 0. S0 Z, =0,k =1,2,...,m, which
implies that 0 & o(J').
Case 2 : u # 0. The eigenvalues of L{)) are given by the expressions

_ _#2+Q2—P2+\/(P’2+Q2_P2)2_4Q2P2

/\0 = 0, Al - 2QP5 1

_ B+ Q- P -+ QP - PTY - 4Q%°
2Qp

Ag
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It is clear {from (2.18) that Ay A; = 1 and (Ay + A2)Qu = p2 + Q2 — P2.
Ir A; # Ag, the eigenvectors of L()) associated with A; ,i=0,1,2, are

e8] e [3] e 2

where
Yl kS i k)
1 Py 2 P,

Since all the eigenvalues of L(A) have only one eigenvector each, the finite Jordan pair is
given by

000 g0

1
Xp= [0 ‘Hi1 uf], Jrp = [0 A1 0 ], g= [51] .

00 /\2 g2
It is easy to check that the vectors Zy defined by (2.17) satisly the matrix difference equation
(2.15).

Now, we determine the vector g to satisfy the boundary conditions in (2.15). The first
condition implies
(14 wid)g + (1 + weha)gz = 0,

and the second one implies
(AT + wi AT ) + (A5 + w23t )ga = 0.

Combining them, we have the following 2 x 2 homogeneous linear system to solve

14w 14 wala o] _[0

X+ w0 g 4 mxs“] ] = Lo (2.19)

If [g1,92) = [0,0), then Z; = 0, for every & = 0,1,2.... So there must exist a nonzero

solution to (2.19), hence the determinant of the matrix coefficient of (2.19) must equal zero.
From this we obtain

(I 4 wid (1 + waAo}(AF — A7) = 0. (2.20)

H we assume 1+ w;A; = 0 then we get A; = %. Moreover, solving QuA? — (p2 + Q% — P?%)
Ai+@Qp = 0 with respect to p, we obtain g = £(Q— P) for P # 0. This implies A} = A; = £1
which contradicts the assumption A; # Ag. Hence from (2.20) we conclude A7 — A} =0
and determine that A, = €%, Ay = ¢, 8 = ’%’, E=1,2,...,n -1 since ,jA; = 1.
It is worth noticing that for each pair of A’s there are two u’s obtained from equation
u? —2Qucosf+ Q% — P2 =0.

For the case Ay = A, following the same analysis as above, we end up with the following
solutions

11 0 000 g0

p=Q+ P Xp:[g 1 ﬂ], Je=|011],g=1]20

A A 1 3 001 0
p:Q—P,Xp—[ :_Q_],Jp— 011},g=¢}1

0-1% 001 0
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1 10 0 0 0 go
ﬂ.-——Q—P,sz[O IQ_:I,Jpz 0 -1 1 g = 0
I 0 0-1 0
A1=/\2_—1 - - ' -
j.1=P‘—‘Q, XF= e JF= 0-1 1 y §= 1
01
P 0 0 —1] 0

By considering the associated g's, we find that p = £(Q — P) € o(J’) which concludes the
proof of this lemma. 0O

It is difficult to determine det(L(A)) explicitly when P and @ are real matrices. This
is due to the fact that (2.16) is not 2 2 x 2 matrix. Thus, applying the analysis above Lo
obtain o(J') is not an easy task. Instead, we determine y# from each known A from the

scalar case. Specifically, we can show that for A = e%‘-, the equation det{L(A)) = 0 can be

det (lqek_ﬁ et F D =0 (2.21)
P

simplified into

Qe n' —ul
which is equivalent to determining the eigenvalues of the matrix

To eliminate the complex numbers involved, we perform the similarity transformation
RkSkR;_], where

Then the problem at hand is transformed into the problem of determining the spectrum
o(Ty) of

(@ — P)cos kf, (Q — P)sin &z

—(Q + P)sin 2, (Q + P)cos —‘E:: '

Lemma 2.2 gives the basic idea as to how to tackle the matrix problem case. The

|

following lemma is the corresponding result. _
LemMMma 2.3. Let J' be the matriz in (2.14) with P and Q being real mairices. Then ils

spectrum is given by
o(J) = UiZle(Th)uo(P - Q)Uo(Q — P)

To prove it, first we state and prove another lemma.
LEMMA 2.4. Define

- : oz N o (a-l)z T
cos = smZ ... cos I“—nk sin I“—nk 1 -1
- - o ~1)0r . (n—-1)07
—cos% 5111‘]“—'r oo —cosi® ]’rsm(“n}'r -1 -1
: . g —1)2r . (n-1)2:
cos 2{ sin 27* .- cos(® n? T gin & n} T 1 1
_ _ T inE ... — (n-Dr o {p-l)7
Y = cos 2 sin % €os *— sin 1 1 , (2,22)
0 . 7 —1)na ' —1)nx
cos IE sin 22 cos 2 n} sin n)“ 1 (-1)"
{n-1)r . (n—-1)7 (n-1)2x _._ (n—-1)%=« n
— cos 5 sin A —cos === sin—— -1 (—1)" |
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then the matriz Y is invertible.
Proof. An obvious permutation of rows and columns transforms the matrix ¥ to the

matrix ¥’
i bt n—1)= P . {n=1)% E
cos = e oS 1 simZ .- smi—n)— -1
—1}n; - . . —=1)ns
Y" _ COS':‘_T P cosin_nm 1 s]n% P s[n!ﬂ_n)ﬁ (_l)n
= = —1)0=x . ; : —1)0s
mcos% —COSIn—n)—r -1 SID.DTT SmI“_n)_'r -1
—1)% 12 . -1)= . o )
| _cos (B21)% . _mslﬂ_n)_ -1 smf“—nl)— Smiﬂ_:}_ (-1)" ]

T

Apply then a sequence of elementary row and column operations on Y’ as lollows. Iirst,
add the ith row to the (i + = 4 1)st one, for every 1+ =1,2,...,(n — 1), next, divide the th
row by 2, for every i = (n+1),...,2n, and then subtract the (z + n + 1)st row from the ith
one, for every ¢ = 1,2,...,(n — 1). After this series of operations takes place we permute
some of the rows and columns of the resulting matrix and finally we end up with a matrix
C = diag(A, B), where A is an (n + 1) X (n + 1) matrix with entries a;; = cos {ﬂ)-glt-l—h

and B is an (= — 1) X (= — 1) malrix with entries b;; = sin ”nl Now let

0
101 101
K= L=
1 1 01
i d (n-1)x(n-1) S 20 (rt1)x{n+1)
It is readily checked that

LA = A diag(2,2cos %, ..y 2cos @, -2),

27 (n— D=

).

From the equations above we see that each column of A is an eigenvector of L and all

KB=2D diag(2cos%,2cos;,...,2cos

the eigenvalues of L are distinct, therefore A is invertible. So is B. It follows then that C
is invertible too. On the other hand, we know that applying any nonsingular elementary
operations on a matrix results in a nonsingular matrix if and only il the original one is
nonsingular. This observation implies the invertibility of Y, and therefore that of Y, from
the fact that ¢ = diag(A,B). D

Proof of Lemma 2.3: Let us fix k. Then [rom T} [;] = A [; ] , we have
kw . kw
COS -—;(Q — P)z + sin ?(Q —Pyy=2Az, (2.23)

— sin %T(Q + P)z + cos %(Q + Py =)y. (2.24)
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Combining appropriate multiples of equations (2.23)-(2.24) and simplifying them by using
trigonometric identities, we get

@ (cos L""—llﬁ:c + sin {ﬂ'—l)ﬁy) + P (—cos L'—J—~z + sin L’——l}i’—ry)

2.25
= X (cos -’k—'rz + sin 274), (2.25)
@ (—cos LL)—-:a: + sin L’—ly‘iy) + P (cos Gk o 4 sin L’—-—)—--y) (2.26)
= A (—cos:’—z-{-smLy) )
Let z be the following vector
k ks 2k 2k kn k
z = |cos %:c + sin —TyT, T, cos TTSCT + sin Tﬂ-yT —Cos %zT + sin —IyT, .

ke k — 1)kn — Dkr 17
cos En—r:cT + sin nnr yL, — cos uxT +sin uyT]

Then applying (2.23), (2.24), (2.25) and (2.26), it is easy to check that the vector z satisfies

J'z = Az. Similarly, if we consider T}, [:cg] = [:c1] + A [$2] and construct the vectors z;
2 ) Y2

and z; as above, corresponding to 1, y; and z3, y2, respectively, then J'z3 = z; + Azp. On
the other hand we know that if (P —Q)zs = 214 Az and let v; = [z7, -2, 2T, -2, .., ]F
and 7; = [h.?: ,m:'T, s':?,s:‘ ye-ey)y i =1,2, then J'wp = —v; — Aup and J'9y = 7y + Adg.
The analysis so far can be summarized as follows. For each T} we know that there
exists a nonsingular matrix X such that T X = XpJi, £ =1,2,...,2—1, where J} is the
Jordan canonical form of T;. Similarly we have (P — @)X, = X, J,. Note that each X is

a 2m x 2m malrix, except for k& = n where X, is of order m. Let
= (Y ® Im)dia'g(xlaxm AR Xn—l-:XnaXn)s

where Y is defined and proved to be invertible in Lemma 2.4. It is clear that V is also

nonsigular. Consequently the analysis above shows that
J'V = Vdiag(J1, J2, - -y Fne1, —=Iny JIn)s

and the assertion of the lemma follows. D
Noting that (2.14) gives @ — P = A4A;! and Q + P = —A3A7", we conclude this
section with the principal result about the etgenvalues of the Jacobi iteration matrix for the

HERMCOL equations.
THEOREM 2.2. Lei J be the block Jacobi iteration matriz corresponding to (2.1) with
the paeriition Pry. Then ils spectrum is given by

o(J)=UZa(T) U a(AgAT U a{—A4A7Y)

where
AqA7 cos B2 A AT sm L—’
Az A sin kT —A3A CoS ’(—"

Remark: Note that the coefficient matrix in (2.1) was obtained from a particular class of

Ty =

HERMCOQL equations by eliminating some unknowns symbolically.
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2.4 Iterative Methods for the Solution of a Model Problem In this section
we consider the collocation equations obtained by the discretization of the model PDE prob-
lem with Dirichlet or Neumann boundary conditions defined on the unit square. Using the
analysis of the previous sections; we derive the eigenvalue spectra of the block Jacobi iter-
ation matrices J1 and J2 corresponding to the block partitionings Py and Pjy, respectively.
Then the analysis of the optimal SOR method for the Dirichlet problem is made and optimal
results are obtained for the method based on partitionaing Pry. For the block SOR method
based on partitioning Pr, optimal results are already known [14]. We conclude the present
section with the analysis of the optimal SDR method for Neumann boundary conditions.

2.4.1 The Dirichlet Case We consider the ilerative solution of the interior collo-

cation equations associated with the following Dirichlet boundary value problem

Uzz +uyy = f in B=(0,1)x(0,1),

% =g on §R. (2.27)

and a uniform mesh (h; = 1/n = 1/m = h,). After applying Papatheodorou’s tensor-
product ordering scheme shown in Section 1.3 (see Figure 1.2 ) and factoring out (1/942),
the collocation matrix is the same as the matrix 4 in (2.1). For this particular problem,
the entries of A; for ¢ = 1,2, 3,4 are independent of h and have the same structure as A.

More specifically, we have
3 —~y

ay —ag ] ®(2n) ' (2.28)

As = [ﬂl Iy

23 4

The values of a; for j=1,2,3,4 corresponding to the A;’s are listed below (see [30]).

a1 a2 a3 —iy
Ay —24 —18v/3 —12 - 8/3 24 —3-V3
Ay —12-8/3 ~3-2/3 3-3 0
As 24 3—-vV3 —24+418V3 12-8v3
Ay 3343 0 —124+8v/3 3-23

In this case we have the INTCOL coefficient matrix whose entries are explicitly expressed.
This motivates us to try and to find analytic expressions for the elements of ¢(J). For this,
some preliminary analysis is needed.

LEMMA 2.5. Lel the matrices A and B be defined as follows

ay a
A= 1 @2
a3 a4

b b
by by

bs —b.q]
by —bs ®(2n)

a3 —Gq]
a1 —as Q(2n)

L B=|

and suppose that B is nonsingular and axb; # aqba. Then the generalized eigenproblem
ATz = ABTz has eigenvalues A given by the expressions

(i) A= %ﬁ_’%“- associated with the eigenvector z = [1,1,—-1,—1,.. ]7.

(it) A= B4t associated with the cigenveclor z = 1,-1,1,-1,.. 7.
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. N YN TN AT A _ kT p
(iii) A satisfies the equation fi(n\}a{:(%)—j:;(i)f;(l\} = cosd, 8§ = ‘l‘f, E=12,...,(rn-1)
with associated eigenvector T = [py + pag, unp) +Wapag, . . ., Pr+ p3g, w1pT + weplglT,

where fi(A)=a;— Ab;, 1 =1,2,3,4, ;1 = e? po=e " w = %%%, Wy = “1_1

— S20M )+ 14 (2
Proof. To solve the generalized eigenproblem (cf. [11, pp. 251-266]) ATz = ABTz is
equivalent to solving the matrix difference equation

BoZiy+ B1Zy + BoZpy1 =0, k=12,...,n,

where

Bo= [ I O] - [ED D] B = [ty o)

subject to the boundary conditions

0 0 ]Z _ [ 0 0 ] 7

HR) BN T LR - fH0) A - R

For simplicity in the following discussion we assume that there is no A such that ( fi(A) £
F3(A))? + (f2(A) £ fs(A))? = 0. Following the same analysis as in the proof of Lemma 2.2
with p playing the role of A, we get

Lip) = [ 2N = 5N Ja(¥)p~ Jo(2) ]
)= R+ A(Np F(A)e+ LA

Bozo=o,[

Thus, we have

det(L(p)) = —pl(fr(X) fa(A) = fo(X) fa(A))p? = 201( M) f2(A) = f3(A) fa(N))p
+ (H(A (X)) = f2(A) fa(A))]-

We distinguish two cases.
Case 1: fi(A)fa(X) = fo{A)fa(A) = 0. In this case 0 is a double eigenvalue of L{p) and there
is only one eigenvector associated with it. So, we have
A) —fq(A 01

o= [0, 480 (23] o< [3)
Applying the boundary conditions, it follows that g1 = 0 if fo(A) £ f4{A) # 0. On the other
hand, if fo(A) = £fi(A) (# 0) then fi(A) = £f3(A), which contradicts the assumption
we made on the f;’s for this case. So we obtain g3 = 0, which implies that Z; = 0, for
k= 1,2,...,n. Hence there does not exist a nonzero solution to the matrix difference

equation.

Case 2 : fi(A)fa(A) = f2(X) f5(A) # 0. In this case there are three eigenvalues of L(p). Let

. N)=fa (M) fs(A
them be pg = 0, p1 and pq. It is clear that pyp2 =1l and py + 3 =2 }:Ei;ﬁ{}_}_ﬁm‘{;& I

.01?5!?2:"-11911
000D go
xr= [ 20wl J‘”lopl 0]’ g=[m],
1 1 %2 00 p2 g2
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where w; = %{L?X()%}%((%!i = 1,2. Applying the boundary conditions, we arrive at the

following linear system

wy fo(A) + fa(A) wa fa(A) + fa(A) ] [91] _ [U]

(w1f2(A) + fa(A))pT (w2fa(A) + fu(A))r3 '
In order to have a nonzero solution for [gy, g2]7 the determinant of the matrix coefficient of
the linear system must be zero. But w; f2(A) 4+ f1(A) = 0 implies p; = 0 which contradicts
the fact that pyp2 = 1. It follows then that pT = p}. Combining this with p1p2 = 1 and
~%  where #=%% % =12,...,(n —1). Note that
there are infinitely many solutions to the linear system above If we plf.‘.k [g1,92)7 = [1,9]7,

w fa (A)Sa
where g = —m—hfﬂ;ﬁx}, assertion (#47) of the lemma follows.
If we consider now p; = p» then we follow a similar analysis for each particular case.

p1 # pa, it follows that p; = e, pp = e

The corresponding results are summarized below.

pr=pa=1,
' EA 10 0007 0]
fo(A) - fa(A) =0, Xp = ChO) -1 —AQ=n [, JF= 011 g= 1
) 1 TNTFA ) 001, | 0 |
() 10 0007 [ 0]
fl(’\)+ f3(}‘) = 0! Xp = l 2} ()A) 1 So (NS4 (A !] H JF =(011 » 0= 0
\ 1 (0= (3) (001] [ 0
P1 = p2=-1,
' AN 1 0 [0 0 07 o]
J2(A)+ f1(A) =0, Xp = “fa(A) 1 —Ladkks0) Jr=|0-111],9g=|1
! 4 IAEYEIASY 0 0 -1] | 0 |
L) - F0) =0, Xp= | PN 1 ] se=lo-1 1] g%
1 — I3 =U, AR = J2(A)-1u F= - » 5=
| —fa(A) -1 j-z(:\=+f4(,\} ¢ 0 —1] [ 0 |

Assertions (Z) and (7} of the lemma follow from the solutions of fo(A) £ fa(A) = 0 and
considering the corresponding Zp, k=1,2,...,n. O

LEMMA 2.6. Let A;, i = 1,2,3,4, be the matrices in (2.28). Then there ezists a
nonsingular matriz X such that ATX = ATXD and ATX = ATX D, where

: - (3-2/3 3-2V3 _ _
D = diag(Ay, Ay, ..., A2n) = diag (3+2\/§, Errw of o, .. et o0 1],
(2.29)
S o < . {9-7V/3 15-9V3 .
D= ﬂ'!ﬂg()\],)tg,. "!'\2“) = dmg (9 + 7\/— _15 9\/—1 ;61 !161 - !ﬁ:»—-lvﬂn-—-l) !
(2.30)
and
+ _ 3\/5:I:\/ 43440 cos #), — 2 cos? 0y,
Ak = T(C28-16v3)1(V3+1)cosdy
ﬁi _ [37+8cosﬂk}:k3xf3_\/43+40c058k-2c052 0y
kT (—64—36+/3)+(19+9v/3) cos 6, '

8, = &=,

n
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Proof. First, note that the matrices of A; and A, are nonsingular by applying Theorem
2.1 in [30]. Then by setting A = Ay and B = As in the preceding lemma, a lengthy
computation shows that all the eigenvalues of the pencil (A, AT) (cf. (11]) lie on the curves
A_ and Ay of Figure 2.2 and have the values of the entries of the matrix given in (2.29).

9.2

-0 24

-0.44

-0, 64

-0.84

FiG. 2.2. Curves contain the eigenvalues of the matriz pencils (AT, AZ) and (A7, AT). The

four curves ordered from top left represent A_, X_, Ay and X4 @8 functions of 8, where Ay =
3(3]”’3‘43-]-40 coaf—2caa? T T 3748 cos FEI(3)1/I(43440 cos H—2cos? 6)”2
{—28—-16(3)1/ 1) 4+{31/T {1} coen ' - (—64—38(2)1/2)4(404+9(3)1/ 7 ) con 0

fined for every 8 in [cos“l(%{ﬁ),cos"l(lu - 6(3)1/)).

. The rectangle in the figure is de-

From the sign of the derivatives of the functions of the curves A_ and A, on the interval
(0,7), it is concluded that A_ is decreasing, while A is increasing. Moreover, they do not
have any intersection point since A_(7) > Ay(w). It follows then that all the eigenvalues

A1 =1,2,...,(2n), are distinct. By rearranging the corresponding eigenvectors it follows
that there does cxist a nonsingular matrix X such that AT X = ATX D, where D is defined
as in (2.29).

To complete the proof, it suffices to show that if A'f:,- = A,-A%E:,—, then Ag:; = X;A?z,-,
with z; being the ¢th column of X. It is clear that the claim holds for : = 1,2. So we
consider 7 = 3,4,...,{2r) and fix ¢ = %;, A = A;. By virtue of Lemma 2.5, there exist ¢
and g such that = = [p1 + pag, wip1 + wapag, ..., pT + p5g, wip} + wapig]T, where py, pa,
wy, wq are as defined there. Let 8, z and A be fixed. Set then A = A3, B = A4; in the
previous lemma, and use the same symbols with a bar (to distinguish them from the ones
in the previous case) to denote the corresponding quantities in the present case. For g=20
there are two solutions for A from

fjl(-;)f:z(é) - f}(é).ﬁi(é) — cosf — fi(A) fa(A) - fS(A)fd('\)- (2.31)
HA) fa(A) = f2(A) fa(X) Ft(A) fa(A) = f2(A) f3(A)
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Since f-} = % implies ‘;_I_;g = %, (2.31) implies

(BO) + BOYEM) = () _ (A BONEN) = ) (g
(EA = OGO F LX)~ (A= EORM) + ()

Recall that we are in the situation where ) is given, and we want to solve for A from equation
(2.31). On the other hand, it is easy to verify that for this case the following statement
holds. If

sz(f:\) - )?(/f\) _ fa(A) = fa(A)
Fa(A) + f4(A) L2(A)+ f5(A)

(2.33)

then - - -
A+ ) AA)+ f2(A)
QY- (2 h(A) = f(0)
It follows then that one of the solutions of (2.31) is the solution of (2.33). We take it as
being the A we have been seeking. For this A, we obtain the corresponding @, W2, §. Since

(2.34)

A satisfies (2.33), we also get that #; = w;, § = g. So we obtain the equality Aga: = XAfa:.
Note that we have not shown that the elements of D have the order that corresponds to
the one in (2.30). For this we go back to equation {2.31), and see that for a given 8,
we get two solutions for A and A. Let us call them Ay and Ay, respectively. Since both
sides of equation (2.32) are decreasing with respect to either A, or A individually, A;(A_)
corresponds to A;(A-). Hence D, is determined by D as in (2.29). This completes the
proof. O

2.4.1.1 Spectra of the Block Jacobi Iteration Matrix Let J; and J; be the
block Jacobi iteration matrices associated with the partitionings Pr and Py of the INTCOL
coefficient matrix, respectively. We now derive analytic expressions for ¢(J1) and a(Jz).

Since it can be shown that the matrices A; and Ag are nonsingular by Theorem 2.1 in
[30], then from Lemma 2.6 we have that the matrix A4A; A3A7? is invertible. Therefore
the blocks of R in (2.4) can be found explicitly. More specifically

Rao = (A1 — AqAz 1 As) (41451 A, + 43).
Using the fact that for any two matrices A and B, ¢(AB) = o(BA), we get that

O'(Rgg) = (T((—A‘iA;lAl + Ag)(/ll - A4A2_1A3)_1)
= o((—AaA7T + Az AT — AgA7 P AsATH) ).

Applying Lemma 2.6 we have that

o(Be2) = {ll\'__j\/\,\l’ i=1,2,.. -:2'-"1} '

since A;7 AT and ATT AT commute. From Lemma 2.6, we have that X7 A,4;1(XT)~! =
D and XTA3ATY(XTY™! = D. By a similarity transformation with the transformation
matrix diag(X7T, XT) and an obvious permutation of rows and columns, it is seen that T}
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A cos & , Aqsin 5E k"

X;sin ££ L" —X; cos &%

of Theorem 2.2 is similar to diag(Dq, Ds, ..., Dy,), where D; = l " l . So,

we have L
o(Ti) = {plu® — (A = Mi)pcos f - XX =0,i=1,2,...,2n}.

Combining the above results with those of Theorems 2.1 and 2.2, we conclude that

e 1 :\ — A kxn .
G(Jl) = {0} U {UL={{#|P’+ ; = X A co 5?3 t= 11 2:' ..,271}} L] (235)

O’(Jz) = {:l:)\l, :I:}\zn}

U {UI‘}{.&LI# — (A= A)pcosEE - XN =0, z’:l,z,...,zﬂ}}, (2.36)

where A;, A; are the ones of Lemma 2.6. Note also that zero is an eigenvalue of J; with
multiplicity 4n.

Recall now thal equations (2.29) and (2.30) imply that the A;, A; lie on the curves
in Figure 2.2. This implies that A;, A; are real numbers with magnitudes less than 1. It
follows then that u + 1; is real and has absolute value less than 2 which implies thal all
the eigenvalues of Jy, except 0, are complex and lie on the circumference of the unit circle.
Therefore, the spectral radius p(J1) of J1 1s equal to 1. On the other hand, in view of
Figure 2.2 and solving the equation in (2.36), we have that the spectral radius p(J2) of Jq
is equal to

p(J2)=a= % ((As — As) cos— \/(Aa — A3)? cos? ( ) + 4)\3)\3) (2.37)

where A3, Az are those of Lemma 2.6. By inspecting the expression above, we also find
that it is bounded above by |Aa|. Thus we conclude that for any discretization grid size n,
p(J2) < |A3| < p(J1) = 1. Consequently for the model problem in Section 2.4.1, the Jacobi
iterative method associated with the partitioning Pj; converges, but the same method
associated with the partitioning Pr does not converge {because there does exist at least one

complex u € ¢(Jy) with modulus 1).

2.4.1.2 Optimal SOR The optimal SOR method for the case where J; is the Jacobi
matrix has been already obtained in [14], so we consider only the case where the Jacobi
matrix is Jo. Recall that J> is consistently ordered weakly cyclic of index 2. Therefore the
Young-Eidson’s algorithm [42] (see also [41, pp. 194-200]) can be applied to determine the
optimal SOR method. To apply the algorithm, the hull (smallest convex polygon) of (J2)

is required. For this we solve the equation for 4 in (2.36) to obtain

(A;—A;)coskz & (/\ — ;) cos 2} 1 4As;
r= \/ 5 ) . (2.38)

For real z we have already found that max |¢| = @ in (2.37). However, p is a complex number
when A; and A; lie inside the rectangle illustrated and defined in Figure 2.2 . Furthermore,
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for a given pair A;, A; satisfying A;A; < 0, all the complex eigenvalues of J; associated with
them must lie on the circumference of the circle centered at (0,0) and with radius {/—A;};.

Let b be the maximum value of {/—A;A; among those 7 such that —X;A; > 0, i.e.,

b= max J—A_(k%))_ku(%), % S (cos"l(m_s—gs%/g) , cosT1(10 — 6v/3)).  (2.39)

Then, it follows that all the complex eigenvalues of J; lie inside or on the circumference
of the circle with center at (0,0) and radius 4. On the other hand, from (2.37), we have
a = p(J2) € a(J3). Il n is even, we may put k£ = % in (2.38) which implies that bi € a(J2),

where { is the imaginary unit. Thus the ellipse with semiaxes ¢ and 4 is the optimal enclosing

ellipse of o{J2). Therefore in this case we get

2 a+b 2
pr[ - 1+ (l+ b2 _ {{_2)1)‘!2, p(ﬁwopl.‘) - (1 + (1 +b'2 _ ﬂ2)1f2) (2'40)

where £, is the associated block SOR iteration matrix with overrelaxation parameter w.
In case n is odd, b € o{Jy). However, the value of w given in (2.40) is still a very good
approximation to w,p; in the present case, because that & is only slightly greater than the
imaginary semiaxis of the corresponding optimum capturing ellipse and tends to the optimal
one (b = 0.0237973) when » — 0. Two examples of o(J;) for each of the two cases of n

even and n odd are illustrated in Figure 2.3.

0.1 T ——r .
n=5
4] - - — e -
-0.1 . .
-0.7% -0.5 -0.25 0 0.25 0.5 0.75 1
0.1 T T
n=6
or S e T e s
_0-1 " A 'l
-0.75% -0.5 -0.2%5 0 0.25 0.5 0.75 1
0.1 T T
n=7
ot RN - SN
-0.1 . . .
-0.7% -0.5 -0.25 c 0.25 0.5 Q.75 1
0.1 . v
n=8
ot - - s -
-0.1 .

-0.75 -0.5 -0.25 0 0.25 0.5 0.75 1
Fi1G. 2.3. The spectrum o(Jz) of the Jacobi malriz Ja associsted with the partitioning Py of the ilerior

collocalion matriz.

2.4.2 The Neumann Case Here we consider the iterative solution of the interior
collocation equations associated with the following Neumann boundary value problem

Urz + ty, = f in B=(0,1)x(0,1),

dufdn =g on OR . (2.41)
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and a uniform mesh, For the analysis below we introduce a similar notation to that in
preliminary section of this chapter consisting of the matrix
[« B
A B ;
a
A|lB| iy = " ,a:[ll],b=[11].
[ | ]@(2,1_) A B a2, b21
Ab

which differs only in the definition of the vectors a and b.
Using Papatheodorou’s tensor-product ordering of Section 1.3 and factoring out (1/942%),
the INT'COL coeflicienl matrix has the form

A= Ay Az[Ax —Ay
T | Az A4|A; —As

:I@(Z-n) -

For this particular problem, the entries of 4;, z = 1,2, 3,4, are independent of & and have

the same structure as before, namely

aq &
A,—=[ 1 a2
a3 a4

I3 '—‘0.4:|
a; —aa @(2-:1.)

The values of a; corresponding to A; are the ones given in Seclion 2.4.1. Following the
analysis developed in Section 2.3, we obtain that the corresponding block Jacobi iteration
matrix J’ is given by

0
P+ @Q

oo D
o My
I=EW

O ooy

Jl’

O o
o

Q
0
0
P

O o|lory

P+Q
0

where P and Q are defined in the same way as in (2.14). Through the similarity transfor-
mation §J’S~!, where S=diag(1,1,-1,-1,1,1,...), J' is transformed to the matrix J*

- OP-'Q -
Pi+@Q 010
0|0 P-Q
-Q| P 0!0
J”:
0 (0 P ([-Q
—Q|P 010
00 P+Q
i Q| F 0 |
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Note that J” is of exactly the same structure as J' in (2.14) with the only dilference being
that —¢) is replaced by . Applying Lemma 2.3, we then have that, in this case

o(J") = o(J") = (Uj=io(TL)) Uo(P + Q) U o(~Q - P)

where
T (—Q — P)cos iz - (—Q — P)sin &z
k= —(- Q+P)51n , (— Q+P)cosr—

Note that ¢ — P = Aqu_l, @+ P =—-A3A7 1 Hence, we have
o(J') = Uizl o(Tk) U a(AzAT ) U a(~A3ATY) (2.42)

where
T = AaAT" cosEZ, A3 AT sin A2
k= AgqAqsin LT —- A.;A2 cos LT

Let P, = diag(J,—1,I,—1I,...), where I is the 2 X 2 identity matrix,

and Py = diag{l, I, I3, — I3, I,...,(—1)*), where I, = [2 é] . Then we have
P [al asz|as —ad] Py = [ag ay |aq —33]
1 3 4 |Q; —az @(?.*n) 24 dz|da —d1 ®(2n) )

We can apply Lemmas 2.5 and 2.6 to this case by interchanging the roles of 24 and ag with
those of a3 and a,, respectively. It follows then that there exists a nonsingular matrix X
such that ATX = AT XD and ATX = ATX D, where

15-7v3 9-9v3 . _ N _)

o . 1

7 1ala Prrr —]11
—15—-7v3 9493 101 ol

_ o —18/3 183
D=4di A, Az, A n d 3 3 SRR -n— 1Fn—1 |
iag(Ag, Ag 2n) = lag( ®_ 1873 _18V3 8,87 155 )

D = diag(M, Az, . . ., Azn) = diag (

oF = 3v/3t+/43+40 cos 85, —2 cos? §j,

kT (~28~16v3)+(v3+1) cos 8y

+ {37+8cos Bk):I:S\/i\/43+‘lCI cos 8y, —2 cos? #;

ﬁk = —Rd— 1
\ (—64—36+/3)4+({194+%/3) cos 9,

& = =L

T

Combining the above results with (2.42) and following the analysis of Section 2.4.2, we

conclude that :

a(J) = {&£A,..., 1A

(79 =1 She o} (2.43) !

U{U,L Hulp? = (A= Apcos 2 — Xxi =0, i = 1,2,. 2n}}.

It is clear from the analytic expression for ¢(J') that all the eigenvalues of J except &1, which

are simple ones, have magnitudes less than 1. Therefore p(J) = 1 and index(7 — J) =1

(i.e., rank(I — J)? = rank(l — J*)). This, together with the block 2-cyclic nature of J',

implies that we can apply the analysis in [13] and of Section 2.4.1.2 to obtain the optimal

S0R method for n even and a very nearly optimal one for # odd by means of the formulas
(2.40). Note that b is exactly the same as in the Dirichlet case while ¢ = Aa.
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2.5 Numerical Results In this section we present some numerical results to confirm
some of the formulas and the convergence behavior of various iterative methods considered
in this chapter. We also compare the time and space performance of optimal SOR, LINPACK
BAND GE, and GMRES software for solving the INTCOL and HERMCOL equations. All
numerical computations were carried out on a Sun 4/470 with 32Mbytes of main memory
in double precision. The execution times measured are given in seconds and the space is
measured in words.

First, we attempt to confirm numerically the formulas (2.36) and (2.43). For this we
choose » = m = 3 and find the eigenvalues of the block Jacobi iteration matrices J3 and J’
by using the subroutine EVLRG from IMSL/MATH library. The eigenvalues are presented
in Tables 2.1 and 2.2, respectively. They agree with the ones obtained from the formulas
(2.36) and (2.43) at least up to the the number of the decimal digits displayed in these
tables.

TABLE 2.1
The 36 eigenvalues of the Jacobi malriz J; forn =m =3.

+0.5726 +0.3272 +0.3169 +0.2411 +0.2136 £0.1741
+0.1238 40,0858 +0.0718 +0.0718 +0.0526 +0.049%
+0.0374 :0.0263 +0.0260 £0.0123 £0.0079 +0.0014

TaBLE 2.2
The 36 eigenvalues of the Jacohi matriz J' forn = m = 3.

+1.000 +0.753 +0.732 £0.573 +0.401 +0.366
+0.327 £0.317 £0.214 0.212 $0.179 L£0.126
+0.058 £0.037 +0.026 +0.012 £0.001 £0.001

Second, we verify some of the convergence results obtained in this paper. For this
we apply the INTCOL and HERMCOL algorithms from the ELLPACK system [33] to
discretize several PDE problems on the unit square. For the solution of these equa.tious
we have developed three new solution modules in ELLPACK based on block ADR, SOR and
adaptive SOR methods (cf. [15] ) and new indexing modules based on the tensor-product
ordering. Depending on the initial value of wg selected for the adaptive SOR, we introduce
the following notation: SOR; if wp = 1, SOR; if wy is equal to the optimal w for a model
problem, and SORz if wp is the final adaptive w found by solving the same problem on a
coarser mesh unless » = m = 2 in which case we take wp = 1.0. Throughout, we dencte
the semi-optimal SOR with w the optimal value [or a model problem by SOR;. We have
implemented the adaptive procedure used by the ITPACK routines {36). For completeness,
we note that the ADR method for the solution of Az = b is defined by

(D—rL)zp4 =[(1 —w)D + (w— )L +wlU]z, + wb,




40

x x|x x|x x x[x x
x x|x x|x x x|x|x
x|x x|x X x|x x X|x|x x
I x|x x|x » Bl X x|x x v LT X x|[x|x
x|x x X x|x x[x]|x
| X|x x| | X X|[x | x x|x

FiG. 2.4. Displays three partitionings of the INTCOL equalions associaled with a uniform mesh of size
n=m = 3. They are denoled by Pr, Prr, and Prrr where each x denotes a 2m x 2m malriz and has the

same siruclure as the global one.

assuming the splitting A = D — L — U. Its convergence properties depend on the choice of
the pair of parameters (w,7) [12]. The pairs (1,0}, (1,1) and (w,w) yield the Jacobi, Gauss-
Seidel and SOR methods while the pairs (w,0), (w,1) and {w,r) with 7 # 0 give their
extrapolated counterparts. For comparison purposes we use AOR with (w,r) = (0.5,1.0)
pair of parameters to solve the INT'COI equations. This is the optimal AOR method used
by Papatheodorou in [30).

The iterative solvers implemented depend on the block partitioning of the collocation
coefficient matrix. In this study we consider three different matrix partilionings depicted
in Figure 2.4 lor a specific mesh size n = m = 3.

The efficiency of the block iterative methods depends on the time required to solve the
linear subsystems D;z = b, where D; is the 7th block diagonal element of A. In general we
expect the bandwidth of the matrices D; to be small. However, for the block partitionings
in Figure 2.4 the upper and lower bandwidth of some D;’s is (2n42). TFor these D;’s, instead
of solving the corresponding linear subsystem D;x = & directly, we solve the transformed
system PD;P~1y = Pb where y = Pz, and P = [e1, €nt1, €2, €nt2; - - -, €n, €20], With €; being
the standard unit vectors. Figure 2.5 depicts the effect of this transformation for a 3 x 3
mesh. It is easy to show that the bandwidth of PD;P~! is only 5. Thus the transformed

dxx XXX dxxxxx
xdx XXx xdxxxx
xdxx XXX xxdxxx
xxdx xxxx ¥xxdxx
xdx XXX XXdxXxxxx
xxd XXX XXXdXXxx
XXX dxx XXXXAdXXX
XXX xdx xxxxxdxx
XXXx xdxx xxdxxx
XXxXx xxdx xxxdxx
XXx xdx xxxxdx
XXX xxd xxxxxd

F1G. 2.5. Mustrates the PDi P~ transformation for a 3 x 3 mesh.

diagonal subsystem can be solved much faster using BAND GE without pivoting.

In the tables below we display the maximum discretization error ||z — up||eo based on
a 65 x 65 grid , where u is the exact solution of the PDE problem and u is the computed




41

Hermite cubic piecewise polynomial solution. In order to compare the efficiency among

various iterative solvers considered, we used the same stopping criterion, namely

||Zn+1 — Znlloo <e=5%10"°,
| Zns1]loo
and the same initial solution zg.

Tables 2.3a and 2.4a indicate the convergence of four block iterative methods applied
to the system of INTCOL equations corresponding to different mesh sizes. The AOR im-
plemented is based on the partitioning P; while the rest of the block methods (i.e Jacobi,
Gauss-Seidel, and SOR) are based on the partitioning Py; of the collocation matrix. The
optimal parameters of AOR used are (w,r) = (0.5, 1.0) according to the analysis in [30]. The
optimal SOR parameter w,p; was obtained based on the analysis presented in Section 2.4.
The data in these iables suggest that the block SOR has the largest asymptotic rate of
convergence.

Tables 2.4b and 2.3b depict the convergence behavior of three of the four iterative
methods considered in Tables 2.3a and 2.4a for the HERMCOL equations. AOR (0.5,1.0) is
not efficient for these type of equations. In this case all methods were implemented based
on the block partitioning P of the HERMCOL coeflicient matrix. It is worth noticing that
the spectral analysis of the Jacobi iteration matrix for INTCOL and HERMCOL equations
has shown that the wey is the same for both cases. The data in these tables suggest that
the block S0R has the fastest convergence.

Tables 2.4¢ and 2.3c depict the convergence data (number of iterations and discretiza-
tion error) of optimal SOR and adaptive SOR3 for both INTCOL and HERMCOL equations.
These data suggest that the adaptive SOR behaves almost as the optimal SOR for the two
model problems considered for relative coarse meshes.

Table 2.5 depicts the time and memory complexity of optimal SOR, the LINPACK BAND
GE with partial pivoting, and GMRES (generalized minimal residual) [34] under three different
preconditioners to solve the INTCOL equations associated with a model problem under
different mesh sizes.

In the case of SOR and GMRES the initial guess of the solution corresponding to an n X »
mesh is estimated from the previous collocation approximation based on an (n/2) x {n/2)
mesh. Throughout we refer to it as the multigrid type initialization. The execution times
of iterative methods include the total time to estimate the initial guess. The direct solver is
applied to the system obtained using the natural ordering while the block SOR utilizes the
mentioned above transformations to diagonal subsystems. These subsystems were solved
using BAND GE withou! pivoting. It should be added that in general BAND GE with partial
pivoting is necessary to solve the general collocation systems.

Among CG preconditioning iterative solvers GMRES method is recommended for non-
symmetric systems provided a good preconditioner is available. In these experiments we
consider right preconditioning, which are simply the block diagonal matrices associated
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with the block matrices P;, Py and Pyyp ool the collocation matrix A. We refer to them
as PREC1, PREC2 and PREC3. The GMRES procedure is restarted every 50 steps and the

stopping criterion is set to be

|[6 — AZall2

<e=5%1075,
|[b — Azoll2

The data suggest that the iterative methods have much smaller memory requirements. This
of course was expected. However, we were surprised by the time efficiency of the optimal
SOR that is better than the rest of the solvers considered and occurs at a level of relatively
coarse meshes. In the case of GMRES, the preconditioner based on the block diagonal matrix
corresponding to Pry block structure is the hest performing.

Table 2.6 indicates the performance of SOR (w takes the optimal values for the Dirichlet
model problem in Table 2.3), adaptive SOR3, BAND GE, and GMRES (restarted every 50 steps)
for solving the INTCOL equations obtained from the discretization of a general elliptic PDE
with Dirichlet boundary conditions on the unit square. All applied solvers were based on Pyy
block structure. The multigrid type approach was used to start the iterations. The data
displayed include maximum discretization error and execution times. The data indicate
that the semi-optimal SOR is the fastest for fine meshes without effecting the discretization
error. Adaptive SOR3 appears to effect the discretization error.

‘Table 2.7 compares the convergence and efficiency of the semi-optimal SOR and the three
adaptive SOR methods considered in this section under different initial approximations zp.
It is clear that the multigrid initialization is the best based on the number of SOR iterations
required to achieve the pre-defined tolerance. Among the adaptive SORs considered SOR;
behaves closest to the semi-optimal one. This is due to the fact that they use almost the
same &.

Table 2.8 compares the performance and convergence behavior of optimal SOR, adaptive
SOR3, BAND GE, and GMRES(50) for model problem with Neumann (Tables 2.8a and 2.8b)
and uncoupled boundary conditions (Table 2.8c). The exact solution is the one used in
Table 2.3. Again, from the data including number of iterations required to achieve toler-
ance, maximum discretization error, the exact and estimated value of the SOR parameter
w used and execution times, we observe that optimal SOR outperforms the rest of methods
with GMRES(50) being the slowest. In this table, all iterative solvers used multigrid type
initialization. Moreover, it is noticed that the BAND GE could not run for mesh size 128 x 128

on the machine used due to memory limitations.




The convergence behavior of four block tleralive methods for solving the INTCOL and HERMCOL

TaABLE 2.3
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equations obtained by discretizing the equation vzx + uyy = [ with Dirichlet boundary condition (u = g).
The functions f and g ore selected so that u{z,y) = ¢(z)d{v), where ¢(z) =0, if z < 0.35, or if z > 0.65,
otherwise ¢(z) is a quintic polynomial determined so that it has two continuous derivatives.

INTCOL

mesh
size

AOR(0.5,1.0)

Jacobi (Gauss-Seidel

Oplimal SOR

iter

error

iler | error |iter

CIror

wopt

tler| error

2 x2
4 x4
B x8
16 %16

17

17

41
200

1.21
1.28¢-2
7.56e-2
2.59e-2

9 1.21 6

1.21

29 [1.28e-1] 15 | 1.28e-1
94 |7.55e-2| 418 | 7.56e-2
305|2.63e-2[154 | 2.62e-2

1.0314
1.1786
1.4271
1.6536

6| 1.21

9 [1.28e-]
19 | 7.56e-2
40 |2.59¢-2

(2)

HERMCOL

mesh
size

Jacobi Gauss-Seide

1

Optimal SOR

iter

error |iter| erSOR

wopl

iter

CITOoT

2X2
4 x4
8 x8

12

119 | 7 1.19

32 [1.28¢-1| 18 | 1.28e-1
104 | 7.56e-2| 56 | T.56e-2
16 x16 (344 [2.63e-2|182| 2.61e-2

1.0314( 6
1.1786( 11 |1
1.4271) 21 |7.57e-2
1.6536] 46 |2.59e-2

1.18
.28e-1

(b)

INTCOL

HERMCOL

mesh
size

Optimal S0R

Adaplive SORg

Optimal SOR

Ada

plive SORa

Want

iter

€Iror

wr ilter | error

iler

CITOr

w

iter

CITOT

2 x2
4 x4
8 x8
16 =16

1.0314
1.1786
1.4271
1.6536

6
9
19

40

1.21
1.28e-1
T.5Te-2
2.59e-2

1.0131| 6 1.21
1.0131( 15 |1.28e-

1.5821 | 59 |2.59e-

1.2685 | 32 |7.56e-2] 21

6
1] 11

2| 46

1.19
1.12e-1
7.57e-2
2.59¢-2

1.0176
1.0176
1.2829
1.6528

7
15
31

68

1.19
1.28e-1
7.57e-2
2.59e-2

(c}
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TABLE 2.4
The convergence behavior of four block iferative methods for solving the INTCOL and HEARMCOL
equations obtained by discretizing the equalion ur; + uy, = [ with Dirichlet boundary condition (u = 0).
The funetion [ is selected so that u{z,y) = 104(z)d(y), where ¢(z) = g~ 100(z—01) (z* — ).

INTCOL
mesh |ADR {0.5,1.0)| Jacobi |Gauss-Scidel Optimal SOR
size [iler| error |iler| error [iter| error | wope |iler| error
2x2 |18 [2.91e1 (11 |29e1| 6 |2.91e] [1.0314| § [2.91e-1
4 x4 |19 [ 1.46e-1 | 35 |1.4Ge-1| 20 | 1.46e-1 [1.1786| 11 |1.46e-1
8 8 | 76 | 1.56e-2 |131|1.56e-2| 68 | 1.56Ge-2 [1.4271| 22 |1.56c-2
16 x16|247| 6.08e-4 |385|6.31e-4|199| 6.28e-4 |1.6536| 43 [6.08¢-4

(2)
HERMCOL

mesh Jacobi [Gauss-Seidel Optimal S0R
size [iter} error [iter| error | wou |iler| error
2 x2 |12 1291e-1| T | 2.91e-1 |[1.0314] 6 |2.91e-1
4 x4 | 36 [1.46e-1| 20 | 1.46e-1 [1.1786; 11 |1.46e-1
8 x8 |129]1.56¢-2| 69 | 1.56e-2 [1.4271| 24 |1.56e-2
16 x16|376|6.37c-1 (200 | 6.28¢-4 |1.6536| 47 {6.08e-4

(b)
INTCOL HERMCOL
mesh Optlimal SOR Adapiive SOR: |Optimal SOR| Adaptive SOR;
size | wop [iler| error w |iler| error |iter| error w |iter| error

2 x2 [1.0314) 5 |2.91e-1[1.0178| 6 |2.91e-1| 6 | 2.91e-1 [1.0287( 7 |2.91e-1
1 x4 |1.1786( 11 (1.46e-1|1.0178| 19 |1.46e-1| 11 | 1.46e-1 |1.0287| 19 |1.46e-1
B x8 [1.4271( 22 [1.56e-2|1.3761| 33 |1.56e-2| 24 | 1.56e-2 [1.3605| 35 [1.56e-2
16 x16]1.6536| 43 |6.08e-4|1.3761 | 98 |G.16e-4| 47 | 6.08e-4 |1.3605|101 |6.17e-4

(<)
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TABLE 2.5
The time and memory complezity of five solvers for solving the discrele equalions obtained by applying
INTCOL procedure lo the equalion tzz + tyy = f with Dirichlet boundary conditions. The function f is
selected so that u(z,y) = 10¢(z)¢(y) , where ¢(z) = em10(=—0.1" (o2 _ gy

Optimal SOR BAND GE
mesh ]equations| lime [iter [workspace| error | time |workspace| error
2 x2 16 0.02 3 264 2.505¢-1| 0.02 464 2.905e-1
4 x4 64 0.14 | 10 1136 1.456e-1| 0.07 2624 1.456e-1
8 =8 256 102 |19 4704 1.563e-2| 0.53 16640 |1.563e-2

16 x16 1024 6.22 | 27 19136 6.083e-1| 5.03 115712 |0.082¢-4

32 x32 1096 50.35 | &7 77184 5.795e-5| 60.77 | 856064 |5.795e-3

64 x64 16384 360.28 § 99 310016 |2.035e-6|797.75| 6569984 |2.035e-6

128 x128| 65536 [3031.63(213| 1242624 |1.263e-7| NA NA NA
@

GHRES (restaried every 50 steps)

PREC1 PREC?2 PREC3

mesh |equations| error’ time |iter | iime [iter| time |[iter
2 =2 16 2.905e-1 002 3 0.03 6 0.03 i
4 x4 64 1.456e-1 0.20 15 016 | 10| 0.24 |18
8 %8 256 1.563e-2 1.87 28 1.15 18 1.80 28

16 =16 1024 6.082e-4 | 19.52 | 64 956 |33 | 14.89 | 48
32 %32 4096 5.766¢-5 | 108.25 | 79 | 48.96 | 36 | 83.65 | 66
64 x64 16384 | 2.056e-6 |1255.03 | 244 | 371.66 | 66 | 559.91 107
128 x128| 65336 |1.1400e-7|9134.46|4007[2571.77 [106|5685.47 [ 282

(b)

! Approximately the same error is found by using any of the three preconditioners as long as
the same stopping criterion is satisfied.
2 AL this step the slopping crilerion was not satisfied. The corresponding error was 1.18e-7

TaBLE 2.6
The performance and convergence data of $0Rg, Adaptive SORy, BAND GE, and GMRES (50} for selving the
4
INTCOL equalions obtained from the discretizalion of the eguation [2+ (y—1)e™ Juzz +{1 + mﬁﬁ]u” +
5[z{z — 1) + (¥ — 0.3)(y — 0.7)]u = f, with boundary conditions (v = g). The functions [ and g are selecled

so that u(z,y) = f—i—g; + {1+ )y — e~ + 5(z + y)cos(zy).

mesh BAND GE Adaplive SOR SO0Rg GMRES(50})
size time | error | time CITOr time | error | time | error
2 x2 | 0,05 |7.67e-3| 0.03 | 7.67e-3 0.0 [7.6Te-3] 0.02 |7.67e-3
4 x4 0.25 |1.57e-3| 0.17 | 1.5Te-3 0.12 |1.5Te-3| 0.15 |1.57e-3
B x8 | 1.80 |1.2d4c-4] 0.84 | 1.25¢-4 | 0.67 [1.24c-4| 0.97 [1.24e-4
16 x16] 15.95 |8.61e-6| 3.05 | 1.2de-5 | 4.59 |B.62e-6| 8.07 (8.61e-6
32 %32 66.21 |6.06e-7|12.15| 9.30e-6 | 31.58 |6.06e-T| 70.23 |6.06e-7
64 x64|849.99|4.35e-9|56.58| 8.92e-6 [216.13|B.58e-9|466.88(1.26e-8
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TaBLE 2.7
The performance and convergence dala of S0R and the three adaplive SORs for solving the INTCOL
equations oblained from the discretization of the PDE problem used in the previous table.

zg estimated by the 2x2 solution lound by BAND GE
mesh S0Rg Adaptive SOR;

size [iter| error | time [iter| error | tiime w

4 x4 | 8 [1.5Te-3| 0.08 |10 |1.57e-3| 0.12 1.1934

8 x8 | 14 (1.24e-4| 0.63 | 23 |1.25¢-4| 1.03 1.2278
16 x16| 29 |8.63e-G| 5.42 |39 |1.37e-5| 7.20 1.6173
32 x32| 66 [6.07e-T| 49.38 | 75 |2.50e-5| 56.2 1.7896
64 x64|175|7.66e-8|521.97|153 [3.0%e-41|464.0 1.7796

zo = [0.5,0.5, ...,0.5}7

mesh SOR, Adaptive 50R,

size [iter| error | lime |iler| error | time w
2x2 | 6 [7.67e-3[0.02]| 7 |7.67e-3| 0.02 [1.0246
4 x4 |11 [1.57e-3| 0.12 | 20 |1.5Te-3| 0.20 (1.0246
8 x8 |22 |1.24c-4] 1.03 | 32 |1.2de-4| 1.42 [1.3898
16 x16| 48 |8.62e-6] 9.30 | 54 | 8.5Te-6| 10.03 |1.6735
32 x32(110|6.06c-7|B4.65[104]1.91e-5] 81.18 }1.8000
64 x64|283|4.25¢-8|854.1|396|2.5Te-1]/1196.4|1.8000

Multigrid type initialization

mesh SORy Adaptive SO0Ry Adaptive SORz
size |iter| error w [iter| error w |iter| error i
2x2 | 6 |7.67e-3(1.0314]| T |7.67e-3|1.024 | 6 |7.67e-3|1.0314
4 x4 | 8 |1.57e-3|1.1786] 11 [1.57e-3| 1.024 | 8 [1.57e-3|1.1786
8 x8 | 12 |1.24e-4|1.4271] 13 |1.25e-4[1.3165| 12 [1.24e-4|1.4271
16 x16| 19 [8.62e-61.6536| 9 |1.24e-5|1.3165| 17 |8.62e-6( 1.600
32 x32| 32 |6.06e-71.8054| 8 |9.30e-6|1.3165| 15 |7.37Te-7| 1.600
64 x64| 51 |8.58e-9(1.8907| 6 |B8.92e-6|1.3165) 12 |5.4Be-7| 1.600




Neumann boundary conditions {Tables o and b) and uncoupled mized boundary conditions {Table c).

TABLE 2.8
The performance and convergence data of the optimal SOR, adaptive SORs, GMRES{50) and the BAND GE
Jor the solution of INTCOL equations oblained from the discretization of the PDE uzr + uyy, = [ with

Optimal SDR Adaplive S0R, BAND GE
mesh wop: | Ume |iter| error | w time [iter| error | iime | error
2 x2 |[1.2926| 0.03 (10| 2.48 [1.091| 0.02 9 | 248 | 0.02 | 2.48
4 x4 |1.3042] 0.18 |13 |3.22e-1]1.091| 0.25 |23 |3.22e-1| 0.07 |3.22e-1
B x8 {1.5498| 1.17 |22 |1.40e-1|1.436| 1.64 |31 [1.40e-1| 0.52 |[1.40e-1
16 x16 [1.7392]| 9.36 46 |4.76e-2|1.704| 12.21 | 58 |4.69e-2| 5.01 |4.7Ge-2
32 »32 |1.8550| T79.09 | 94 (1.40e-2(1.800| 82.21 | 94 |1.15e-2] 58.03 |1.40e-2
64 x64 [1.9153| 664.84 (197 |2.18¢c-3 |1.600 | 467.76 (125|6.21e-3|797.97|2.20e-3

128 x1281.9413|7746.36|599 |8.05¢-4[1.800|1584.63 | 77 |5.2de-3| NA NA
(2)
mesh |Optimal SDR Adaptive S0R2 GMRES(50)
size iter | error w |iler| error lime |iter| error lime
2 x2 10 | 2.48 {1.2926]| 10 | 2.48 0.02 T | 248 0.02
4 x4 13 13.22e-1 {1.3042( 13 |3.22e-1} 0.17 |12 |3.22¢-1| 0.17
8 x8 22 | 1.40e-1 |1.5498( 22 |1.40e-1| 1.17 |19 |1.40e-1| 1.21
16 x16 | 46 | 4.76e-2 | 1.600 | 55 [4.63e-2| 11.3% | 35 (4.76e-2| 10.23
32 %32 [ 94| 1.40e-2 | 1.800 | 93 [1.14e-2| 8049 | 91 J1.40e-2| 113.95
64 x64 |197| 2.18c-3 | 1.600 |125|6.15e-3| 481.64 [194]2.19e-3| 1188.78
128 %x128|599| 8.05e-4 | 1.800 | 77 |5.19e-3|1592.89 [684 |8.02e-4 [14505.91
®)

with boundary condition u =g atz=0ory=land s =g atz=1lory=10

SDRy Adaptlive SOR3 BAND GE
mesh w time |iter| error w time |iter| error | time | error
2 x2 1.162 0.02 9 1.22 |1.150| ©.03 11 1.22 0.00 1.22
4 x4 1.2414| 0.27 26 |1.31e-1(1.150( 0.35 32 |1.31e-1| 0.07 |1.31e1
8 x8 1.4885| 1.64 31 |7.38e-2[1.494( 2.21 43 |7.38e-2| 0.53 |7.40e-2
16 x16 |1.6964| 12.48 | 60 |2.60e-2|1.750| 14.83 | 70 |2.59e-2| 5.02 |2.57Te-2
32 32 (1.8304| 6835 75 |7.78e-3|1.900| 100.65 (116 |7.44e-3| 598.15 |7.28e-2
64 x64 | 1.903 | 520,75 |150|1.27e-3 |1.600| 437.67 |108(2.52e-3|794.17 |1.14e-3

128 =128|1.9364 |5773.44 (434 |4.35e-4|1.800|1601.95| 81 |2.07e-3| NA NA

(c)

47
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3. GENERAL INTERIOR HERMITE COLLOCATION METHODS FOR
SECOND ORDER ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS

In Chapter 2, we studied the iterative solution of the INTCQOL and HERMCOL equa-
tions using the tensor-product ordering. However, the applicability of the INTCOL and
HERMCOL algorithms is limited to PDEs defined on rectangular domains. For the case
of general PDE domains, finding a2 method for the iterative solution of the discrete cubic
Hermite collocation equations is still an open preoblem. In this chapter, first we extend the
INTCOL algorithm for general rectilinear domains (by rectilinear we mean the boundaries
are parallel to one of the axes). Throughout, we refer to it by the acronym GINCOL. Then
we develop two indexing modules for the GINCOL algorithm. One is based on the finite-
element ordering [43] and the other is based on the tensor-product ordering [30]. Using
the tensor-product ordering, the linear system derived by the GINCOL algorithm generates
the same block structure that is produced by the INTCOL algorithm. We experimentally
explore the applicability and the convergence properties of the block iterative methods for
GINCOL equations for some PDEs defined on an L-shaped domain and a more general
rectilinear domain. Furthermore, the tensor-product ordering is successfully applied to the
discrete equations produced by GENCOL together with the SOR and CG iterative solvers.
A number of experiments were carried out to study the computational behavior of these
iterative schemes and to estimate the various parameters involved.

The organization of this chapter is as follows. In Section 3.1, we formulate the GIN-
COL algorithm. In Section 3.2, two different indexing modules to be used with GINCOL
are developed and one tensor-product ordering is introduced for the GENCOL algorithm.
Finally, in Section 3.3, a wide class of PDE problems are solved by using the GINCOL
algorithm with some block iterative linear solvers and a number of concluding remarks are
made based on observations {rom these experiments.

3.1 GINCOL: The General Interior Collocation Method for a Rectilinear
Domain The GENCOL method presented in Section 1.2.1 can be simplified in case (¢) the
domain § is rectilinear, and (#:) the problem has uncoupled boundary conditions, that is,
at no point are the boundary conditions mixed, i.e.,

w=§& on 99 C 892,
g—ﬁ;é on 0%, = 9§} — 95, C 04

In order to distinguish this case from the general collocation method case, the simplified
version is called general interior collocation (GINCOL). First, we use the algorithm in the
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Section 1.2.1 to generate a finite-element mesh 2. Then, since an entire boundary piece
is either horizontal or vertical, some unknowns associated with nodes on a houndary piece
can be determined beforehand using the following two assumptions:

(i) The boundary condition changes type only at a boundary node.

(éi) The boundary of the mesh 2 coincides with the boundary of the domain .

The assumption (%) is satisfied for the domain Q when its boundary pieces are contained
in the union of the grid lines of the mesh. So the user is simply required to place a
grid line on each boundary piece of the domain  as part of the discretization. In this
case, the boundary collocation equations can be solved explicitly when the discretization of
the boundary conditions takes place. It is implemented by the code about the boundary
discretization in subsection 1.2.2.

Since the boundary element e, coincides with e; N 2, we can simply select the four
Gaussian points on each mesh element as the interior collocation points. Note that there
are three unknowns associated with a concave corner of £ and they have been solved for in
the boundary discretization procedure. This makes the corresponding linear system over-
determined. To derive a completely determined linear system, we allege that there is only
one unknown solved at a non-convex corner during the boundary discretization procedure
according to the following rule : if (U solved) then the three unknowns are Uy, U, and
Uz, else the three unknowns are U, U, and U,,. Finally, we are left with the task of
generating COEF and IDCQO and then eliminating the nonactive unkrowns, namely those
predetermined during the boundary discretization process {from BBBB. There are three

local two-dimensional arrays that are used for this task.

NODELM(t,1) = the global index of the zth local node in element {
INUNKN(i,n)= the global index of the #th local unknown associated with node n
OLUN K N(i,n)= the value of the nonactive ith local unknown associated with node »

A code skeleton for this procedure is:

LOOP OVER ELEMENTS OF Qp:
GENERATE NODELM,COEF and BBBB
IF INTERIOR ELEMENT
THEN GENERATE INUNK N ASSOCIATED WITH THE
LOWER LEFT NODE OF THIS ELEMENT
ELSE GENERATE INUN KN ASSOCIATED WITH THE LOWER
LEFT NODE OF THIS ELEMENT AND INUNKN
ASSOCIATED WITH OTHER NODES OF THIS ELEMENT
ON THE BOUNDARY.
FOR THE NONACTIVE UNKNOWN SET INUNKN TO
ZERO AND SUPPLY THE VALUE OF OLUNKN
ENDIF
ENDLOOP;

GENERATE IDCO AND MODIFY BBBB BASED ON NODELM ,INUNKN
AND OLUNKN
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3.2 The Ordering of Unknowns and Equations In this section, we develop
finite-element and tensor-product orderings for the GINCOL algorithm. Moreover, we in-
troduce the tensor-product ordering for the GENCOL algorithm.

x8 23 24 x 36 x 8 16 24 x 32
x|x X|x x|x x|x x|x x|x
16 15 k73§ 816 24 32
13 14 29 30 715 23 3
20|22 <l15 x|? 15|23 x|31
19121 x |4 6 14122 % |30
12 11 28 27 6 14 22 30
910 25 26 513 21 29
5 1618 31|33 43 44 x 48 x5 13121 28|36 40 44 x 48
4 15|17 x |32 X% x|x x[4 12|20 x |29 x|x x|x
24 23 40 39 48 47 412 20 23 35 40 44 48
21 22 a7 38 45 445 jin 19 27 35 39 43 47
3 12114 28|30 40|42 x |47 x|3 1119 27135 35|43 x |47
2 1l 27|29 39|41 x |46 x|2 10/ 18 25134 38|42 x|6
20 1% 36 35 44 43 2 10 18 26 4 18 42 46
17 18 NM 41 42 19 17 25 33 37 41 45
1 9!10 25|26 27|33 x|d5 x|l 9117 25133 37|41 x |45
XX xx x X X X XX XX XX X X X

@ (b)

Fig. 3.1. Two orderings of the collocation points and unknowns associated with GINCOAL..

The finite-element ordering for GINCOL equations is a straightforward extension of the
ordering for INTCOL equations. So, we only illustrate this ordering in Figure 3.1(a) here.

The tensor-product ordering has been introduced for the INTCOL and HERMCOL
algorithms. Here, we utilize it for the algorithms GINCOL and GENCOL. First, the GEN-
COL unknowns are split into two sets {u,u,} and {u;,%5,}. Then, on each x-grid line
we number the unknowns {,,} node by node (south to north) followed by the number-
ing of {ug, sy} unknowns corresponding to the nodal points of the same grid line. For
the tensor-product numbering of the GENCOL collocation points we consider the auxiliary
exterior boundary collocation points introduced in [22] to determine the actual boundary
points. By definition the auxiliary and interior collocation points are located on z-Gauss
grid lines corresponding to z-coordinates of the Gauss points. Then, these points are num-
bered along the z-Gauss grid lines from south to north and west to east. The indices of the
actual boundary collocation points and the auxiliary boundary points coincide. Figure 3.2
displays this scheme for an L-shaped region.

In the case of GINCOL, we have only interior collocation points, thus they are ordered
from south to north along z-Gauss grid lines as in the case of GENCOL. Then the numbering
of the active unknowns is determined by the indices of the interior collocation points as
follows. At each nodal point, the active unknowns use the same index as the nearest
interior collocation points. Figure 3.1(b) illustrates this ordering scheme for an L-shaped
region.

The finite-element ordering is attractive because it yields a coefficient matrix which
has smaller bandwidth than the one using the tensor-product ordering. The advantage of
the tensor-product ordering is that the coefficient matrix for the GINCOL algorithm has
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FiG. 3.2. Tensor-product ordering of the collocation poinls and unknowns associated with GENCCOL.

the block structure indicatled in I'igure 1.5. It is worth noticing that for this case the x’s
denote submatrices of various orders. The coefficient matrix corresponding to GENCOL
algorthim using tensor-product ordering is also a block matrix. However, its structure
depends very much on the placement of the boundary collocation points. Figure 3.3(b)
shows the detailed structure of the coeflicient matrix for GINCOL in the case of the L-
shaped domain of Figure 3.1. For GINCOL the diagonal blocks of the coefficient matrix
is always a band matrix with bandwidth 2 and non-zero diagonal elements. Some block
iterative linear solvers may benefit from this property.

Figure 3.3(2) shows the detailed structure of the coefficient matrix for GINCOL in
the case of the L-shaped domain of Figure 3.1. The finite-element ordering provides the
efficiency of bandedness but the presence of many zeros on the diagonal of the coefficient
matrix prevents most iterative methods from being applied. So, the most reliable and
preferable way to solve the linear system is to use Gauss elimination with scaling and
partial pivoting [9]. However, direct methods tend to require much more memory as well
as more time and their parallelization is difficult. It is very desirable to have a suitable
iterative solver for the collocation equations in general, this can be accomplished by using

the tensor-product ordering.

3.3 Application of Iterative Linear Solvers In this section, we use the algorithm
GINCOL developed in the previous section to discretize a number of elliptic PDEs with
uncoupled boundary conditions on an L-shaped domain € as well as on a general rectilinear
domain €2 shown in Figure 3.4. We consider only the tensor-product ordering as the finite-
element ordering prevents us from applying an iterative linear solver.

For the iterative solution of the GINCOL equations, we consider two approaches: the

overrelaxation, AOR(SOR)-type, approach and the conjugate gradient, CG-type, approach.
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Among the AOR-type methods, because of the presence of the block structure it is cus-
tomary to use a block iterative method instead of point iteration. Three different block
partitionings of the INTCOL coefficient matrix in Figure 2.4 are applied to the GINCOL
coefficient matrix.

Among the CG-type methods, the preconditioned GMRES (generalized minimal residual)
method [34] is an often successful method for solving nonsymmetric linear systems. The
- preconditioner used should be easily inverted and the diagonal blocks of Py, Prr and Pyyy
can be used. After experimentation we conclude that Prr preconditioner is the best for
GMRES.

TaBLE 3-1
The convergence behavior of block iterative methods for solving the GINCOL linear system obloined by
diserelizing the equation uzz + uyy = f in £ with Dirichlet boundary condition (v = g). The functions f

and g are selecled so that u(z,y) = =+,

mesh Py Pror

size ACR adaptive SOR SOR SDR

(neqn) iter | error [w{1.0)|iler| error w |iter]| error | w |iter| error
4 x4 (48) | 24 [1.91e-5|0.8285| 41 (2.04e-5|0.7537 | 16 |2.00e-5]0.5| 24 |2.52e-5
8 x8(192) | G8 |1.18e-5|0.8285] 58 (8.20e-6)0.7374 | 48 |8.73e-6(0.5] 60 |2.29e-5
16 x16 (768)|225(4.62e-5[0.8285|219({3.46e-6]0.7334 {191 | 7.63e-6|0.5|242 |3.30e-5

mesh Prr
size adaptive SOR adaptive SOR SOR
(neqn) w(1.0) |iter | error [w(1.01)]iler| error w [iter[ error
4 x4 (418) [0.8285| A1 [2.04e-5( 1.6880 | 14 [2.13e-5(1.1786( 9 |2.06e-5
8 x8 (192) |0.8285) 58 {8.20c-6( 1.7998 | 28 |7.75¢-6|1.4271| 19 |1.43e-6
16 x16 (768)[0.8285]|219(3.46e-6| 1.7070 60" |8.34e-6|1.6536| 45 [8.34e-7

1 AL this step the siopping criterion is not satisfied. The corresponding iteration error is 6.35¢-5.

TABLE 3.2
The convergence behavior of block iterative methods for solving the linear system oblained by discretizing
the equalion tzz + uyy = f in Q2 with Dirichlet boundary condition (v = g). The functions f and g are

selected so that u(z,y) = e*t¥.

mesh Py P
size AOR adaplive SQR SOR SDR
{neqn) iter| ertor [w(1.0)[iter| error w |tter| error | w |iler| error
8 x8 (188) | 19 [1.22¢-5|0.8284| 40 [3.52¢-60.T374 (| 36 |2.86¢-60.5| 45 [5.72e-6
16 x16 (752)|179|1.35¢-5{0.8285|156|1.97¢-6|0.7334[138|5.42e-6(0.5[175|2.90e-5
mesh Py
size adaplive SOR adaptive S0R SOR
{negn) w(1.0) [iter| error |w{1.01){iter| error w |iter] error
B xB (188) (0.8284| 32 [1.39e-5| 1.7901 | 20 |3.58e-6(1.4271( 19 |1.907e-6
16 x16 (752)[0.8284|124|2.53e-5| 1.6669 | 45 |1.68e-6|1.6536 | 41 | 2.38¢-6
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In Tables 3.1 to 3.3, we study the convergence behavior of SOR under different block
partitionings of the GINCOL collocation matrix in different rectilinear domains. Specif-
ically, we display the maximum discretization error ||z — u4||os based on the grid points
inside the domain, where u is the exact solution of the PDE problem and u, is ithe com-
puted cubic Hermite piecewise polynomial solution. These tables also give the number of
iterations required for the various methods to converge. These numbers are good indicators
of the actual efficiencies of the methods. The mesh size entry is the size of the mesh in the
smallest rectangle that contains the domain. The values in parentheses beside them are the
orders of the linear systems. For the adaptive SOR method, we also display the final value
of w used; the initial guess of w is given in the heading. In order to compare the efficiency
among the various iterative solvers, we use the stopping criterion, namely, HEﬁi‘:T_,Tﬁ”Z <€
for SOR and H?’:%Hf < ¢ for GMRES with the same initial solution zg = [0.5,0.5,...,0.5]7.

In the iterative computation, one wants the error in solving the linear system t6 be
less than the discretization error in approximating the PDE. In all tables the convergence
tolerance ¢ = 10~° is used for SOR and ¢ = 10~° for GMRES. As the data in Tables 3.1 and
3.2 indicate, this tolerance is too large as the discretization error on the coarsest mesh is
already about 2 x 1073 for the first example and even less for the second one. Nevertheless,
these data clearly show that all these iteration methods converge for the test cases used.
For the non-adaptive SOR, the relaxation parameter w is the optimal « value corresponding
to the case of the same problem defined on the smallest rectangle containing 2. The AOR
method used here is the one used in [30].

TaBLE 3.3
The convergence behavior of block iteralive methods for solving the linear system oblained by discrelizing

the equation tzz + tiyy = f in Q2 with Dirichlet boundary condition (v = g). The functions [ and g are
sclected so that u(z, y) = 104(z)d(y), where §(z) = g100(==0.1) (z% — ).

mesh Pry
size adaptive SOR adaptive SOR S0R
{neqn) w(l1.0) [iter| error [w(1.01)]iter| error w [iter| error

8 %8 (188) (0.8284( 30 |7.89e-2| 1.90 [ 52 |7.80e-2(1.4271( 21 (7.80e-2
16 x16 {752) |0.8284| 91 (2.03e-2| 1.9 69 |2.03e-2]1.6536( 44 |2.03e-2
32 %32 (3008) [0.8284 [243 [5.54e-4| 1.8701 | TD |5.68e-4|1.8054| 92 |5.68e-4

The fewest iterations by a factor 3 to 5 are required using the Py preconditioning and
an S0R iteration with relaxation parameter near the usual 1.8 value. The adaptive SOR can
locate a “locally optimum” parameter less than 1 which provides performance similar to
that using the other preconditioners. These data suggest that this iteration approach has
the promise to become an efficient and robust solver for the GINCOL collocation equations.

In Tables 3.4 to 3.6, we measure the computational complexity of the GMRES and SOR
iterative schemes for solving the GINCOL equations and compare them with BAND GE direct
solver [33]. BAND GE is applied with partial pivoting and “natural ordering” of the equations
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TABLE 3.4
The performance data of some solvers for solving the discrete equalions obtained by applying GINCCOL
algorithm to the equation tizz + uyy = [ with Dirichlet boundary conditions in domain 2. The function [
is selected so that u(z,y) = 100(z)é(y), where ¢(z) = g 100(z—0.1)3 (z® — ).

BAND GE GMRES(50) SOR

mesh | neqn | error | ttme | error [iler|time error |iter| lime w
8x8 188 7.89e-2| 0.21 |7.89e-2| 16 |0.40 7.89e-2| 17 0.8 |1.1786
16x16| 752 [2.03e-2| 5.75 [2.03e-2| 51 |6.23 2.03e-2| 38 | 4.37 |1.4271
32x32] 3008 |5.68e-4{ 22.65 15.61e-4| 58 |27.97 [5.68e-4| 71 | 28.63 |1.6536
64x64 12032 |3.03e-5{279.60|7.27e-51122]242.97 1 3.09e-5|145[{233.93|1.8054

and unknowns. The iterative solver is used to solve the linear system using tensor-product
ordering. The data indicate that iterative solvers are more efficient for fine grids and produce
solutions with the same level of discretization error. Furthermore, the convergence behavior
of GMRES and SOR does not depend on the PDL operators considered in these experiments.
For example, in the case of the SOR method the same w values were used for a model problem
and a general one. Finally, Table 3.6 shows the application of the iterative schemes to the
solution of the GENCOL equations using the tensor-product ordering. The PDE problem
used here is defined on a rectangle, thus the optimal value of w can be found in Chapter 2
for SOR. In this case we see that the iterative schemes are becoming more efficient than
direct solvers even for coarse meshes.

Additional preliminary experiments indicate the GMRES is an efficient alternative to BAND
GE for the solution of GENCOL equations with tensor-product ordering obtained {rom the
discretization of PDE problems defined on general domains. All results indicate that SOR
is applicable to solve the GINCOL equations with tensor-product ordering, at least for
rectilinear domains. The extension of GINCOL to general domains is part of our ongoing

research efforts.
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-1,1) 0,1 -1.1) {0.1) (5.1 (LD
0.5 (5.9
91 (1,0 (-.5,0) 9.2
0.0 (-1.0) (.25,-.25)
(-1,-.5) (1,-.25)
(-.5,-.5)
(_-1,-|) (1-I (-1,-1) (.25,-1)

Fi1G. 3.4. The domains used in the computalional experiments.

TABLE 3.6
The performance data of some solvers for solving the discrete equalions obtained by applying GENCOL
and GINCOL procedures to the equation .z + uy, = f with Dirichiet boundary conditions on the rectangle
(—1,1)x(=1,1). The furction [ is selecled so thal u(z,y) = 10¢(z)d(y), where $(z) = g~ 100(z—0.1) (zz—z).

GENCOL
BAND GE GMRES({50}) Opt SOR
mesh | neqn | error | time | error |iler| time | error |iter| Lime
2x2 36 [2.99e-1| 0.04 |2.99e-1)| 8 0.05 |2.99e-1] 6 0.48
4x4 | 100 [8.45e-1| 0.39 |[8.45e-1| 13 | 0.17 |[8.45e-1| 10| 0.93
8x8 | 324 |1.3de-1| 0.83 |1.34e-1| 36| 4.30 |1.34e-1| 23| 1.52
16x16| 1156 [2.33e-2| 8.55 |2.33e-2| 53 | 9.883 |2.33e-2| 47 | T.72
32x32| 4356 |5.68e-4(104.98|5.69e-4| 73 | 49.95 |5.69e-4| 99 | 57.05
64x64 [ 16900 |2.91e-5|968.83 | 3.35e-5|191 | 589.633 | 3.09e-5| 284 [ 625.88

GINCOL

BAND GE GMRES(50) Opt SOR

mesh | neqn | error [time [error [iter|time error |iter| time
2x2 16 12.99e-1(0.02 [2.9%-1|7 {0.02 2.9%e-1| 6 0.48
dxd 64 |8.45¢-1]0.07 8.45e-112 (0.08 8.45e-1| 10 | 0.65
8x8 | 256 |1.34e-1|0.40 1.34e-120 (0.G8 1.34e-1] 22| 1.15
16x16 | 1024 |2.33¢-2|8.88 2.33e-2151 [19.7 |2.33e-2|43 ] 6.30
32x32| 4096 |5.68e-4(41.68 |5.86e-4|66 [94.417(5.69e-4] 92 | 49.3
64x64 | 16384 (2.91e-5 [648.75|5.98¢-5|186[498.35(3.09e-5 246 540.53
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4. A GENERALIZED SCHWARZ SPLITTING METHOD BASED ON
HERMITE COLLOCATION FOR ELLIPTIC BOUNDARY VALUE
PROBLEMS

The Schwarz Alternating Method (SAM) coupled with various numerical discretization
schemes has been already established as an efficient alternative for solving differential equa-
tions on various parallel machines. In this chapter we consider an extension (Generalized
Schwarz Splitting-GSS) of SAM for solving elliptic boundary value problems with general-
ized interface conditions that depend on a parameter that might differ in each overlapping
region [38]. The work in [3, 40] and the results of Chapters 2 and 3 motivate us to study the
convergence properties of GSS associated with the cubic Hermite collocation discretization
technique [22]. Following the work in [38] and [26], we explore this problem at the matrix
equation level formulation. More specifically, we study the iterative solution of the corre-
sponding enhanced GSS collocation discrete matrix equation for a model elliptic boundary
value problem.

This chapter is organized as follows. In Section 4.1, we give a brief description of the G5S
on a rectangle at functional and matrix levels. In Section 4.2, first we define 2 matrix with a
specific structure and then we investigate some basic properties associated with it. Using the
results obtained, we derive the block Jacobi iteration matrix corresponding to applying the
(GSS with bicubic Hermite collocation discretizatton for the solution of the Poisson equation
under Dirichlet boundary conditions on a rectangular domain split into overlapping stripes.
In Section 4.3, we carry out a spectral analysis of the enhanced block Jacobi jteration
matrix corresponding to the one-dimensional problem. Furthermore, we determine-the
domain of convergence and find a subinterval of it in which the optimal parameter for
the one-parameter GSS case lies; moreover, we obtain sets of optimal parameters for the
multi-parameter GSS case. In Section 4.4, we analyze the convergence properties of the one-
parameter GSS case for the two-dimensional problem. Finally, in Section 4.5, we present
a number of numerical examples in the one- and two-dimensional spaces that verify the
theoretical results obtained in this chapter. In addition, we compare the convergence rates
of the SAM and GSS methods with minimum and maximum overlap and draw several

conclusions.

4.1 A Generalized Schwarz Alternating Method We consider the Dirichlet
problem
Lu = f in Q,
U

g on 9Q (4.1)

o




58

FiGg. 4.1. A decomposilion of Q for k=3

where L is a second-order linear elliptic partial differential operator, {2 is a rectangle (a, ) x
(c,d) € R? and 89 is its boundary.

In order to formulate the GSS for PDE problem (4.1), we decompose § into % overlap-
ping rectangles (stripes) {21,...,8k, defined as Q; = (i, i) X (e,d) with a = iy < 13 <

iy <band @ < 1y, < ts, < ... < T, = b. Furthermore, for & > 3 we assume that

lar < 1y and I(;_p), < li < i_y), for 2 = 3,...,k . This assumption guarantees that no
three consecutive stripes can have 2 common overlapping area and that any two consecutive
stripes do overlap. We set T'y; = {t;;} X (e, d) and Ty, = {¢;r} X (¢,d), and assume that both
sets I'y; and Ty, are empty. We also define T} = 8Q; — (I'y U T}, ). An example of such a
decomposition for k = 3 is depicted in Figure 4.1.

Then, the Generalized Schwarz Splitting method applied to problem (4.1), with a do-
main splitting as above, consists of solving the & coupled subproblems

L(ui(z)) = f(=), z €k,
ui(z) = g(z), z €T, (4.2)
wiui{z)+ (1 — w;)aia‘(il = wpyiq(z)+ (1 - w;)%(.—;ﬁiﬂ, z €Ty, )

tl,'i_'[!:!

wrwi(z) + (1 - wr) B2 = wrui (o) + (1 - wr) 2528, 2 e T,

fori=1,...,k, where the w’s are user defined parameters.
Problem {4.2) can be solved iteratively for a given initial guess (u&o), fey U }) Following,
we illustrate the application of Gauss-Seidel type iteration for the GSS PDE subproblems:

L(u"’(w)) = f(z), z €
w(z) = o(2), ser,
o _ {z} ) _,( z) . (4.3)
1y ($)+(1 ) i LT 1(93)+(1 LrJ) '.l z el
@)+ (1))~ 00) + (1 - D, 4 e,
where ¢ = 1,2,...,k and § = 1,2, .... There are many ways of implementing a discrete

analog of the algorithm (4.3). This is due to the many choices for the parameter w and to
the many alternatives of the discretization technique to be selected for each subproblem.
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If the discretization scheme used to solve the subproblems in (4.2) is the same as the
one used for the solution of the original problem (4.1) , then it is easy to see that problem
(4.1) is reduced to the solution of a linear system, say Ay = f,

A Aqe h f1
As1 [ Asz2| A2z Y2 f2
Azz Az Aag wmi=|/f
Aga|Agq| Aas L fa

Asq Ass Ys fs

while problem (4.2) is reduced to solving the larger system (enhanced) Aj = f

[[A11 A12 IRER [ f17]
Aél B':z'z Cﬁz A’za U2 fi
Ay By ng Aga ‘9’5 f;
Aag Az Aag m|l=1/fs (4.4)
A;!:a B:M 034 Af:s L fi
Aygs B:;q C;q Ags Ya f:
| Asq Ags|] L¥s [ /5 |

where A is a k2 xk block tridiagonal matrix. In both cases, we assume that the unknowns have
been decomposed according to the splitting in Figure 4.1. Notice that, corresponding to the

overlapping region £2; N 22, we have fi = [];2 ], [y = [.)92 ] , Ay = [Aozl ] , Ao = [Aozs]’
Agl = I:A(;l], A;?S = I:Auga]’ ‘852 = ?12]1 Cﬁz = I:—OEz]’ B;2 = [_{?2] and ng =
[f;] with E; = [0,0,...,0,h1(wy), hao(w,)], E2 = [hi(wr), ho(wi),0,...,0] and O being
zero vectors or submatrices, where h;’s are vectors derived from the interface boundary
conditions. Similar relations hold for the equations associated with the overlapping region
Q3 N 3.

In view of the way algorithm (4.3) is derived, it is apparent that in order to study the
convergence properties for a given discrete implementation of it, it suffices to study the
corresponding properties of the block Jacobi iteration matrix associated with the enhanced
linear system (4.4). On the other hand, one should bear in mind that for different imple-
mentations of the algorithm (4.3) the convergence properties of the corresponding iterative
methods based on the linear system (4.4) may be different for the same problem. So, one
may not have a single block Jacobi matrix to study for the different implementations of
the algorithm (4.3). To simplify the subsequent discussion, we shall confine ourselves to
selecting the cubic Hermite collocation discretization technique to discretize all the sub-
problems. For this specific implementation, we shall derive the corresponding block Jacobi
iteration matrix for 2 model problem and shall study the impact of the various choices of
the parameter w, subject among others to the restriction w; = w,, on the spectral radius of
the Jacobi matrix. For this study we will exploit some basic properties of a specific matrix

structure in the section that {ollows.
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4.2 Spectral Analysis of the Block Jacobi Iteration Matrices In this section,
we define a set of matrices which share a particular structure, study their properties, and
develop the preliminaries needed for the rest of the analysis. Then we will use the results
we shall obtain to derive the block Jacobi iteration matrix corresponding to a GSS scheme
with bicubic Hermite collocation discretization technique for a model problem in the two-
dimensional space. It is worth noticing that the analysis and the results of this section can

also be used to handle the one-dimensional problem.

4.2.1 Preliminaries First we define a square matrix T'(m, n, &, 81, a3, f2) of order

4mn such that

[y Ay + B1A2 As —A, I
A+ SiAg Ay —Ag
A Ay Az —Ay
Az Ay AL -4
- (4.5)
Ay Ay Az —Ay
Az Ag A —As
Ay Az agAz — G244
I Az Aax oA - (A, ]

where each A;, i = 1,2, 3,4, is a square matrix of order 2m and o, 4, a2, 2 are scalars.
Tor simplicity, we denote it by T in the remainder of this section.
Next, we introduce the two matrices

Al Az AS _A4
A3 A4 Al _A2 )

We assume that N is nonsingular and its inverse is written in the same block form as ¥,

By Bz]. Then, it {follows from the obvious relation N = [g f]r] M [é _OI],

where { denotes the identity matrix of order 2m, that M~! = [ Bg, 1?;3 ] Based on the
-B, -

N=[ ] andM:[ (4.6)

namely N~! = [

material introduced so far we can state and prove the following statement.
LemMuMma 4.1. If the mairices — 5\ B, + a1 B3 and 2B, + ay By are invertible, then the

following relations hold

[ Ch 1 [ 51 [ I | [ 0]
v ] 18] | esemar] ||
T : = | |, T : = | (4.7)
Sl I I R e
i I ] | 0 | Ca J | 52

where

S1=(=F1B1 + a1 Bs) T ([Bu], —en [} (- NI M) [gg}r ]),

. (4.8)
52 = (~BaB — aaBo) ([Bal, ~oal) (-M N [ 1))




61

with C; and Ca being malrices of order 2m that can be uniguely determined.

Proof. 1t is sufficient to show the first part of (4.7), since the second part follows by
a similar argument. It is trivial to show, using (4.5) and (4.6), that the last 2n — 2 block
elements of both sides of (4.7) are equal. To determine 5, we use the first two blocks of
both sides to get

Voflesmron[3]=[3) o

Then, premultiplying both members of (4.9) by [811, —a1J]N~1 we obtain
Appyn | 02
[611,—(11I](—N 1M) g:f] = (—ﬁlﬂl + alB3).5'1

which determines §;. €7 can be determined uniquely from (4.9) by premultiplying it first
by N-! and then solving for C; from either the first or the second block component of the
resulting equation. Since C) is not used later, its explicit expression is not needed. D

Now, let us assume that 7" and oy A3 + 1 A4 are nonsingular and V) and V; denote the
submatrices of the last 2n — 1 block components of the matrix products 77{1,0,..., 0,0)7
and T-1[0,1,0,...,0]7 respectively. Then, since T~!T is the identity matrix, we obtain
Vi(arAr + B142) + Va(ay As + $1A4) = 0. This implies V; = —Vi{e Ay + G Az)(e1As +
B1A4)7L. Hence, the matrix of the last 2» — 1 block components of the matrix product
T-1AT,Af,0...,07 is

Vi(A] - (OflAl + ﬁlAz)(O.'lAa + ﬁlAq)_lAg). (410)

To simplify the expression above, we state and show the following lemma.
LEMMA 4.2. If both Ay and As are nonsingular, then

(F1B1 — a1 Ba)(A1 — (1A + Pr1Az)(enAs + frAa) " As) = B

Proof. We have

Ay — (a1 Ar + frA2)onAs + 1 Ag) "1 Az
= A(I = (ond + B AT Ag)(end + Br AT A)7Y)
= Ai(en] + B1A7" As — end — Br AT Ag)(ond + Bi 437 Ag)7
Br1A1(AT Ay - AT Ao T + By AT AL

B, B A A Io .
A _ ST 1 L2 1 Az | _
and the fact that N='N = Iy, implies [Ba Bd] [As Aq] = [0 I]' Thus, the following

relations hold

(B1B) — o1 Ba)(A1 — (a1 A1 + BrAg) (a1 Az + B144)"1 As)
= ($1B; — a1 B3)B141(A3"Aq - AT AR) (o] + B AT AT
= Bi(P1B1A1AT Ag — BiBrAz — 01 B3A1 AT Ay + a1 BaAo)(an ] + AFTA)™?
= B1(Bi(I — B2A3)AT A —~ BrBrAs + o ByA3A71As + ay Bada)(enl + A7 Ay
= B(B1A51 Ay — B1(BaAqs + B1Az) + aa(BsAs + BaAz))(oad + BrAT Ay
= Bi(aal + BrAT AN aal + PrA3T A = 6], D




62

Now, combining Lemma 4.2 with the expression in (4.10), we can easily show the first
relation of the Lemma 4.3. Similarly, using the second equality of (4.7) we can derive the
second relation of the same lemma.

LeMMA 4.3. Let the assumptions of Lemma 4.1 hold and the matrices T, A;, Az 51,

and Sy be invertible. Then, we have

P o _
| [z
| | = : (=BT, ~aaT) (=N 0y | 521 |y
g (- Jrv—lM)[“f?‘r ]
| 0 n | I A
and
o . .
: (- M-IN)[C”I ]
T ;| = : (P18l —eal (M N [ 5110
a| | Camr [ ]
A | C3 |

where C] and C} are malrices of order 2m that can be uniquely delermined.

4.2.2 Derivation of the Block Jacobi Iteration Matrix In this section we con-
sider the Dirichlet problem for Poisson equation on the rectangular domain  and the
splitling defined in Section 4.1. We use the bicubic Hermite collocation technique to dis-
cretize the corresponding continuous GSS PDE subproblems. To simplify the discussion,
in the sequel, we use a uniform mesh with m + 1 y-grid points and { + 1 z-grid points for
each subdomain. Moreover, it is assumed that the overlaps 2; N Q.-.H, 1i=1,...,k—1 are
of equal size with ({p + 1) z-grid points in each of them, b = h; = =% = 222 = b, and
n =tk — (k — 1)}{5. In order to make the entries of the collocation coeflicient matrix inde-
pendent of the mesh size &, the basis functions for the standard bicubic Hermite collocation
are modified as in [30], and instead of imposing the interface boundary conditions

win(z) + (1 — oy )i(-—l = wiio1(2)+ (1 - w )M, z €Ty,
wrui(z) + (1 —w,)ﬁb = wyuip1(z) + (1 — w,)M, z €Ty,

we impose
wiui(z) + (1 — wph=5 Quil=) =ty o (z) + (1 - wf)ha"%(ﬂ, z €Ty,
wivi(z) + (1 - r)ha"' = wliuiy(2)+ (1 - w:)ha—mﬁiﬂ, z € IYy,.

It is worth noticing that

! '
w,- w,.
——— and w, = ————,
h — wih + wi T h—wlhtwl

Wy =
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To form the corresponding linear system we use Papatheodorou’s tensor-product ordering
(see also [30]) to order the unknowns and the equations. Therefore, the original problem
(without applying the GSS scheme) leads to the solution of the linear system Ay = f with
the unknown and the right hand side vector being [¢7,¥Z,..., %)% and [fT, fF,..., fE]T
respectively, where y; and f; are vectors of length 2m. More specifically, the components of
Yon and yoi_1, ¢t = 1,...,n, are the approximate values of z and hg—; al the nodes on the
corresponding z-grid line while 3 and y2;, ¢ = 1,...,7 — 1, are the approximate values of
h “ and h? v at the nodes on the corresponding z-grid line. The enhanced linear system

dxz ay
(4 4) Ag = F, after eliminating the unknowns associated with the values of z; and hi-'L on

the interface boundaries by using the interface boundary conditions from each subproblem,

is expressed in a block form as follows

Dy U 1[a] [4

L Dy U Y2 f2
ST =1 (4.11)

L Dy U : :

L L De] o] |

In (4.11),

Dy = T(m,1,0,1,2L = L 1), Dy = T(m, 1, =4 w, ,1,%51 1) and Dk_T(m,I,——-;i 1,0,1),
while ¥ is a matrix of block order 2[ with A3, Al, ;f" Aa,TLAl as its (21 - 1,2l),
(21,20p), (21— 1,200+ 1), (2[ 2!o+ 1) b]ock elements and 0’s elsewhere and L is a matrix of
block order 2! with Al,Aa, Al, A3 as its (1,21 — 2lp), (2,21 — 2Ip), (1,21 - 2l + 1),
(2,21 — 2Iy + 1) block elements and 0 s elsewhere. ; and f; are vectors consisting of dml

elements each and their relations to those of the original linear system are the {ollowing g; =

[yz(uhl)(: —ig}417 " ’3_"3)}:—1)(: lu)+2lg—15y‘§i:—1}{l—lu}+2fo="'!yg{i—l)(l—lu)+2f—1’gg}f—l)(l—lu)+2l+l]T

= [fz(' ) (—I)+1° - ’f2(1—1)(f ,O)+2|.] It is worth noticing that it can be shown that
#i; = y; if the matrix A on the left hand side of equation (4.11) is invertible (see, e.g., [37]).
Let J be the block Jacobi iteration matrix associated with the matrix coefficient A of

(4.11). To simplify the notation, we assume that

Drlo,..., AT]T (x¥,x7,...,X3)7 D7VAT, A,0,...,0)7 = [YT,Yd,.. . YZT

Dy, A =[20,2F,..., 28T D (AT, AL,0,...,0 = (WE,WF,..., WET

and introduce the new quantities
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Then, it is easy to show that the spectrum ¢(J) of J satisfies o(J) = a(J') U {0}, where

0 X -
Y 00 Z X = [ Xoi—2t, - Xai-a1, ]
Yooz | X2i-2t41 €rXat—z141

J' = g ¥ [ Y- —au-ap ]

' ’ | Yor-21041 —€i¥2r—2t041
1-, 00 Z. 7o -Zzt—zto crzﬂ—ﬂg ]
Y 0 I/?/ g " | Zaicatgrr € Zai—ates

Y = |:Y2:u —CIYQI'O ] Z = I:Z'z”o chZIu ] W = W:Hu _CIWQIO ]
Yotg41 —CtY210+1 Zalo+1 CrZ2lo+1 Watg41 —aWapq1 § -

In view of the structure of J’, it is not difficult to see, through a similarity transformation

using the matrix djag([ c“r] . [; C}I] y- o)y that a(J) = a(J”)U {0}, where J” is of

the same structure as J* with its entries being

X = Xo—21, — aXat-2141, ¥ = Yaip + & Y21011, Z = Zaiy + ¢: Zatg 11,

Y =Yoo, — aYai—2i,41, £ = Zoi—aty — €1 Zat—3ig+1, W = Wap, + ¢, Wopp41.

Applying now Lemma 4.3 we can obtain that

,

X = a2 Wy [ Y| anen-ay ],
v = ey [ ) —an-v-e [ 5]
7 = e f-m e [ 4| @ en-ammy [ 4,

| ¥ = —tr-an-n-sany [T @1, ey |4 T]),
Z = —[,—al)(-M-1N)-t [I] (U el (-2 N [4]),

\ W = —[I,e I[(-N"TM) b [1] (I, ~el)(-N~1M)! [I )L

To simplify the notation further, we restrict ourselves to considering the case ¢, = ¢;.
That is, we assume that the interface boundary conditions are of the same type. Then,
using the fact that (M~1N) = diag(l, —I)(N 1M )diag(l,—1), it is shown that X = W,
Y = Z and Z =Y. Consequently, we take that o(J) = o(—~Gy) U {0}, where

-OJY
Y 00 Z
Z00Y
G = , (4.12)
Y 00 Z
Z00Y
L XU_
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'3

X = [, e, T[(=N-"M)~" ?] (I, —e I)(~N-1MY! [?])-1,

I
2 = U—edl-N=aye [ T (@ —en-v-tany [ 75T ]

with ¢ ¥ = [I‘ crn(_N_lM)l_to _?I] ([I: "crI](_N_lM)l I:hcrI:I)_l-.-

“

Note that Gy is a2 2(k — 1) x 2(k — 1) block matrix.

4.3 One-Dimensional Case

4.3.1 The One-Parameter GSS Tirst, we consider the case where w; and w, are
the same in each overlapping region. In this section, we consider the GSS algorithm (4.3)
together with the cubic Hermite collocation discretization scheme for the boundary value

problermn
e = f, e <3 < b,
{ u(a) = ga, u(b) = gs.
For this problem, we have A; = —2v/3, Ay = =1 — /3, A3 = 2+/3 and A4 = -1 +
V3, where the A;’s are defined in Section 4.2.1. Since these entities are scalars and not
matrices of order 2m, we can now write (—N "1 M) explicitly. Simple computations show

that (-N"IM) = [(1) _11 ] In turn, this implies that (—-N"1M) = [[1] _1'? ] Therefore,
alter some simplification of the previously found expressions takes place we can obtain that

for the case ¢, = ¢

o(J) = o(=Gi) U {0},

where G is the following matrix of order 2(k — 1)

[ 0 !f—lu!—cr 7
[E

I'—I'g 0 0 fnj:?l:':

H2er I4+32c,

fﬂi2cz U 0 I—I'Q

i+2cy 2cr

Gy =
!'—I'Q 0 0 -'Qj:2c|:
{+2c, {+2¢,
fn+2c, 0 0 i—lg
{4+2cr I4+2¢,
I—I’n —Cr 0

L {+ecr A

From the expression above, it is readily observed that Gy is block 2-cyclic consistently
ordered or weakly cyclic of index 2 [39} (see also [41] or [1]), therelore ¢(Gy) = o(—Gy).
It is worth mentioning that in [26] a matrix of precisely the same structure is considered
and recurrence relationships to minimize the spectral radius of Gy are obtained. However,
{or the cases £ = 4 and 5 the expressions that can be obtained are very difficult to handle,
while for £ > 5 we do not know how to slove the equations analytically. We have exactly
the same situation. In the present work as in [26], it is shown that p(G}) can be made zero
for ¢, =1 — [y and for the case k = 2 or £ = 3. Thus, we have the theorem below.
TueoreM 4.1. For k =2,3 and ¢, =1 — Iy, we have p(J) = 0.
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For the case & > 3, the analysis in [26] holds except that the expressions for the
corresponding entries of the G matrix are different. However, in order to go a step further
in the direction of determining the optimal value of ¢, we shall focus on two issues: i)
determine the interval of ¢, for which the block Jacobi method converges and ii) determine
a genuine subinterval of the interval in (i) in which the optimal ¢, lies. For this we state
and prove the [ollowing theorem.

THEOREM 4.2. Under the assumplions made and the notlation used so far the following

relation holds
p(7) = p(Gr) < 1

if and only if e, € (—%,00). Moreover, the minimum (optimal) value of p(J) is attained at
some ¢, € (I — Iy, ).

Proof. First, we consider the case ¢, < —I. Since G is similar to

B 0 !:—lu!—cr T
{+cr
i-lg 0 0 _lg42e
|'I+2c: ff—};_?c,—
T2 ~ 0 0 I+
Cr +2cr
! .
G =
=1 0 0 _lo+2er
+2c I+2c,
fn42er 0 0 i=lg
{4+2cr I4+2c
({—lo)—er 0
L i+cr i

and —Gj, is an irreducible nonnegative matrix with all nonzero entries strictly increasing
with ¢, in (—o0, =1}, it follows that p(Gy) is strictly increasing. Moreover, it is easy to show
that lim,__, . p(Gi) = 1. Consequently, we obtain p(J) > 1. In case — < ¢, < —%, we

have
| dEt(Gk)l = | ?e:t(Gk[eza ell 118-'1: €3y - :,C2k=2, e2k—3])|
= (e - 12> 1L

Note that the inequalily above is satisfied because L:,:-E;—r':': >1and If!_;ztg: < 0. Therefore, at
least one of the eigenvalues of G must have modulus greater than 1, implying that p(J) > 1.
In the case —% < er % —%L, % 1s an irreducible nonnegative matrix with all nonzero entries
strictly decreasing with ¢, increasing. Specifically, we have lim, _ (s, /2)- p(Gx) = 1. This
implies p(J) > 1. For the case ¢, > —%1 and ¢ # ! — Il we have p(J} < 1 because Gy is
irreducible and the absolute sum of the first row is less than ||G||e.o = 1. As for the specific
case ¢, = [ — Iy, G}, is reducible, since its first and last rows are null vectors. However, after
deleting the first and last two rows and columns, the reduced matrix is irreducible and its
spectral radius is the same as that of G. Then, following the same arguments as previously,
we obtain again p(J) < 1.

Coming to the second assertion of the present theorem, it is apparent that the minimum
value of p(J) is attained for some ¢, € (—12’1, o). However, to obtain the genuine subinterval

mentioned in the statement of the theorem a much decper theoretical analysis, based on a
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number of other statements, is required. This analysis is presented in the next subsection.
O

= 1 _ g = l-wp = W
Note 1 We have w, = TFe ke Since ¢ = 7 and w, = oy

Thus the con-
vergence interval in terms of w (= w, = wy) is (0, 5;3,;-,;) D (0,1] and the optimum occurs
for some w in the interval (O’ﬁTl_l—Toiﬁ) C (0,1). In addition, as ~ — 0% the convergence
interval tends to (0, 1] while the interval in which the optimum occurs tends to (0, 1).
Note 2 The problem of determining a “better” interval in which the optimum ¢, lies
than the one already obtained, i.e., ({ — g, 00), is an open problem that is being investigated.
However, a number of numerical experiments have shown that the value ¢. = [ - { (i.e.,

W= m) is a good approximation to the optimal value of e,.

4.3.2 Appendix to Section 4.3.1 In this subsection we prove the second part of
Theorem 4.2. This is accomplished after 2 number of statements presented as lemmas are
proved.

LEMMA 4.4. Let p(B) be the speciral radius of any mairic B of even order. Then, we
have det(B — AT) > 0 for all A > p(B).

Proof. Let p(A) = det(B — AI). It is clear that p(}) is a monic polynomial. It then
follows that p(A) — o0 as A — 0. Suppose that dei( B— p1I) < 0 for some p; > p(B), then
there must exist a number p; > p; such that p(ps) = 0. This, however, contradicts the fact
that p(B) is the spectral radius of B. D

For the following statements, we define the three matrices below

0 0 ¢
[ 001-1 t 001-1¢
1-200 ¢ 1-100 ¢
By = . »Azn = ‘.
it 001~-t¢ i 001-1¢
1-400 ¢ 1-200 ¢
| t 0 | 1 0 |
and i
[ ¢ 0 1-1¢
1—1 —p(t) 1
0 t —p(t) 0 1-t
0 1-¢t 0 -—pt) 1
Copr = . ’
it —-p(t) 0 1-t
1-¢ 0 —p(t) 1
! t —p(1)

where 0 < £ < 1. Notice that the indices denote the order of the corresponding matrices

and » is any nonnegative integer.
LEMMA 4.5. For the speciral radii p(Azn) and p{By,) of Agy and By, we have p(Aq,) <

p(Bdn)-
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Proof. Let [zy,%2,...,%2,)7 be the eigenvector of the irreducible nonnegative matrix
Aaqy corresponding to the spectral radius p{As,). Then, it is easy to show that the vector
(Z1)Z2, - .y T2n, T2n, - - -, T2, 21] i5 an eigenvector ol By, with corresponding eigenvalue A =
p(Az,) Trom which it follows that p(Asn) < p(Bar). O

LeMMA 4.6. If p(t) is the spectral radius of B,, then det(Cop_1) > 0 for all k =
1,...,n.

Proof. It is easy to see that for & = 1 our assertion holds. For k£ > 1, we expand
det(Cat—1) with respect to its first row to get det(Cor—1) = tdet(Byp_1) — p(1)1) + (1 —
)% det (Ca(r—1)-1)- Since By(x_1y is a principal submatrix of the nonnegative matrix B,, it
will be p(Bai—1)) < p(B2n). On the other hand, by Lemma 4.4 we obtain that det(By..1)—
p(t)I) > 0for k = 2,...,n. Thus, the proof of the present lemma is completed by induction
onk. O

LEMMA 4.7. The spectral radius p(t) := p(Ban(1)) of Ban sirictly increases with { for
O<t<l.

Proof. We first observe that By, is a nonnegative and irreducible matrix as 0 < ¢ < 1.
Then, it follows that p(t) is 2 simple eigenvalue of B,, and det(B2, — p()I) = 0. Taking
the derivalive of det(Bq, — p{t)J) = 0 with respect to t and using the following two basic

properties
%(det([al, az,.-.,a2:]%)) = det([%al, @z, .., a25)7) + det([as, H‘-%az, S 790 L = S
+ det([a;, aq, ..., a"‘%&gn]r)
and

det([ay, . .., e;-1,8; + b, 11, - - -, ﬂzn]T)
= det([al, ey @i_1,88, 854154 -, a?n]T) + det([ﬂl, ey ai—labl'a Qigly--- a?.ﬂ]T)':

with each a; or b; denoting a vector of length 2n, we obtain

n—1 - 2n
2{ _ det(Bax — p(t)) det( By(n_1)-ze — (D} (Dp(1) + D det(B) = 0. (4.13)
k=0 k=1

In (4.13), det{Bg — p(t)]) is defined to be 1 and By is a matrix with the same entries as
Bay — p(t)] except that its entries in the positions (k, k), (k, k+2(=1)) and (&, k — (=1)¥)
are 0, -1 and 1, respectively. Since p(1) is a simple root of det(Bs, — AJ) = 0 and from
Lemma 4.4 we have det(Bz, — AI) > 0 for A > p(t), it is implied that & det(B,, —AI) > 0
for A = p(t). Thus, the coefficient of p'() in (4.13) is positive, because it is equal to the
value of £ det(Bz, — AI) at A = p(t). So, to show that p'(t) > 0, it suffices to show
that 337, det(ﬁk) < 0. Tor the terms corresponding to £ = 1 and £ = 2n, it is easy
to show that det(E‘I) = det(ﬁgn) = —det(Cap—1). Thus, from Lemma 4.6 we obtain
det(B;) = det(B2,) < 0. For the remaining terms, we shall consider pairs such that &k = 2:
and k = 2i 4 1 simultaneously. First, we switch the (2i)th row of Bp;y; with its (2i + 1)st
one and multiply the new (2i)th row by —1. Note that the determinant of the resulting
matrix is equal to det(E‘g;.,_l) and only its (27 + 1)st row differs from that of the matrix Bo;.
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Then, we apply the second property above to get det(fa’z;) + det(ﬁ'g,-.!.l) = det(T;), where

T: is the matrix of order 2n shown below

[—p(t) ¢ ]
t —p(t) 0 1-1

1-1 0 —p(t) ¢

. l. 0 0 -1
e L) ) 1

; -p(1) 0 1-1t
1-t 0 —p(t) t
| t —p(t) ]

Expanding the determinant of 7; with respect to its (2¢)th row, we obtain

det(T;) = — det(Aza—si — p()I) det(Cai_y)) — det(Azi — p(£)]) det(Con—(zign))-  (4.14)

Now, we will derive another expression for det(7;). For this, first we add the (2i)th row of
By, — p()T to its (224 1)st one. The resulting matrix has all its rows the same as those of
the matrix 7; except for its 27th row; its determinant is zero because det(Ba, — p(2)I) = 0.
Then, we maultiply its (2:)th row by 1/(1 — ¢) and add the new matrix to the matrix T;.
Note thal the determinant of the resulting matrix is the same as det(7;). In view of the
structure of the new resulting matrix, we can easily get
1

1-1
From (4.15), we readily see that det(T;) = det(Th—:). In the discussion that {ollows, we
assume that 1 < z < j, where j = [§] is the largest integer not exceeding n/2. Since Aj; is

det(T}) = det(Azn_ni — p(t)T) det(Ay; — p(t)]). (4.15)

a principal submatrix of Ag;, we get p(A2;} £ p(Az;). Furthermore, by Lemma 4.5 we have
p(A2) € p(Az;) € p(Ba;) € p(Ban)- It then follows that det(As;—p(2)I) > 0 by Lemma 4.4.
If we assume that det(Z;) > O then both det(Azn—2; — p(£)I) and det(Aq — p(t)I) are
nonnegative by (4.15). On the other hand, from Lemma 4.6 we know that both det(C2;_1)
and det(Co,_(2i41)) are positive, therefore, the right hand side of (4.14) is nonpositive, which
contradicts the assumption det(7;) > 0. Consequently, we obtain det(ﬁg,-) + det(Bg,-.l.]) <0
for 1 € ¢ < n. This together with the negativeness of the first and the last terms completes
the proof. D

Let us now consider the case where ¢, € (—%’-, [ —lp). Since Gy, is a nonnegative matrix,
p(Gx) 2 p(Byp—g)) for t = %2: because Byx_3) Is a principal submatrix of Gx. On the
other hand, it is easy to show that p(Gy) = p(Bg—3) for t = ﬁﬁ; and ¢, = I — [o.
Therefore, applying Lemma 4.7 and the fact that f:_;.;g: > ﬁﬁ; for ¢, € (—%,i — Ip) lead
us to the conclusion that the spectral radius of the matrix Gy in (4.12) with ¢, =1 — I
is less than any one corresponding to ¢, € (—%1,! — lp). This result with the first part of
Theorem 4.2 show that the optimal value of ¢, is attained at some point in the interval

[{ — lg,00). This completes the proof of the second part of Theorem 4.2.
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4.3.3 The Multi-Parameter GSS As we have observed, there are many choices
for the parameters w in algorithm (4.3) and therefore in the linear system (4.11). Here, we
shall consider the most general case, that is the one where there are two pairs of parameters

wl.( i) (i) ) and c,(-) be defined in the same way

and wy " Introduced for each subdomain ;. Let ¢
as ¢; and ¢, were defined from wy and w, before. Let J be the block Jacobi iteration matrix

associated with (4.11). Then, following similar analysis to that in Section 4.3.1, we get

a(J) = o(~Gy) U {0}

where - .
0 X )
Y, 00 }_’2
Zo 00 Z
Gk= e
Y1 0 0 }:’k—l
Zk-1 0 0 Zpy
i X 0
and

_ = -2 —di-1 7 _ o PRSI
LA i
- fo+cr e}’ E I=lg+c !
X= %; gl oot i v O R
Following the same approach as in the proof of [26, Theorem 3.1], it can be shown that the
next theorem holds.

TueoreM 4.3. Let ¢\ = (i — 1)(I — lo), ¢ = (k= i) — lo), i = j,-. ., k, where j is
any integer in {1,...,k}, and ihe remaining paramelers i) -
that [ 4 ! # 0 and I +eP g ;é 0. Then, we have p(J) = 0.

Note In view of the structure of the corresponding G L ma.trix, it is observed that among
all the sets of parameters the set ¢ O = = (- 1){I- lg), ¢ = (k-2 -1l),:=1,...,k,
minimizes the maximum order of the Jordan blocks of Gy which is &k — 1. We have also

and c?] be any numbers such

observed [rom a number of experiments carried out that the maximum order of Jordan

blocks affects very slightly the number of iterations required to achieve a specified accuracy.
4.4 Two-Dimensional Case We consider the Poisson equation
Au=fin )
with boundary conditions
© =g on dQ

where Q is a rectangle. For this problem, we have that A; = —rT + 1T, Ay = 811 + w7,
Ay = 7Ty + 1Ty and A4 = 37y + @7, where

a1 a
T,-=[1 2
a3 a4

@3 —04

@ _“2](2m)

5£= 1:23
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with
@ 83 63 G4 r=2/3, s=-1-/3,
|t wi w ‘wi‘w.:mei_l_l_2 _34/3
Te|l—7 s 7 & =27T53A YT s

Note that i denotes the “conjugate” of { = ¢ + 15V3 ,ie. T =1 — t24/3 and Tj is defined
as in [30].

Following the proof of Lemma 5.1 in [27], it can be shown that there exists a nonsingular
matrix V such that VT3 = DVT, with

D = diag(A1, Az - . -, A2 ) = diag (—1'2, -36, z},=7,.. .,x;_l,a:m_l) ,

where
2 = 12[(8-{-:0593')i-\/43+110cosﬂ_f—Z(cosﬂ_fF)]
i —7+cos 8, !
9, = iz
7 m "

Thus, it follows that there exist nonsingular matrices P and @ of order 2m such that
PA;Q = D;, i=1,2,3,4, and each D; is a diagonal matrix. Then, it can be shown that

Q™' o _ar-1 Q0
[ 0 Q—l ( N M) 0 Q
_ (D]Dq—DQD;;)_l 0 :l DI—D?'_DED“E DE_D%
- 0 (Dl Dy - D2D3)_1 D% - D% DDy — DDy |-
Let P = (€1, €2m+11 €2, €2m421 - - 1 €2m, €4mm], Where e; has 1 as its ith component and 0’'s
elsewhere. It 1s clear that

P Q™ o ](_N—lM) [Q 0

0 Q—l 0 Q]P=djag(Dla"-aD2m)1

where DJ- = [j—;—' g-f-’] with the property det(ﬁj) =1,7=1,---,2m. On the other hand,
; ¢15

it is easily found out that
s (r i) (st wd) — (r+ )@+ @A) 432 192454 ™
VT o+ )E @A) - (s+wh)(r 1) T 432+ 243+ A3

Also, it is observed that dy; > 1 because all A;’s are less than 0. Ience, we may set
di; = cosht; for some 8; > 0. Using the fact that det(D;) = 1, it is proved that

1 1 _
cfgjcfgj = sinh #;. Therefore there exist nonsingular matrices @; = [ ’i!.i_ (@] such
dz; — \ da;
that Q;lﬁij = diag(cosh§; — sinh @;, coshé; + sinh #;). Let @ = diag(Q1,-..,@2m),
. L -[O"1 . .
then we obtain that @Q~1P [QU Q0_1] (-N"1M)? [cg g ] P(Q) = diag(cosh p#y — sinh pfy,
cosh p#y +sinh pdy, . . ., cosh pfay, — sinh pfoy, , cosh plzy, +sinh pbam ). Thus, using the equa-

tion

. _ fday _
0 [cosh p#; — sinh pb; 0 ] 07 = cosh p; —Lda,- sinh p#;

i Q7 = _— V ’
’ coshpdy + sinh pf; ] =2 Y Z:j sinh pf; cosh pf;
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we can summarize the discussion and conclude that

(4" L] vy 28] = [ ﬁiﬁ gfﬁ] , (016

where

ﬁlp = diag(coshpﬁl,coshpﬁg, .., cosh pfa,)

— Dy, = tha.g(\/ sinh pfy, /%> sinh pb,, . .. 1/J sinh pfam ) . (4.17)

dz
d
"'Dgp = diag( Eg-:-smhpﬂl, Eﬂlsmh pla, ... -:-"’msmhpﬂgm)

Applying now (4.16) to express X, Y and Z of the matrix G defined in (4.12) we can
come to the following conclusion.

THROREM 4.4. The spectrum of the block Jacobi iteralion malriz associated with the
enhanced linear system (4.11) for the iwo-dimensional Poisson model problem is given by

a(J) = o(~G)) U {0}.
The matriz G, is of the same struciure as G defined in (4.12) with

(Dz{f-—lu) + er Dyjyi))(Dat — chu) 1
= (Dzu_f.,) — ¢t Da(1_1g))(Dat — 2¢, D1t + ¢ Dat) -1,
(D‘Za'o 2¢; Dy + ¢ Ds.'u)(Dz.' 2¢,Dyy + CED:;:) 1

and l_).-p,z' =1,2,3, being defined in (4.17).

CoroLLaRy 4.1. The SAM algorithm converges for all possible combinations of 1, Iy
and k.

Proof. In the traditional approach to SAM (e, is chosen to be zero) X, Y and Z can
be simplified to

sinh(2! - 2!0)91 Siﬂh(2[ - 2£g)92m

X = Y = dla—g( Sinh 2[81 LI Sinh 2!92:71.

)

and

Z _ d_l (Sillh 2[091 SiIlh 2[092,“
= B inh 218, T sinh 216y,

Then it follows from

sinh(2] — 2[p)8 + sinh 2l8 2 cosh(l — 2lg)8sinh {8 cosh(l — 2{p)d
sinh 2{8 - 2 sinh [ cosh I8 - cosh 18

that
cosh({ — 20o)6;

fi,i=1,....2m COS]]IS,‘ <l O

p(Gy) < NIGilleo =

Note It is well understood from the proof of the corollary above that the amount of

lo/! is a key factor that affects the convergence rate of SAM.
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4.5 Numerical Examples In this section, we present a number of numerical ex-
amples to verify the theoretical results obtained in the previous sections. We use the zero
vector as the initial guess of the solution of the enhanced linear system (4.11). We display
the maximum error ||z - #1[|c based on an = X = grid of points, where u is the theoretical
solution of the continuous Broblem and u1 is the computed one. The iteration step (iier)
denotes the number of the block Ga.uss-Sneidel jterations required to satisfly the stopping
criterion %ﬂﬂ < ¢, where %9 is the jth iteration approximation to the solution
of the linear systeoron (4.11) and € = 1.0¢e — 6 and ¢ = 5.0e — 6 for 1-D and 2-D problems,
respectively. Throughout, we denote by 1-GSS the one parameter GSS and m-GSS the
muti-parameter GSS.

TaBLE 4.1

The convergence of the SAM, 1-GSS and m-GSS methods for i-dimensional model boundary value
problem with ezael solution u{z) = ¢=100(x-0.)? (22 _ 2y The number of subdomains (%), grid size, number
of iterations taken for the splitting scheme to converye and the discretizalion error are displayed for two

different domain spliltings.

1-GS8(¢, =1 —1y) SAM m-GSS
fu:f/?, h=1 fo=f/2 h=1 fu=f/2 =1
(k,grid) |iter| error |iler| error |iter] error [iter| error |iter| error |iler| errer
(2,10) 2 |6.64e-3| 2 [6.64¢c-3| 6 |6.64e-3| 13 |6.64e-3| 2 |6.64e-3| 2 |6.64e-3
(2,22) | 2 [8.42e-5| 2 |B.42¢-5]{ 4 [8.42e-5(10 |8.36e-5| 2 [8.42e-5 2 18.42e-5
(3,17) 3 [3.2Te-4| 3 [3.27c-4| T [3.27e-4| 23 |3.2Te-4| 3 |3.2Te-d| 3 |3.2Te-4
(3,‘29) 3 |2.67e-5| 3 |2.67e-5| 5 [2.67e-5| 38 [2.5Te-5| 2 [2.67e-5| 3 |2.67e-5
(4,26) | 4 [4.84e-5( 4 |4.84e-5| 8 |4.82e-3| 73 |4.72e-5 3 |[4.84e-3| 3 |4.84e-5
(4,46) | 3 [4.28e-6| 3 ]4.25e-6| 7 [4.05¢-6(125]|6.12e-6| 3 |4.31e-6) 3 4.30e-6

For the one-dimensional case, we are using the boundary value problem

w'(z) = (), = € (0,1),
w(0) = g0, w(1)= g1,

where f(z), go and g1 are selected such that the exact solution is u(z) = e~100(z-0.1)% (g2 _g),
We apply both the traditional SAM and the one-parameter GSS with ¢, =1~ lp. This is
the optimal value for the case k¥ = 2 or 3 both for minimum and maximum overlaps. For the
multi-parameter GSS and the domain split with minimum overlap, among the many choices
of the parameters ) and c}i), we clhoose cl(i) = (i— 1){{ - o), and e = (k-9 - L),
i=1,...,k. The numerical results obtained are summarized in Table 4.1. The data in
Table 4.1 verify our theoretical results, namely that the one-parameter GSS outperforms
the traditional SAM and for k = 2 and 3 we get the optimal convergence. However, 1-GSS
is slower (based on the number of iterations) than the multi-parameter GSS.

Figure 4.2 displays the relation between the number of iterations and the parameters
¢, for the 1-GSS for four pairs of (k,!), where k£ denotes the number of subdomains and {
denotes the number of subinterval in each sundomain. OQur experiments are carried out for
maximum (half} overlap. From these plots, we can conclude that ¢, = ! — Ip is indeed the
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1. 4.2. Plols of the number of iteralions required by 1-GSS lo achieve convergence. Iteralions versus

¢r for the one-dimensional problem with mazimum overlap and different pairs (k, ).

optimal value for the case & = 3 while the optimal value of ¢, for £ > 3 is on the right of
{ — lp as this was shown in Section 4.3.1. Moreover, it appears that the optimal value of
¢r can be expressed as a(/ — lp) for some number «, which seems to increase with k. Also,
from the same plots, we can observe that the traditional SAM (case ¢, = 0) has a very poor
convergence rate compared to that of the one-parameter GSS with ¢; =1 — {j.

For the two-dimensional case, let the domain ©Q be a unit square. First we consider the

Poisson equation
Uzz -+ Uyy = f(I: y)‘.' (:B'! y) € Y (418)
u(z,y) = g(z,y), (2,y)€ 04,

where f(z,y) and g(z,y) are selected so that
?.L(J:., y) — 10(3_100(:_0']):(3.:2 _ :c)e—lﬂﬁ[y—o.l)z(y‘Z _ y) (419)
Then, we consider the more general PDE operator

2+ (- e Juzs + [1+ Juyy + 5[z(z - 1) + (y - 0.3)(y - 0.7)]e = f, (4.20)

1
(1+42%)
taken from [33], with Dirichlet boundary conditions and the same solution (4.19) on the
domain §3.

For the Poisson problem using a 2-way splitting (k=2), we can derive all the eigenvalues
of the corresponding Jacobi matrix by Theorem 4.4 for any { and {g. In Figure 4.3, the
relations between the spectral radii and the parameters w, ¢, are depicted for maximum
overlap. In these figures, we can see that for a fixed parameter w the spectral radius

decreases with the value of I increasing. In addition, we observe that for a given ! the
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minimum of the spectral radius always occurs near w = 0.8. Note that ¢, = %’-, which is
close to the value { — ly = /2 for maximum overlap and for small values of /.

Tables 4.2 and 4.3 display the convergence behavior of SAM and 1-GSS for thoese two
problems for different splittings and grids with maximum and minimum overlap. Since
the theoretical values of the optimal parameter ¢, for these problems are not known, we
experimented with the value ¢, = I — lg which corresponds to the case & = 2 as this can be
seen from Figure 4.3. In Table 4.2 and 4.3 we observe that an improvement regarding the
number of iterations required is obtained by using ¢, = I — Iy rather than ¢; = 0. The data
indicate that the improvement is more significant when ! is a small number. The reason is
that the spectral radius of the corresponding Jacobi matrix might be very small when [ is
getting bigger (as shown in Figure 4.3), which implies that the stopping criterion can be
achieved by a small number of iterations. However, in our experiments we also observe the
value of ﬂ%ﬁ_}ﬂg at each iteration and conclude the one-paramecter G5S with e, = {—{g
does oulperform the traditional SAM for any !.

4.6 Concluding Bemarks and Discussion In this paper we have studied the pa-
ramelerized GSS at a discrete equation level {matrix formulation), coupled with the cubic
Hermite collocation discretization scheme for both the one- and the two-dimensional model
problems. For the one-dimensional problem, we have found the optimal parameter val-
ues which correspond Lo the smallest possible spectral radius of the block Jacobi iteration
matrix associated with (4.11) for & = 2,3 in the one-parameter case and for all k in the
multi-parameter case. We also determined the interval in which the parameter ¢, must lie
so that the convergence of the Jacobi method would be guaranteed. Moreover, a subin-
terval of the previous one was found in which the optimal value of ¢, for & > 3 should
lie. The determination of the optimal parameter ¢, in question is still an open problem
but our analysis suggests that this optimal value is 2 number greater than { — Ij. I'or the
two-dimensional case, our analysis consists of Theorem 4.4. This theorem improves our
understanding of the relation between the parameter ¢, and the convergence properties of
the corresponding block Jacobi iteration matrix. In addition, it provides a simpler matrix
G}, to determine this relation. In particular, for k£ = 2 we have experimented with several
combinations of / and w or ¢, with Ip = {/2 to obtain the corresponding spectral radius as
shown in Figure 4.3. Irom the experiments, we can see that w = 0.8 is independent -of {

and may give an almost optimal convergence rate among cases with [ being fixed.
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TABLE 4.2
The convergence of the 1-GS8 (e, = | — lg) and SAM (er = 0.) for a Dirichlet model problem with
minimum and mazimum cverlap splittings of the PDE domains. The ezact solution is u(z,y) = 104(z}d(y),
where ¢(z) = g 100(=-0.1)7 (z* — ). The number of subdomains (k), grid size, number of iteration and

discrelizalion error are displayed for both splittings,

h=1If2 =1
er=1I-1 cr=0. er=1-10 cr =0,
{k,grid) | { |ller| error |iter| error [iter| error [iter| error | I
(2,10x10)| 6 | 3 |7.7de-3[ 3 | 7.74-3| 4 [7.T4e-3| 5 |7.T4e-3|5
(2,22x22) |14 1.53e-4| 2 [1.53e-4 1.53e-4| 2 [1.53e-4|11
(3,1Tx17)| 8 6.08e-4| 3 |6.08e-4 6.08e-4| 7 |6.08e-4|6
(3,29x29) |14 4.69¢-5| 2 [4.69e-5 4.6%e-5| 10 |4.61e-5 |10
{(4,26x26) |10 9.0%-5| T [9.09e-5 9.08e-5| 20 [8.94e-5| 7

[ - ]
o oW

i=4,L=1/2 i=4,lh=1
cr=1—1 cr = 0. cr=1—-1 cr = 0.
grid |iler| error [iler| error |iter| error [iler| error | grid
TxT 1.74e-2| 5 [1.7Tde-2| 5 |2.29e-2| 10 |2.2%e-2| 8x8
9x9 1.56e-2 1.56e-2 3.19-3| 6 [3.19e-3(11x11
1Ix11 3.19¢-3 3.19e-3 7.34e-4| 10 [7.33e-4[14x14
13x13 3.24e-4 3.24e-4 6.08e-4 | 16 |G.08e-4 [17x17
1515 §.51e-4 8.50e-4 2.21e-4| 24 [2.18e-4|20x20

o W e
- -1 O o

W GN e GG
oot =]

I=6L=1f2 l=6l=1
cr=10—1n cr = 0. cr=I1l—1 cr = 0.
grid |iter| error [iter| error [iter| error |iter| error | grid
10x10( 3 |7.74c-3| 3 [7.7de-3| 3 [1.13e-3| 4 [1.13e-3|12x12
13x13| 2 |3.24e-4| 3 [3.2de-4| 5 [5.08e-4| T [6.0Be-4|17x17
16x16| 3 |[7.64e-d| 4 |7.64dc-4| 6 [1.53e-4| 16 |1.51e-4|22x22
19x19| 5 [3.21e-4| 12 [3.21e-4| 7 |7.3Te-5| 30 [7.18e-5|27x27

b

o e Lo b




78

TABLE 4.3
The convergence of the I-GSS (e, = 1 — ly) and SAM (e, = 0.) for a general PDE with minimum

and marimum overlap splittings of the unit square. The ezact solution fs w(z,y) = 104(z)é(y), where
(=) = g=100(==0.1)* (z®—z). The number of subdemains (k), grid size, number of iteralion and discretization

error are displayed for both splitlings.

=1

cr=I0—-10 cr = 0.
error Jiter| error | {
T.72e-3| 5 |7.72e-3
1.54e-4| 2 [1.54e-4]|11
6.08e-4] 6 |6.08e-4]| 6
4,70e-3| 10 |4.66e-5|10
4,70e-5| 17 |8.98e-5| 7

Ih=1f2
cr=I—-10
(k,grid) | I [iter| error [iler
(2,10x10)| 6 | 3 [7.72e-3| 3
(2,22x22)114 1.54e-4
(3.17x17)| 8 6.08e-41
(3,29x29) |14 4.70e-5
{4,26x26)[ 10 9.12e-5

er=0.
error |iter
T.72e-3| 4
1.54e-4
6.08¢.4
4.70e-5
9.12e-5

Db W R
& oy W

L b G I

=41 =1/2 Il=4L=1

grid

C,—=l—fo

Cr=0.

Cr=f—ln

cr = 0.

iter| error |iter

error |iter

error |iter

error | gnd

=T

Ix9
11x11
13x13
15x15

(=N, B U ]

3 [1.75e-2] 5
1.57e-2
3.17e-3
3.24e-4
B.50c-4

h ot G In
w o n =

1.75e-2| 5
1.5Te-2
3.17e-3
3.23e-4

L= =y -

8.4%¢-4

2.31e-2| 10
3.17e-3( 6
T.34e-4| 9
G.08e-4| 15

2.21e-4| 18

2.31e-21 8x8
3.17e-3[11x11
7.33e-4|14x14
6.06e-4 | 17x17
2.18e-4 | 20x20

I=6L=1/2

{=68h=1

grid

Cr=£—l'u

Cr=0.

C.—=l'—fu

cr =10

iler| error |iter

error |iter

error |iter

error | grid

10x10
13x13
16x16

Lo G b

19x18

3 [7.72e-3| 3
3 [3.24e-4| 3
3 [7.63e-4| 3
6

3.21e-4| 11 [3.2]1c-4

T.72e-3| 3
3.24e-4] 5
7.63c-4] 6

7

1.13¢-3| 3
6.08e-4| 6

1.54e-4| 14

7.40c-5| 38

1.13e-3|12x12
6.08c-4|1Tx17
1.54e-4 | 22x22
7.37e-5|27x27
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