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THE ANALYSIS OF ITERATIVE ELLIPTIC PDE SOLVERS BASED ON

THE CUBIC HERMITE COLLOCATION DISCRETIZATION"

YU·LING LAl', APOSTOLDS HADJIDIMOSI, ELIAS N. HOUSTIS1, AND JOHN R. RICEI

Abstract. Collocation methods based on bicubic Hermite piecewise polynomials have been proven

effective t.echniques for solving second-order linear elliptic PDEs with mixed boundary conditions. The

corresponding linear system is in general non-symmetric and non-diagonally dominant. Iterative methods

for their solution arc not known and they aTC currently solved using Gauss elimination with scaling and

partial pivoting. Point iterat.ive methods do not convcrge even for the collocation equations obtained from

model PDE problems. The del/elopment of efficient iterative solvers for these equations is necessary for

three-dimensional problems and their parallel solution, since direct solvers tend to be space bound and their

parallelization is difficult. In this thesis, we develop block iterative methods for the collocation equations

of elliptic PDEs defined on a rectangle and subject to uncoupled mixed boundary conditions. For model

problems of this type, we derive analytic expressions for the eigenvalues of the block Jacobi iteration matrix:

and determine the optimal parameter for the block SOR method. For the case of general domains, the

iterative solution of tile collocation equations is still an open problem. We address this open problem by

generalizing interior collocation method for PDEs defined on rectilinear regions, study the structure of these

equations under different ordering schemes, and apply AOR and CG type iterative solvers to them. Another

objective of this thesis is to study the applicability and effectiveness of geometry splitting methods coupled

with collocation discretization scllemes. Specifically, we consider the Generalized Schwarz Splitting (GSS)

method, which is an extension of the Schwarz Alternating Method, for solving elliptic PDE problems with

generalized interface conditions. The main focus is the iterative solution of the corresponding enhanced

GSS linear system for a model problem. For this we carry out the spectral analysis of the enhanced block

Jacobi iteration matri.x. In the case of one-dimensional problems, we determine the convergence interval of

one-parameter GSS and find a subinterval of it where the optimal parameter lies; moreover, we obtain sets

of optimal parameters for the multi-parameter ass case. We asia analyze the convergence properties of the

one-parameter GSS for a two-dimensional model problem.

Key words. elliptic partial differential equations, collocation methods, SOR iterative method

Introduction

An open problem is to find a method for the iterative solution of the discrete equations

obtained from applying the collocation method based on hicuhic Hermite piecewise polyno­

mials to discretjze a general second-order linear elliptic partial differential equation of the

form

Lu == auxx +CUyy +dux +euy + fu =::: g, (x,y) E R,

subject to the boundary conditions

AU
Bu '" exu + f3 an = 6, (x, y) EaR,
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where R is it general domain while all the coefficients and the right hand sides in (1.1) and

(1.2) may depend on x and y.

One of the objectives of this thesis is to analyze theoretically and experimentally iter­

ative methods for the solution of Hermite collocation equations associated with the PDE

equation (1.1) defined on a rectangular domain with Dirichlet or Neumann condltions on

parts of the boundary. A "natural" ordering of the collocation equations and unknowns [22]

leads to a banded coefficient matrix which Is in general non-symmetric and non-diagonally

dominant whose diagonal elements are almost all zero. Thus a straightforward applica­

tion of the classical point iterative methods to solve these equations is not possible. These

systems are currently solved by Gauss elimination with scaling and partial pivoting [9J.
Some "customized" direct and iterative solvers have been developed for solving the Hermite

collocation equations for special elliptic PDE operators and boundary conditions on the

unit square [6], [2]. The iterative solution of the Hermite collocation equations was first

addressed in [24] and [30] for the case of interior Hermite collocation applied on the Poisson

PDE problem with Dirichlet boundary conditions defined on the unit square. The appli­

cation of the iterative methods was based on a special reordering of the equations and the

unknowns, which resulted to a block tridiagonal coefficient matrix. In this thesis we extend

the iterative approaches proposed in [24J and [30] for a class of "general" Hermite collocation

equations. These extensions are based on a new partitioning of the corresponding "interior"

collocation matrix which allows us to derive analytically the eigenvalues of the correspond­

ing block Jacobi iteration matrix and determine the optimal overrelaxation factor of the

Successive Overrelaxation (SOR) iterative method [39]' (41]. In addition, we improve several

of Papatheodorou's theoretical results for the "interior" collocation equations [30]. In the

case of a model elliptic PDE problem with uncoupled mixed boundary conditions, we derive

analytic expressions for the eigenvalues of the block Jacobi iteration matrix based on a new

partitioning of the interior collocation matrix, and determine the optimal overrelaxation

factor for the block SOR iterative method. We present numerical results which support the

theoretical analysis of the block SOR method and compare its convergence behavior with

those of the block Jacobi, Gauss-Seidel and AOR used in [30]. Furthermore, we compare the

time and memory complexity of the block SOR, UNPACK BAND GE, and GMRES mathematical

software for solving the Hermite collocation equations obtained from the discretization of

several PDE problems. The numerical results indicate that the block SOR method is the

most efficient method for solving these equations.

For the case of general domains, finding methods for the iterative solution of the cor­

responding discrete collocation equations is still an open problem. In a series of papers

[22, 20, 21], Houstis, Mitchell and Rice proposed three algorithms for the numerical so­

lution of the second-order linear elliptic PDEs on general two-dimensional domains using

the cubic Hermite collocation discretization method. Their software is available in the

collected algorithms of the ACM. The most general of these algorithms, called GENCOL,
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implements the general exterior cubic Hermite collocation approach where the boundary

collocation equations are coupled with the interior ones. A simplified version of the GEN­

COL algorithm, called INTCOL, implements the interior cubic Hermite collocation method

when the boundary collocation equations are uncoupled from the interior collocation equa­

tions. The applicability of the INTCOL algorithm is limited to PDEs defined on rectangular

domains. In order to address the iterative solution of collocation equations we extend the

INTCOL algorithm for general rectilinear domains (by "rectilinear" we mean the boundaries

are parallel to one of the axes). Throughout, we refer to it by the acronym GINCOL. More­

over, because the ordering of the unknowns and equations in the collocation discretization

methods plays a vital role for the numerical solution of the linear system produced, we de­

velop two indexing modules for the CINCOL algorithm. One is based on the finite-element

ordering [43] and the other is based on the tensor-product ordering [30]. The collocation

coefficient matrix based on a finite-element ordering for the CINCOL algorithm is in general

non-symmetric and is not diagonally dominant; many of its diagonal entries are zero. Using

the tensor-product ordering, the linear system derived by the CINeOL algorithm generates

the same block structure that is produced by INTCOL. We explore the applicability and

the convergence properties of the block iterative methods for CINCOL applied to model

problems defined on L-shaped domains as well as on a few more general rectilinear domains.

Furthermore, the tensor-product ordering was successfully applied to the discrete equations

produced by CENCOL together with the SOR and CG iterative solvers. A number of experi­

ments were carried out to study the computational behavior of these iterative schemes and

to estimate the various parameters involved.

Another objective of tills thesis is to study the mathematical and computational behav­

ior of geometry splitting methods coupled with Hermite collocation discretization schemes.

A well known geometry splitting methodology is the Schwarz Alternating Method (SAM). It

was originally introduced in [35] over a hundred years ago to solve the Dirichlet problem for

Laplace's equation on a plane domain by iterating over a sequence of Dirichlet subproblems

defined on two overlapping subregions of the original domain. The coupling of these sub·

problems is enforced through the so called interface conditions defined on the subrlomain

boundaries in the interior of the whole domain (interfaces). The original formulation of

SAM assumed Dirichlet interface conditions that depended on the solution of the neighbor

subproblem(s). Its convergence properties are studied in detail in [5] and [25]. One of the

early numerical formulations of SAM for elliptic boundary value problems can be found in

[29]. The numerical SAM approach has recently become very popular in connection with

the parallel solution of elliptic PDEs. This is primarily due to its inherent coarse grain

parallel structure. In this thesis, we consider the SAM method with generalized interface

conditions which are the linear combination of the solution and its normal derivative on the

subdomain interfaces. Each of these conditions depends on a parameter associated with

each overlapping reglon. Tills extension of SAM is called Generalized Schwarz Splitting



4

(GSS) [38]. The Schwarz Alternating Method has been coupled with either finite difference
or finite element discretization schemes to solve elliptic boundary value problems in complex

geometries by many researchers. In some special cases, the convergence properties of SAM

have been investigated at a functional level. Since its introduction, the convergence proper~

ties of the GSS with finite difference discretization have appeared in many studies inc1udlng

[38] and [26]. To our knowledge, there are only a few researchers who have considered ei­

ther SAM or GSS coupled with collocation discretization schemes. In [3] the authors apply

SAM based on Legendre collocation discretization and spectral methods to solve elliptic

problems and demonstrate its convergence for model problems. In [40] the formulation of

SAM was considered for the Poisson equations with Dirichlet boundary conditions on an

L-shaped region. Only experimental results are reported in [40J. The work in (3, 40J and

our recent work in [26J and [27] has motivated us to study the convergence properties of

GSS associated with the cubic Hermite collocation discretization technique [22]' The SAM

approach can be formulated either on the continuous geometric and functional components

of the PDE problem (referred to as the functional level formulation) or on the corresponding

discrete geometric and algebraic data structures associated with the numerical method se­

lected (referred to as the matrix equation level formulation). In this thesis, we consider the

matrix formulation of SAM and GSS for elliptic PDE problems based on the Hermite col­

location discretization procedure. Specifically, we derive the associated enhanced Hermite

collocation matrix equation problem [38J for GSS and study its iterative solution.

This thesis consists of four chapters.

Chapter 1 presents an overview of the cubic Hermite collocation method for the second­

order elliptic PDE problems. First, we briefly describe the formulations of the GENCOL,

INTCOL and HERMCOL algorithms. Then we review the various proposed ordering

schemes for these algorithms and the structure of the resulting systems of algebraic equa­

tions.

Chapter 2 presents the analysis of block iterative methods for the INTCOL and HERM­

COL equalions derived from the discretization of second-order elliptic PDEs defined on 2-D

rectangular domains. First, we define two partitionings for INTCOL equations. Then, we

carry out the spectral analysis of the Jacobi iteration matrix corresponding to the two parti­

tionings individually. These results are applicable for Dirichlet model problems on the unit

square. Using these results we analyze the convergence property of the block SOR method.

Finally, we study the numerical behavior of several block iteration methods including opti­

mal and adaptive SOR, Jacobi and Gauss-Seidel and verify some of the theoretical results.

In addition, we compare the block optimal SOR solution, three precondltionlng conjugate

gradient methods based on GMRES software and the UNPACK BAND GE solver with respect

to their estimated time and memory complexity for some model PDE problems.

Chapter 3 presents the extension of INTCOL method to eUiplic PDEs defined on rec­

tilinear domains. We formulate the GIN COL algorithm. Then we develop two different
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indexing modules based on finite-element ordering and tensor-product ordering, respec­

tively. Finally, we apply the CINeOL algorithm to discretize some PDEs and study the

computational behavior of some iterative linear solvers using tensor-product ordering.

Finally, Chapter..f presents the formulation and analysis of the Generalized Schwarz

Splitting method based on cubic Hermite collocation approach. We give a brief description

of the GSS on a rectangle at functional and matrix levels. Then, we derive the block

Jacobi iteration matrix corresponding to applying the GSS coupled with hicuhlc Hermite

collocation discretization for the solution of the Poisson equation with Dirichlet boundary

conditions on it rectangular domain split into overlapping stripes. We carry out a spectral

analysis of the enhanced block Jacobi iteration matrix for one- and two-dimensional model

problems. For one-dimensional problem, we determine the domain of convergence and find

a subinterval of it in which the optimal parameter for the one-parameter GSS case lies;

moreover, we obtain sets of optimal parameters for the multi-parameter GSS case. Finally,

we present a number of numerical examples in the one- and two-dimensional spaces that

verify the theoretical results. In addition, we compare the convergence rates of the SAM

and GSS methods with minimum and maximum overlap and draw several conclusions.
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1. OVERVIEW OF THE CUBIC HERMITE COLLOCATION METHOD

In a series of papers Houstis et al [18,17,19,23,7] have studied the mathematical and

computational behavior ofthe collocation method based on C 1 piecewise polynomials for the

numerical solution ofthe general second-order linear elliptic PDEs. The results indicate that

these type of finite element techniques are efficient numerical solvers for such mathematical

models. Moreover, in [22, 20, 21] Houstis, Mitchell, and Rice proposed three algorithms for

the numerical solution of the second-order linear elliptic PDEs on general two-dimensional

domains using the cubic Hermite collocation discretization method. Their software is avail­

able in the collected algorithms of the ACM. The most general of the algorithms above,

called GENCOL, implements the general exterior cubic Hermite collocation approach where

the boundary collocation equations are coupled with the interior ones. In the case of rectan­

gular domains, GENCOL can be considerably simplified. This implementation is referred to

throughout as HERMCOL which can be simplified further by eliminating a priori some of

the boundary degrees of freedom (dofs). Tills approach is called interior collocation and it

has been implemented by the INTCOL algorithm. The purpose of this chapter is to present

the general formulation of the cubic Hermite collocation discretization approach and a brief

description of the three algorithms based on the material in [22, 20, 21]. Moreover, because

the ordering of the unknowns and equations in the collocation discretization methods plays

a vital role for the numerical solution of the linear algebraic equations produced, we also

describe the various proposed indexing schemes for these systems and discuss the sparse

structure of them together with the various parameters involved. In this presentation we

introduce most of the notations that are used in the subsequent chapters.

This chapter is organized as follows. In Section 1.1 we describe the idea of the cubic

Hermite collocation discretization procedure. Section 1.2 presents the various formulations

of this collocation method for general and rectangular PDE domains and different type

boundary conditions. In Section 1.3 we review the various proposed ordering schemes of

the cubic Hermite collocation discretization equations and the structure of the resulting

systems of algebraic equations.

1.1 The Cubic Hermite Collocation Method Suppose we are given the second­

order linear elliptic PDE

Lu == aU;r;r + CUyy + dU;r + euy + fu = 9 In Q

Bu == au +f3Z~ = 0 on an
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where 51 is a bounded region in the k-dimenslonal space and an is the boundary of Q. The

method of collocation consists of fmding a function Uh in a fillite dlmenslonal approximate

solution subspace of the space of square integrable functions on Q. The function Uh is

chosen so that L(Uh} = 9 and B(Uh) = 6 are satisfied exactly at certain interior and

boundary points, respectively. These points are called collocation points. There are many

ways to select the approximate solution subspace and the collocation points. Throughout

this thesis we use the subspace of cubic Hermite piecewise polynomials which defines the

the cubic Hermite collocation method. This method has been shown to be highly accurate

for some second-order elliptic PDE problems (see [31] and [32]). For brevity in the sequel,

when we refer to the collocation method without any further explanation, we mean the

cubic Hermite collocation method.

The finite-element mesh ~h is a set of interVals, rectangles and rectangular paral­

lelepiped regions for I-D, 2·D and 3-D problems, respectively. The exact definition of O:h

is given in the next section. The approximate solution Uh is defined on each mesh element

in terms of one-dimensional local basis functions ¢l, ¢2, ¢3 and 4>4 defined on the interval

(to, t1 ) as follows:

~ (t) := (1 - -'="-)'(1 +2-'="-)
'1'1 '1-10 tl-to '
~ (t) := (1 + -dL)'(I- 2-dL)
'1'3 tl-1o II-to '

The corresponding expressions for Uh are

<p,(t):=(t-to)(I- t::I,)',
<p,( t) := (t - t,)(1 + l~-::,")'.

Uh(X)
Uh(X, y)

Uh(X,y,Z)

2:1=1 pi¢i(X), JOT I-D elements,
'L.1,i=lPij¢i(X)¢j(Y), fOT 2-D elements,
L.t,.=] Pi;k<Pi(X)<p;(y)<p,(z), for 3-D elements.

From the definition of the basis functions it is clear that there are 2, 4 and 8 unknowns

associated with each node for the I-D, 2-D and 3-D cases, respectively. Furthermore,

one can easily show that the values of the unknown p's coincide with the values of the

approximate solution and its derivatives at the nodes. For example, let (Pl,P2,P3,P4) be

the four unknowns associated with a node q on a 2-D domain, then

8Uh 8Uh a2Uh
PI = Uh(q), p, = By (q), P3 = Bx (q), P, = BxBy(q)·

From the definition of the basis functions, we can easily see that the second derivative

of Uh is not continuous at the element boundaries. On the other hand, using Gaussian

quadrature theory [31], higher accuracy is obtained if the interior collocation points are

located at the Gaussian points of the mesh element rather than at the grid nodes. As for

the placement of the boundary collocation points, we follow the scheme suggested in [22].

One of the restrictions is that the number of these points must be equal to the difference of

the dimension of the approximate solution subspace and the number of interior collocation

points.

1.2 Formulation of Hermite Collocation Methods
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1.2.1 GENCOL: Collocation Method for General 2-D Domains The proce­

dure of solving a PDE problem by the general collocation method can be roughly broken

into the five steps indicated below (see [22]):

(1) define the PDE problem,

(2) place a rectangular grid over the domain of definition,

(3) generate the finite· element mesh,

(4) locate the collocation points and form the linear system,

(5) solve the linear system.

Steps (3) and (4) are the ones that constitute the core of the general collocation method.

A deta.iled description of these two steps follows.

First we overlay the domain Q by a rectangular grid G and identify the rectangular

elements of G that are interior or exterior to an or that intersect an. The latter ones

are called boundary elements. It might happen that the intersection of certain boundary

elements with n is very small. Their inclusion as element of the finite-element mesh nh will

not only enlarge the linear system to be solved but may, in some extreme CMes, also cause

numerical instability in its solution. It is thus natural to discard those boundary elements

which may cause trouble. We define the finite-element mesh nk as the union of the interior

elements and those boundary elements eb for which the ratio of the area of eb nn over the

area of eb is greater than a certain amount called DBCARE. The portions of an in the

discarded elements are either allocated to neighboring elements or ignored. This is controlled

by a logical variable called GIVOPT (GIVOPT = .TRUE. means allocate to neighboring

elements). Note that by using this "discarding" procedure some elements may change from

boundary to exterior or from interior to boundary. To Msure the implementation of this

procedure, some assumptions must be satisfied (see [22]):

• The boundary an of n, consisting of at least two pieces, is given in a parameterized

form in a clockwise manner.

• A boundary element does not contain a whole boundary piece of n, and there are at

most two boundary pieces in it.

• The sides of a boundary element which are treated as pieces of the boundary of ilh

must be adjacent and the number of them is at most three.

• If a boundary element is discarded, then no more than two of its neighboring elements

can be interior elements.

• The boundary does not enter an element more than once, except when it leaves the

element and reenters it along the same element edge. Further the neighboring element

to this edge is discarded.
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The above assumptions are usually satisfied for a reasonably fine mesh. Below we present a

code outline for the above procedure ([22]). For this a rectangular element of G is identified

by the indices (IX, JY) of its lower left corner grid point, where 1 ::; IX::; number of x­

grid lines and 1 S; JY ~ number of y-grid lines.

LOOP, FOR EACH BOUNDARY POINT B, DO ,

IF THE BOUNDARY LEAVES AN ELEMENT AND ENTERS
A NEW ELEMENT (IX,JY) AT THIS POINT

THEN SAVE THE BOUNDARY POINT INDICES FOR
THE NEW ELEMENT AS
ELTYPE(IX,JY) = IENTER+ 1000 X IEXIT

WHERE IENTERAND IEXIT ARE THE INDICES OF
THE BOUNDARY POINTS WHERE THE BOUNDARY
ENTERS AND EXITS TIlE ELEMENT (IX, JY)

ENDIF
ENDLOOP;

LOOP: FOR EACH ELEMENT (IX,JY) OF G DO,

CASE TYPE OF ELEMENT (IX, JY)

EXTERIOR: ELTYPE(IX, JY) := -1/* do not use element */
INTERIOR, ELTYPE(IX, JY) := 0 /* use element */
BOUNDARY,

IF AREA OF ELEMENT INTERSECTION < DSCARE
AREA OF ELEMENT

THEN ELTYPE(IX, JY) ,= -ELTYPE(IX, JY)

/* do not use element */
ELSE ELTYPE(IX,JY):= (IENTER+ 1000.JEXIT)

/* the element is used with ELTYPE unchanged */
ENDIF

ENDCASE;
ENDLOOP;

LOOP, FOR EACH BOUNDARY SEGMENT DO ,
/* if segment is in element (IX,JY) and ELTYPE(IX,Y) <-1

then the boundary segment in the discarded element is assigned to

a neighboring element */
IF ANY NEIGHBORING ELEMENTS HAVE NO

ASSOCLATED BOUNDARY SEGMENT
THEN THE BOUNDARY SEGMENT IS SPLIT AMONG
THEM UP TO TWO PIECES

ELSEIF GIVOPT = .TRUE.
THEN THE BOUNDARY SEGMENT IS SPLIT BETWEEN



10

THE TWO ELEMENTS WHOSE ASSOCIATED
BOUNDARY SEGMENTS ARE CONNECTED TO IT

ENDIF
ENDLOOP
/* note: if GIVOPT = .FALSE. then the piece of the boundary III the
discarded element is not used */

Now, we can determine the interior collocation points on f!h n n. We split the points

into two groups. One group consists of all the sets of the four Gaussian points on the

corresponding interior mesh elements. Since the four Gaussian points in a boundary mesh

element eb mlght not be in il, a mapping from eb onto eb nn is necessary. Thus, the other

group of elements is composed of the images of the four Gaussian points of each boundary

element under tills mapping. The map depends on several aspects of the geometry and is

too complicated to give a detailed description here (see [22]). However, the main idea 1s the

following: First, the boundary B(eb n!1) is partitioned into four parts and each side of eb is

mapped by a one-to-one mapping onto one of those parts. Then, the map from eb to eb n!1
is determined by linearly blending those four maps of the boundary.

To locate the boundary collocation points, one has to compute the number of boundary

points such that the total number of collocation points is equal to the number of the

unknowns. Let Nv and Ne be the numbers of nodes and mesh elements, respectively, on the

finite-element mesh !1h. Since there ate four unknowns associated with each node and we set

four interior collocation points on each mesh element, it follows that there are 4Nv - 4Ne

boundary collocation points that need to be determined. On the other hand, it can be

shown using the Euler-Poincare characteristic of the regular region of a surface ([4]) that

Ne-Ns+Nv = 1- Nh, where N", is the number of element sides of!1h and Nh is the number

of holes of !1h. Furthermore, it is easy to find that N s = Bs +Is and 4Ne = Bs +2Is, where

B s and Is are the numbers of element sides on DE and in the interior of !1h, respectively.

A little manipulation using these relations shows that

4N, - 4N, = 2B, +4(1 - Nh).

The procedure of determining the boundary collocation points consists of two passes.

The first pass is to place the collocation points on the boundary of !1h. The second pass

is to map the boundary sides of a boundary element of !1h onto the boundary segment of

!1 associated with this element. Then the images of the collocation points placed by the

first pass are the boundary collocation points sought to generate the boundary collocation

equations. A more detailed description of these two passes in code form is presented below

(see [22]).

PASS 1: /* associate boundary collocation points (BCPS) with boundary of
finite element mesh */



PLACE TWO BCPS ON EACH BOUNDARY SIDE OF n. IN
TilE SAME CONFIGURATION AS PARAMETERS BCPl AND
BCP2 ARE PLACED IN THE INTERVAL (0,1)

PLACE ONE BCP AT EACIl CORNER OF an nE
IF THE END OF TilE LAST BOUNDARY SIDE IS A CONCAVE

CORNER OF TilE FINITE ELEMENT MESH
THEN REPLACE THE TWO BCPS OF THE LAST
BOUNDARY SIDE WITH ONE BCP AT THE MIDPOINT OF
THE SIDE

ENDIF
IF THE BEGINNING OF THE FIRST BOUNDARY SIDE

IS A CONCAVE CORNER OF THE FINITE ELEMENT MESH
THEN MOVE TilE TWO BCPS OF THE FIRST SIDE SO
THAT TilE FIRST BCP IS AT THE BEGINNING OF THE
FIRST SIDE AND THE SECOND BCP IS AT TilE MIDPOINT
OF THE FIRST SIDE

ENDIF
/* this placement is represented by values in (0,1) with 1/2 corresponding to
the corner if there are two boundary sides and 1/3 and 2/3 corresponding to the
corners if there are three boundary sides */

PASS 2 : /* mapping the BepS from anh to an * I
1* this is a mapping from (0,1) to the segment of an associated with an element
of flh * /

IF THE SEGMENT OF an IS CONTAINED IN ONE PIECE OF
THE BOUNDARY
TIlEN LINEARLY MAP (0,1) TO (PENTER,PEXIT)

DETERMINE THE BCPS FROM THE PASS 1
VALUES AND THE DEFINITION OF an

ELSEIF THE SEGMENT OF an IS CONTAINED IN TWO
PIECES OF THE BOUNDARY
THEN LINEARLY MAP (0,1/2) TO (PENTER,B,,l) AND

(1/2,1) TO (B',I+l,PEXIT), WIlERE IIS THE NUMBER

OF THE FIRST PIECE AND B,,l, B',l+l ARE FROM

THE PARAMETRlZED FORM OF BOUNDARY PIECE.
DETERMINE THE BCPS FROM THE PASS 1 VALUES AND
THE DEFINITION OF an

ELSE ERROR /* allow no more than two boundary pieces

in a element */
ENDIF

11
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It is easy to see that the procedure above docs give 2Bs +4(1-Nh) boundary collocation

points. The user is allowed to adjust the placement of the boundary collocation points in

a boundary edge by changing the two parameters BePl and BCP2. The default case

(BCPl = BCP2 = 0) selects two Gaussian points in a boundary edge.

Once the collocation points are determined, to generate the collocation equations is a

simple task. The collocation equations are represented by the following arrays:

COEF(n,l) = lth coefficient value of equation n

IDCO(n,l) = index of the unknown associated with COEF(n,l)

BBBB(n) = right hand side value of equation n

1.2.2 HERMCOL and INTCOL: Collocation Methods for Rectangular Do­

mains Throughtout this subsection, the domain n is assumed to be rectangular and is

denoted by R. In this case, the domain discretization process can be simply defined by the

vectors GRIDX and GRIDY which contain values of x-grid and y-grid lines, respectively.

Thus, the finite-element mesh generator process is not needed. Then, the steps of generating

the collocation equations are considerably simplified. It is developed as another algorithm

in [22] and is called Hermite Collocation (HERMCOL) in (33]. A code skeleton is :

LOOP OVER ELEMENTS E OF R DO:
LOOP OVER INTERIOR COLLOCATION POINTS DO:

FORN = NROW+ 1, NROW +4DO:

GENERATE COEF(N,*),IDCO(N, *) and BBBB(N)
ENDLOOP
NROW = NROW +4
11' ELEMENT IS A BOUNDARY ELEMENT
THEN LOOP OVER J( BOUNDARY COLLOCATION POlNTS DO:

FOR N = NROW + 1, NROW +J( DO:

GENERATE COEF(N,*), IDCO(N,*) and BBBB(N)
ENDLOOP
NROW =NROW+I(

ENDIF
ENDLOOP

If the problem has uncoupled boundary conditions, that is, at no point are the boundary

conditions mixed, i.e,

1L == 6 on 8R1 C 8R,

~~ == 6 on 8R2 = 8R - 8R1 C 8R,

then the boundary collocation equations can be solved explicitly during the discretization of

the boundary conditions. Thus, the HERMCOL can be simplified and the simplified version

is called Interior Collocation (INTCOL) [33]. It consists of two consecutive steps. The first

step is implemented by two parallel asynchronous processes based on the assumption that

tile bounda'MJ conditions only change type on the boundailJ nodes. A code skeleton for these

two processes is:
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1* OPERATOR DISCRETIZATION *1

LOOP OVER ALL ELEMENTS OF R DO,
LOOP OVER INTERIOR COLLOCATION POINTS DO,

FOR N = N ROW +1, N ROW +4 DO,

GENERATE COEF(N,*), IDCO(N, *) and BBBB(N)
ENDLOOP

ENDLOOP
1* BOUNDARY DISCRETIZATION *1

LOOP OVER EACH BOUNDARY PIECE,
LOOP1 OVER EACH NODE T; OF THE BOUNDARY PIECE,

DETERMINE THE LEFT OR RIGHT HALF-INTERVAL
([Ti_1!2,Ti] OR [Ti,Ti+I!2]) WHERE THE BOUNDARY

CONDITION IS OF THE SAME TYPE AS AT Ti.

I" denote the interval by 6. and its two Gauss points by TIl T2 * /
s = {7t, 72 AND END POINTS of /l.};

CASE BOUNDARY CONDITION TYPE IS,
DIRICHLET (U = 8), DETERMINE Ux (OR U,) AT T;

BY INTERPOLATING 8 BY A CUBIC POLYNOMIAL AT
THE POINTS S; IDENTIFY THE ACTIVE UNKNOWNS;

NEUMANN (aUlaN = 8), DETERMINE U" (= U,x) AT T;

BY INTERPOLATING 8 BY A CUBIC POLYNOMIAL AT
THE POINTS S; IDENTIFY THE ACTIVE UNKNOWNS;

ENDCASE;
ENDLOOP1;

ENDLOOP;

Finally, the nonactive unknowns predetermined in the boundary discretization process are

eliminated from equations generated in the operator discretization process, i.e., I DCO and

BBBB are modified at this stage.

1.3 Ordering and Solution of Collocation Equations The properties of the

coefficient matrix of the linear system arising from the discretization of a PDE problem by

the collocation method strongly depends on the ordering of the unknowns and equations.

A specific ordering may produce a linear system suitable for an iterative solver while the

same iterative solver might not be applicable to the linear system obtained by another

ordering. Conclusively, there are three basic approaches to the ordering of the unknowns

and the equations for the collocation method. Before giving a detailed description of these

three orderings, we depict the numbering of the unknowns and equations on an L-shaped

domain and a rectangular domain with Dirichlet boundary conditions in Figures 1.1, 1.2

and 1.3. Collocation points are shown in Times-Bold font and their numbering indicates the

ordering of the equations. The unknowns are associated with nodal points and are numbered
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in Times"Roman font. Those unknowns eliminated symbolically during the discretization

of boundary conditions are denoted by x.

The first ordering is obtained by a natural extension of the finite-element ordering in [43]

Lo the general domains. We call it the finite-element ordering. It is available for GENCOL,

INTCOL and HERMCOL. More specifically, once the finite-element mesh is defined, the

mesh nodes and the mesh elements are numbered in a natural way from south to north, west

to east. Note that there are fOUf unknowns associated with a mesh node in the algorithms

GENCOL and HERMCOL. Thus, the unknowns are numbered in groups offOUT (or fewer

than fOUf for INTeOL because some unknowns are eliminated during the discretization of

the boundary equations) in the order of the corresponding mesh node. The four unknowns

associated with a mesh node are locally ordered so they respectively represent the values of

U, u y , U x ans u xy at the mesh node. In this ordering the collocation points are numbered

element by element following the element numbering in the mesh. In the case of boundary

elements, for GENCOL the interior collocation points are numbered counter-clockwise first

followed by the colckwise numbering of boundary collocation points, for HERMCOL the

boundary collocation points are numbered first followed by the counter-clockwise numbering

of the interior collocation points. Figure 1.1 display this ordering for a finite element mesh

of an L-shaped region for GENCOL and rectangular regions for INTCOL and HERMCOL.

The second ordering is called the tensor-product ordering. This scheme was originally

defined in (30] for INTCOL and is extended to be used for HERMCOL in (27]. First,

the HERMCOL unknowns are split into two sets {u,u y} and {ux,uxy}. Then, on each

x-grid line we number the unknowns {u,uy} node by node (south to north) followed by the

numbering of {ux, uxy} unknowns corresponding to the nodal points of the same grid line.

The HERMCOL collocation points are ordered from south to north along left edge of R,
x-Gauss grid lines and right edge of R from west to east. In the case of INTCOL, we have

only interior collocation points, thus they are ordered from south to north along x-Gauss

grid lines corresponding to x-coordinadtes of the Gauss points. Then the numbering of the

active unknowns is determined by the indices of the interior collocation points as follows. At

each nodal point, the active unknowns use the same index as the nearest interior collocation

points. Figure 1.2 illustrates this ordering scheme for a rectangular region.

The third one is called the col/order ordering, which is defined for INTCOL and HERM­

COL in [8]. The idea is that the unknowns are numerbered in the same way as the finite­

element ordering; for the numbering of collocation points, the collocation points are associ­

ated with the nearest grid point and are numbered in groups of four (or two for INTCOL

collocation points on the edges of R) in the order of their corresponding grid point. The

collocation points may be locally ordered in any way and some collocation points are re­

ordered depending on the boundary conditions (the detailed description in [8]). Figure 1.3

illustrates this ordering of collocation points in a rectangular region.
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The finite-element ordering of the unknowns and equations of the collocation equations

usually gives a handed linear system with a large number of zero diagonal elements (see

Figure 1.4(a)). If the domain n is rectangular, then the bandwidth is 4 X NGRJDY + 7

for HERMCOL and 2 X NGRIDY +3 for INTCOL, respectively, where NGRIDY is the

number of y-grid lines. As for the general domain, the linear system becomes less regular

in pattern and very little can be said about its bandwidth because it depends on both

NCR/DY and the shape of!1. Sometimes, the linear system can be made with efficiency

of bandedness by a widely used frontal method [43]. On the other hand, the presence of

many zero diagonal elements prevents most iterative method from being applied. Thus, the

most reliable and preferable way to solve the linear system corresponding to the collocation

equation using finite-element ordering is Gauss elimination with scaling and partial pivoting

[9].
The tensor-product ordering yields the coefficient matrix of the INTCOL or HERMCOL

equations with bandwidth 4 x NGRIDY - 2 or 4 x NGRIDY +2 individually and with a

nice block structure shown in Figure 1.5. Furthermore, the coefficient matrix has non-zero

diagonal elements for INTCOL (see Figure 1.4 (b)) and might have some zero-diagonal

elements corresponding to uncoupled boundary condltions for HERMCOL. Thus, both m­

rect solvers and iterative solvers can be applied for the solutions of INTCOL equations or

HERMCOL equations with mixed boundary conmtions using this ordering. However, direct

solvers tend to require much more memory as well as time and their paraUelization is dif·

ficult. It is very desirable to have a suitable iterative solvers for INTeOL and HERMCOL

equations. A detailed description of the application of iterative solvers for the INTCOL and

HERMCOL equations using the tensor-product ordering and a study of their convergence

behavior is presented in the next chapter.

The collorder ordering produces a coefficient matrix of INTCOL (HERMCOL) equa­

tions with bandwidth 4xNGRIDY (4 x NGRIDY +7). However, the matrix still has some

zero diagonal elements corresponding to boundary conditions for the HERMCOL equations.

They can be removed from the diagonal easily by a mild reordering of the unknowns as­

sociated with that boundary grid point. Thus, the usual iterative method is applicable

using this ordering. Unfortunately, it diverges rapidly when directly applied. Experiments

indicate that Gauss elimination without pivoting is safe for the solution of INTeOL or

HERMCOL equations using this ordering.
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2. BLOCK ITERATIVE METHODS FOR CUBIC HERMITE
COLLOCATION EQUATIONS

Collocation methods based on bicublc Hermite piecewise polynomials have been proven

effective techniques for solving general second order linear elliptic PDEs with mixed bound­

ary conditions [22J. From Chapter 1, we know that using finite-element ordering the cor­

responding system of discrete collocation equations is in general non-symmetric and nOfi­

diagonally dominant. Their iterative solution is not known and they are currently solved

using Gauss elimination with scaling and partial pivoting. Using colloeder ordering the

Point iterative methods like those in ITPACK [36] do not converge even for the collocation

equations obtained from the discretization of model PDE problems. In this chapter we

develop and analyze block iterative methods for the INTCOL and HERMCOL equations

using tensor-product ordering. Papatheodorou was first to determine the exact parameters

of AOR type iterative methods for the case of INTCOL equations associated with a model

problem in [30]. We generalize the results of Papatheodorou for the INTCOL equations and

extend them for a specific class of HERMCOL equations. A number of numerical results

are presented to verify the theoretical ones.

The organization of this chapter is as follows. In Section 2.1, we define two partitionings

for INTCOL equations and introduce a notation for defining the various block partitionings

of collocation coefficient matrices used in the spectral analysis of the Jacobi iteration matrix.

In Sections 2.2 and 2.3, we carry out the spectral analysis of the Jacobi iteration matrix

corresponding to the partitionings PI and PH respectively. These results are applicable

for Dirichlet model problems on the unit square. In Section 2.4, we use the results in

Sections 2.2 and 2.3 to study the convergence analysis of the block SOR method.Moreover,

we make some comparisons concerning the two block Jacobi iteration matrices and develop

the corresponding optimal block SOR iterative method. Finally, in Section 2.5 we study

the numerical behavior of block iterative methods including optimal and adaptive SOR,

Jacobi and Gauss-Seidel and verify some of the theoretical results obtained in this chapter.

In addition, we compare the block optimal SOR solution, three preconditioning conjugate

gradient methods based on GMRES software and the UNPACK BAND GE solver with respect

to their estimated time and memory complexity for two model PDE problems with several

types of boundary conditions and a general PDE problem. The numerical results indicate

that the block SOR method developed is an efficient alternative for solving the Hermite

collocation equations obtained from the dicretization of general elliptic PDEs defined on

rectangularregions and subject to uncoupled mixed boundary conditions.
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2.1 Preliminaries Throughout this chapter, the domain R is a rectangle and dis­

cretized by n +1 x-grid lines and m + 1 y-grid lines. We will focus on iterative methods for

the INTCOL and HERMCOL equations using tensor-product ordering. Under the assump­

tions above, the x in Figure 1.5(a) denotes a 2m X2m matrix while the coefficient matrix of

the INTCOL equations is a 4mn X4mn matrix. For this matrix, we consider two different

partitiornngs for it

x x x xx x
xx x xx x

x x x x x x x x
x x x x x x x xl

PI = ,Pn=

x x x x Ix x x x
x x x x x x x x

x x x x xx
x x x x xx

There is no surprise that we consider the partitioning PH here, since applying PI to the

coefficient matrix of HERMCOL equations and using the fact that the INTCOL coefficient

matrix is a principle submatrix of the HERMCOL coefficient matrix we end up with the

partitioning PH for the INTeOL coefficient matrix. Apparently, both partitionings make

the coefficient matrix be a block 2-cyclic consistently ordered matrix [39]. This property

motivates lIS to explore the use of block SOR iterative methods to solve the corresponding

linear system.

Before we proceed, some notations for partitioning matrices are introduced. First, we

introdlIce the block form
[AlB] <:= [an a121bn b12 ]

a21 a22 b21 b22

which we subsequently use to construct the following (2n) X (2n) matrix

[AIB]Wn) =

aB
AB

A B
Ab

, a= [a12
], b= [b12

].
an b22

Note that if all aij and bij are 2m x 2m matrices, then A and B are matrices of 2 X 2 block

form and of order 4m. So the matrix [AIB]0(2n) is of order 4mn.

2.2 Spectral Analysis of the Jacobi Matrix Corresponding to PI We consider

the INTCOL coefficient matrix for the case of a Poisson equation on a rectangle with

Dirichlet boundary conditions and a uniform grid. In this case the collocation coefficient

matrix is of the form

(2.1)
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with each Ai being of order 2m. Note that the partitioning P, allows us to write A as

A= (2.2)

where

(2.3)

(2.5)

(2.4)Al]
A3 '

R=

In the subsequent analysis we assume that Dt , D1 are nonsingular. Furthermore, we intro­

duce the matrices

and note that

[=1; 1:] - [~I ~I] [1: 1:] [~~I]'
From the relations (2.4) and (2.6) we obtain

(2.6)

R=[A2A3]-1 [0 -I]
A4 At -I 0

and

w ' = [~ ~I] R [~ ~I ] .
Consequently, we have

(2.7)

As we have observed in some applications R Z1 is invertible. Then it follows from (2.7) that

R n (= R 21 RzzR"2l) is similar to R22 and we prove the following lemma.

LEMMA 2.1. If R Z1 is nonsingular, then R31 = -Rzl.
Proof. First we observe that equation (2.4) implies

From equation (2.5) we have that AzR 31 - A4 R32 = At and A4R31 - AzR 32 = A3 • If we

use the expressions for Al and A 3 in the equation above, we obtain
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Since D1 is invertible, the equation above can be simplified as follows

[
I -R32] [Rn R12] _ [0 R"]o -R31 R21 R22 - I R32 .

Comparing both sides, we readily obtain that - R 31 R21 = I. So, our assertion is established.

o
The block partitioning of A in (2.2) corresponds to the splitting A = D - L - U,

where D = diag(Dl,"" D I , D1 ) and where Land U are strictly lower and upper triangular

matrices, respectively. Let J = n-1 (L + U) be the block Jacobi iteration matrix associated

with this partitioning. An easy calculation using equations (2.3), (2.4) and (2.5) shows that

J=

0 0 R n 0
0 0 R2I 0
o R12 0 0 Rn 0
o R 22 0 0 R21 0

0 R12
0 R22

o 0 Ru 0
o 0 R21 0

OR" 0 0
o R32 0 0

(2.8)

Due to the presence of the zeros in the first and last block columns of J and Lemma 2.1, it

is easy to show that the spectrum a(J) of J satisfies a(J) = a(h) U {O}, where J1 is given

by
o
a Rn
a R21 0

R12 0 0 RII
(2.9)

o R12 0
R 22 0

o
Note that h has only (n - 1) diagonal blocks. Using (2.7) we obtain that

0 -R21 R22
R-1 0 0 021

0 0 0 -R21 R22

J-1 -
R ll -R21 0 0 0

1 -

RII -R21 0 0 0
0 0 0 -R21

Rn -R21 0

(2.10)
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Then, from (2.9) and (2.10), we have that

0 0 R"
R' 0 0 Rn

R" 0 0 0 R"

11 + 111
:::::

Rll 0 0 0 Rll

Rn 0 0
R22 0

Rll

o Rn
o 0

-R" a

(2.11)

where ROO = R I2 + Rzl. From the directed graph (in Figure 2.1) associated with J 1 +J1-
1 ,

1 2 3 4 .... (2n-5) (2n-4) (2n-3) (2n-2)

FIG. 2.1. The directed graph correspOl1ds to tile matrix J1 + It l

it is readily seen that through a similarity permutation transformation that J1 + 11
1 IS

transformed to

o
J= R- 0 Rll

o Rn 0 Rn

(2.12)

Let

o
-R'

o 1
1 0 1

J(=

1 0 1
1 0

be a square matrix of order (n - 1). Note that from (2.7) R22 is similar to R n . So we

have that u(J) = u(G) where G = J( (8) R22' The symbol ® denotes Kronecker product

(d. [16J and also [28] where tensor products were used for the first time in connection with

discretized PDE problems). Some of its properties used here are
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(For the first property to hold it is assumed that the matrix products AC and BD are

well defined while for the second one that A and B are square nonsingular matrices.) We

know that there always exist nonsingular matrices X and Y such that KX = XDK and

R22Y = Y JR, respectively, where DJ( = diag(2 cos ii, .. ·,2 cos (n~l);r) and JR is the Jordan

canonical form of R22 . It then follows that G(X 0 Y) = (X ® Y) (DJ( 0 JR). We see that

DJ( ® JR is an upper triangular matrix and the nonsingularity of X and Y implies that

X €I Y is nonsingular. So we conclude that

h
a(G) = u,:i{2p co'-;;-lp E a(R,,)}.

OUf discussion is summarized in the following theorem.

THEOREM 2.1. Let J be the block Jacobi iteration matrix corresponding to (2.1) based

on the partitioning PI and assume the relations (2.3), (2.4) and (2.5) hold. Then the

spectrum of J is given by the following relation

a(J) = {D} U,~=,' {I'll' +.!. = 2pco, h, p E aiR,,)}. (2.13)
- I' n

As a direct consequence of this theorem we can make the following observations:

Remark 1: Zero is an eigenvalue of J of multiplicity 4m.

Remark 2: The corresponding result in [30] can be obtained as a special case of the theorem

above.

For the justification of Remark 2 we denote by R the corresponding matrix R in [30J and

assume that 2/ is the order of J. Then the corresponding result in [30] can be stated as follows

: For every I-l E a(J), if I-l i 0 then I-l+ ~ = ;cosO, where p E a(Rll ) and (J = (2m;;;-t):r,

m = 1,2, ... ,2k, k = 1,2, .. . ,l. If we set n = 2/ in Theorem 2.1 then we can easily show that

R- R - -I d {blk - 1 2 (- I)} - {(2m- lirr l - 1 2 2' k - 1 2 I}11 22 - an n -, , ..• , n - 2k m - , , ... , , - , , ... , .

This implies that the corresponding result in (30] is a special case of the theorem above.

2.3 Spectral Analysis of the Jacobi Matrix Corresponding to PH First,

we apply the block partitioning PH to the interior collocation matrix (2.1) and consider

the corresponding splitting A = D - L - U. If we assume that At and A2 of (2.1) are

nonsingular then D is invertible and the Jacobi matrix associated with the above splitting

is J = D-t(L +U). Further, we consider the matrix J' = (L +U)D- t . It is dear that the

spectra of J and J' are the same, that is a(J) = a(JI). Since J' is much easier to study,

we turn our attention to a(JI). The block partitioning and the definition of JI imply that

J'=

o P Q
P-Q 0 0

0 o P Q IQ P 0 0

I
0 0
Q P

PQ
o 0
o 0 P-Q
Q P 0

(2.14)
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where P = -!(A3Ai'"1 + A4A2"1), Q = -~(A3Al1 - A"IA2"l). Since P and Q are 2m x 2m

matrices, it is not an easy task to find a(J'} directly. Instead, we determine u( J/} when P

and Q are real scalars and use this result to find q(J'} in the general case.

LEMMA 2.2. If P and Q are real scalars, then the eigenvalues J.L of JI in (2.14) are

either J.L = ±(P - Q) or they satisfy the equation 11-2 - 2Qpcos8 + Q2 - p2 = 0, where

(}:::::: k~'T, k = l,2, ... ,(n-l).

Proof. This proof is based on the analysis in [10, pp. 218-230] which has been suc­

cessfully used in [37] and [26]. For this reason we keep the notation established in [10J.

For the sake of convenience, we assume that PQ(P ± Q) i O. However, our analysis does

essentially carryover to the more general case. The problem of determining the eigenvalues

and eigenvectors of JI is equivalent to solving the boundary value problem of the matrix

difference equation

{ BoZ~_1 + (B, - p,l)Z,_+ B,Zk+1 = 0, k = 1,2, ... , n

BoZ:O[~ g'j':'BI:n ~r;, = [~ ~], Z, = [:::~],
where J-L is an eigenvalue of Jf. This can he solved by the nonmonlc matrix polynomial

theory. The nonmonk matrix polynomial which corresponds to (2.15) is given by

( ) .- )" ( l - [Q),'-P), P),]L ), .- B, + B , - pI ), + Bo - P), Q _ 1'), .

From Theorem 8.3 in [10] we know that the general solution of (2.15) is given by

Zk = XFJ}9, k = 0,1,2, ... (2.17)

where (XF,JF) (d. [10 , Chs 1, 7]) is a Jordan pair of the matrix polynomial L(>'), 9 E en,
and n is the degree of det(L(>.)). From (2.16) it is readily obtained that

det(L(),)) = -),(Qf1),' - (I" +Q' - P'), +Qp). (2.18)

We distinguish two cases according to whether J-L is zero or not.

Case 1: J-L = O. Then 0 is a double eigenvalue of L(>.) and Xl = [l,OY is the corresponding

eigenvector of L(O). It follows that the Jordan chain associated with the 0 eigenvalue is of

length 2 . For the other vector X2 in the Jordan chain we have L I(0)X1 +L(0)X2 = 0, where

L'(O) is the matrix of the derivatives of entries of L at >. = O. Consequently, we have

XF = [~ _:/Q]' h = [~ ~], 9 = [~:].
Applying the boundary conditions, it follows that 91 = O. So Zk = 0, k = 1,2, ... , n, which

implies that 0 ¢ a(JI).

Case 2 : J.L f:. O. The eigenvalues of L(>.) are given by the expressions

p' +Q' _ P' + )(1" +Q' P')' - 4Q'f1'
),0 = 0,)', = 2Qf1

1" +Q' - P' - V"(f1-.;,i-+,...."Q"',---P='l""---4..Q""f1°,
)" = 2Qf1 .
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It is clear from (2.18) that )'1>'2 :::: 1 and (AI + A2)QJ1:::: JL2 +Q2 _ p2.

If >'1 # >'2, the eigenvectors of L(A) associated with Ai , i=0,1,2, are

Xo = [~], x, = [~' ], x, = [~' ]

where
1'),1 - Q 1')" - Q

wI= PAl w2= P).,2

Since all the eigenvalues of L(>.) have only one eigenvector each, the finite Jordan pair is

given by

XF=[~~'~']' Jp=[~~, ~], 9=[::].
00>'2 92

It is easy to check that the vectors Zk defined by (2.17) satisfy the matrix difference equation

(2.15).

Now, we determine the vector 9 to satisfy the boundary conditions in (2.15). The first

condition implies

and the second one implies

Combining them, we have the following 2 X 2 homogeneous linear system to solve

[~:+W~~~~+l ~;+W~~~~+l] [:~]:::: [~] .

If [91, 92J :::: [0,0]' then Zk :::: 0, for every k = 0,1,2.... So there must exist a nonzero

solution to (2.19), hence the determinant of the matrix coefficient of (2.19) must equal zero.

From this we obtain

(1 +w,),,)(1 + w,),,)(),~ - ),~) = O. (2.20)

If we assume 1 +WiAi :::: 0 then we get Ai:::: Q~p. Moreover, solving QJ1A~ _ (j.t2 +Q2 _ p2)

Ai+Qj.t :::: 0 with respect to J1, we obtain J.l :::: ±(Q-P) for P :fi O. This implies Al = A2 = ±1

which contradicts the assumption Al :fi A2. Hence from (2.20) we conclude Ar - A~ = 0

and determine that Al = eiO , A2 = e-iO , 8 = k;, k = 1,2, ... , n - 1 since AIA2 = l.

It is worth noticing that for each pair of A'S there are two j.t's obtained from equation
p,2 _ 2QJ.l cos 8 + Q2 _ p2 = O.

For the case Al = A2, following the same analysis as above, we end up with the following
solutions

fl::::Q+P, X F :::: [~ 1 0 ]
o 0 0 go

1 =i- ' Jp ;::; 011 , 9 = 0
001 0

Al = >'2 = 1 o 0 0
I' = Q - P, X, = [~ 1 0 ]

go

-1 =jl ,JF = o 1 1 , 9 = 1
o 0 1 0
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[' 1 0]
0 0 0 go

p::::-Q-P,Xp= 0-1~' IF:::: 0 -1 1 , g:::: 0
0 o -1 0

..\1=>'2=-1
0 0 0

[" 0]
go

p= P-Q, XF:::: 0 1 ~ ' ]F:::: o -1 1 , g::::;. 1
0 o -1 0

By considering the associated g's, we find that J1 :::: ±(Q - P) E a(]I) which concludes the

proof of this lemma. 0

It is dlfficult to determine det(L(A)) explicitly when P and Q are real matrices. Tills

is due to the fact that (2.16) is not a 2 x 2 matrix. Thus, applying the analysis above to

obtain a(J') is not an easy task. Instead, we determine J.L from each known). from the
h··

scalar case. Specifically, we can show that for .A:::: en', the equation det(L(..\)):::: 0 can be

simplified into

dot ([ Qe ';"~- I'l Qe- ,f, _I'l]) = 0

which is equivalent to determining the eigenvalues of the matrix

(2.21)

To eliminate the complex numbers involved, we perform the similarity transformation

RkSkRJ;l, where

R, = [I -e::;l].
if ien'[

Then the problem at hand is transformed into the problem of determining the spectrum

u(T,) of
_ [(Q-P)CO"~" (Q_p),in h ]

T,- -(Q+P)'in':, (Q+P)co,~ .

Lemma 2.2 gives the basic idea as to how to tackle the matrix problem case. The

followIng lemma is the correspond1ng result.

LEMMA 2.3. Let J' be the matrix in (2.14) with P and Q being real matrices. Then its

spectrum is given by

u(J') = u~:iu(T,) u u(P - Q) u u(Q - P)

To prove it, first we state and prove another lemma.

LEMMA 2.4. Define

cos -". sin E: cos (n~l)r. sin (n-l)r. 1 -1
" " "_ cos 0... sin 0,,- (n-I)Orr sin (n-~)o;r -1 -1- cos
" " cos (n ~!2:rcos 2:r sin 2:r sin (n ~)21T 1 1

" "y= _ cos Jl sin -". (n-l)r. sin (n:l)1r -1 1 (2.22)- cos
" " "

cos !!:E sin !l:Jl cos (n-~)n7f . (n-l)nr. 1 (-1)"
" "

Sill n
(n-l)r. sin (n~l):r (n-l?:r sin (n_~)2:r -1 (-1)"- cos - cos

" "
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then the matrix Y is invertible.

Proof. An obvIous permutation of rows and columns transforms the matrL'.: Y to the

matrix y'

cos 1L cos (n~l)" 1 sin 1L
· {n-l):r. -1n n sm n

cos nE: cos {n-~)n1T 1 sin lli!. sin (n-~)ml" (_l)nyl= n n
_ cos 0;:- (n-l)O" -1 sin 0". · (n-l)Orr -1- cas sm

n n n n

_ cos (n-l)" (n-I?" -1 . (n-l)" · (n_l)2" ( _l)n- cos sin n sm nn n

Apply then a sequence of elementary row and column operations on Y' as follows. First,

add the itk row to the (i+ n+ l)st one, for every i = 1,2, . .. ,(n-I), next, divide the itk

row by 2, for every i = (n+l), ... ,2n, and then subtract the (i+n+l)st row from the itk

one, for every i :::; 1,2, ... , (n - 1). After this series of operations takes place we permute

some of the rows and columns of the resulting matrix and finally we end up with a matrix

C == diag(A,B), where A is an (n + 1) x (n + 1) matrix with entries ai; = cos (i-l)~-l):r

and B is an (n -1) X (n - 1) matrix with entries bi; = sin~. Now let

0 1 0 2

1 0 1 1 0 1

J(= , L=

1 0 1 1 0 1

1 0
(n-l)x(n-I)

2 0
(n+l)x(n+I)

It is readily checked that

. " (n-1)"LA = A diag(2, 2 cos -, ... ,2 cos , -2),
n n

. "2,, (n - 1)"J(B = B dlag(2cos-,2cos-, ... ,2cos ).
n n n

From the equations above we see that each column of A is an eigenvector of L and all

the eigenvalues of L are dlstinct, therefore A is invertible. So is B. It follows then that C

is invertible too. On the other hand, we know that applying any nonsingular elementary

operations on a matrix results in a nonsingular matrix if and only if the original one is

nonsingular. This observation implies the invertibility of Y', and therefore that of Y, from

the fact that C = diag(A, B). 0

Proof of Lemma 2.3: Let us fIx k. Then [rom Tk [~] = ).. [: ], we have

k" . k"cos -(Q - P)x +sm -(Q - Ply = AX ,
n n

k" k"
- sin -(Q +P)x +cos -(Q +Ply = Ay .

n n

(2.23)

(2.24)
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Combining appropriate multiples of equations (2.23)-(2.24) and simplifying them by using

trigonometric identities, we get

Q (cos(j+~)1.::rx+sjn(j+~lkr.y) + P (- cos (i-Ilk:!" x +sin (j-l)1.:1l" y)

oX (cos ~x +. sin ~y), n
(2.25)

Q (_ cos (j-~)Jm X + sin (j-~)kr.y) + p (cos U+l)k:r x +sln U+l)k1l"y)

>. (-cos*x+sin~yf
(2.26)

z=

Let z be the following vector

[
kKT krrT T

cos -x + sin -y ,-x ,
n n

2k" T . 2krr T k" T . k1r T
C05--X +SIn--y ,-cos-x +sm-y "'0'

n n n n

where

nk7i T . nk1r T (n - l)kr. T . (n - l)kK T] T
C05--X +sm--y ,-cos x +sm y

n n n n

Then applying (2.23), (2.24), (2.25) and (2.26), it is easy to check that the vector z satisfies

J'Z= AZ. Similarly, If we consider n [X'] = [Xl] + ,\ [X'] and constru.ct the vectors Zl
yz YI yz

and Zz as above, corresponding to Xl, YI and Xl, Yz, respectively, then JiZZ = zl +AZz. On

the other hand we know that if (P-Q)X2 = Xl +AX2 and let Vi = [xL -xT, xT, -xt,·· ·,f
and Vi = [-xT, -xT, xT, xT,··· ,l, i = 1,2, then J'V2 = -VI - >'V2 and J'V2 = VI +>'V2'

The analysis so far can be summarized as follows. For each Tk we know that there

exists a nonsingular matrix Xk such that TkXk = XkJk, k = 1,2, ... , n -1, where h is the

Jordan canonical form of n. Similarly we have (P - Q)Xn = XnJn. Note that each X k is

a 2m x 2m matrix, except for k = n where X n is of order m. Let

where Y is defined and proved to be invertible in Lemma 2.4. It is dear that V is also

nonsigular. Consequently the analysis above shows that

J'V = Vdiag(lt,J2, ... ,Jn_l,-Jn,Jn),

and the assertion of the lemma follows. 0

Noting that (2.14) gives Q - P = A 1A2"1 and Q + P = -A3 A1!, we conclude this

section with the principal result about the eigenvalues of the Jacobi iteration matrix for the

HERMCOL equations.

THEOREM 2.2. Let J be the block Jacobi iteration matrix corresponding to (2.1) with

the partition PH. Then its spectrum is given by

[
A A-I cos h A A-I sin be ]Tk = '1 2 n 4 2 n .
A,AI sin be -A3 A-1 cos k..

n 1 n

Remark: Note that the coefficient matrix in (2.1) was obtained from a particular class of

HERMCOL equations by eliminating some unknowns symbolically.
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2.4 Iterative Methods for the Solution of a Model Problem In this section

we consider the collocation equations obtained by the discretization of the model PDE prob­

lem with Dirichlet or Neumann boundary conditions defined on the unit square. Using the

analysis of the previous sections; we derive the eigenvalue spectra of the block Jacobi iter­

ation matrices J1 and h corresponding to the block partltionlngs Pj and PH, respectively.

Then the analysis of the optimal SOR method for the Dirichlet problem is made and optimal

results are obtained for the method ba.<>ed on partitionaing PlI. For the block SOR method

based on partitioning PI, optimal results are already known [14]. We conclude the present

section with the analysis of the optimal SDR method for Neumann boundary conditions.

2.4.1 The Dirichlet Case We consider the iterative solution of the interior collo­

cation equations associated with the following Dirichlet boundary value problem

U xx +u" = fin R = (0,1) X(0,1),
u = g on 8R. (2.27)

and a uniform mesh (hx = lin = 11m = hy). After applying Papatheodorou's tensor·

product ordering scheme shown in Section 1.3 (see Figure 1.2 ) and factoring out (1/9h2
),

the collocation matrix is the same as the matrix A in (2.1). For this particular problem,

the entries of Ai for i = 1,2,3,4 are independent of h and have the same structure as A.

More specifically, we have

(2.28)

The values of aj for j=1,2,3,4 corresponding to the Ai'S are listed below (see [30]) .

·1 ., ., -a,
A, 24 18J3 12 8J3 24 3 J3
A, -12 - 8,;'3 -3 - 2,;'3 3 -,;'3 0
A, 24 3 -,;'3 -24 + 18,;'3 12 - 8,;'3
A, 3+ ,;'3 0 -12 + 8,;'3 3 - 2,;'3

In this case we have the INTCOL coefficient matrix whose entries are explicitly expressed.

This motivates us to try and to find analytic expressions for the elements of a(J). For this,

some preliminary analysis is needed.

LEMMA 2.5. Let the matrices A and B be defined as follows

A=[aIa'la,-a,] , B=[bIb'lb'-b']
aa a4 al -a2 0(2n) ba b4 b1 -b2 0(2n)

and suppose that B is nonsingular and a2b<j =I a'lb2. Then the generalized eigenproblem
ATx = ABTx has eigenvalues A given by the exp,·essions

(i) ). = ~~$~: associated with the eigenvector x = [1,1, -I, -1, .. .]T.

(ii). = ~:::::: associated with the eigenvector x = [1,-1,1, -1, ...]T.
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( """) , ".< h "bIA)j,(A)-h(A)!<IA) - B B _!ilr k - 1 2 ( )m A sat1SJ'eS t e equatIOn lI(.\)h(>') 12(.\)1.3(>') - COs, - n' - , , ... , n - 1 ,
"th "'d" , [p nn n nJTWl assocza e elgenvec or x = 1+ P2g, WIPI +W2P2g, .. -,PI + P2g, WIPI +W2P29 J

whe- '"(') - a" - 'b" ," -1234 P - e;9 p - e-;o w - Plh(.\) JiC).) w - ,It;. J' A-, ..... " - , , , , 1 - , 2 - ,1 - h(>') pt!4(>.) , 2 - -;;;j'"

d w.h"-+f4A
an g=-W7.h>'+f4)."

Proof. To solve the generalized eigenproblem (cf. [11, pp. 251-266]) ATx = >'BTx is

equivalent to solving the matrix difference equation

where

B _ [- f,(>.) -12(>')]
0- 0 0 '

subject to the boundary conditions

[
J,(>') 14(>')] [0 0]

B, = j,(>.) h(>') ,B, = h(>.) h(>.) ,

For simplicity in the following discussion we assume that there is no A such that (It(>.) ±
h(J..))2 + (12(>') ± /4(>.))2 = O. Following the same analysis as in the proof of Lemma 2.2

with p playing the role of >., we get

L()- [f,(>')P-f'(>') 14(>.)p-J,(>.) ]
P - Jz(>')p' + j,(>.)p j,(>')p' +h(>.)p "

Thus, we have

det(L(p)) = -p[(f,(>')!«>') - J,(>.)j,(>.))p' - 2(1.(>')12(>') - h(>')14(>'))p
+ (I,(>')f,(>') - f,(>.)h(>.))J"

We distinguish two cases.

Case 1 , h(>.)f«>.)- 12(>')13(>') = 0" In this case 0 is a double eigenvalue of L(p) and tbeee

Is only one eigenvector associated with it. So, we have

XF = [!j;tl) -/,(~~)], JF = [~ ~], g = [::]

Applying the boundary conditions, it follows that g1 = 0 if h()..)±!4(>.) # O. On the other

hand, if Jz(>.) = ±f,(>') (;< 0) then h(>.) = ±h(>.) , which contradicts the assumption

we made on the Ji's for this case. So we obtain g1 = 0, which implies that Zk = 0, for

k = 1,2, ... , n. Hence there does not exist a nonzero solution to the matrix difference

equation.

Case 2 : h()..)!4(>.) - h(>.)!J()..) "# O. In this case there are three eigenvalues of L(p). Let

h b 0 d I " I j 1 d 2 b(,\)b('\)-h('\)b('\) Ift em e po = , PI an pz· tIS c ear t lat PIPZ = an PI +pz = h(.\)/4{,\) 12('\)13('\)"

PI "# P2, then

[
Jz(>.) 1 1] [0 0 0] [gO]

XF= _!",()..) WI W2 ' JF= ~ ~I ~z ' g= :: '
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where w' - Pib(.l,) b{>') i :::: 1,2. Applying the boundary conditions, we arrive at the
I - h(>'l-pi/t(>")'

following linear system

In order to have a nonzero solution for [91, 92Y the determinant of the matrix coefficient of

the linear system must be zero. But w,h()..) + J~()..) = 0 implies Pi = 0 which contradicts

the fact that PIP2 = 1. It follows then that PI = P2' Combining this with PIP2 = 1 and
./. '1 ' II h -;, - -;, h B - krr k - 1 2 ( 1) N h 1PI I P2, 1 10 OWS t at PI - e , P2 - e ,were - -;-, - , , ... , n - . ate t a

there are infinitely many solutions to the linear system above. If we pick [91, 92]T = [1, uF,
where 9 = - :~~(; ~~: ~ , assertion (iii) of the lemma follows.

If we consider now PI = P2 then we follow a similar analysis for each particular case.

The corresponding results are summarized below.

PI = P2 = 1,

[
000] [gO]
~~i ,g= ~

[
000] [gO]

JF= ~~i ,g= ~

h(A) - f,(A) = 0, X F = [~\~()A) _: b(S-h(A)], JF ~
j., !J(>')+h(>')

[
f,(A) 1 0 ]

h(A) + h(A) = 0, XF = _, (A) 1 h(')+1«'1 '
J4 12(-\) ftC")

Pt=p2=-I,

[
h(A) 1 0] [0 00] [gO]

hP) +f,(A) = 0, XF = _, (A) 1 _bl')+[;('1 , JF = 0 -1 1 , 9 = 1
J4 hPJ-h(>') 0 0 -1 0

[
f,(A) 1 0] [0 0 0] [gO]h(A) - hP) = 0, XF = _, (A) -1 h A -[,' , JF = 0 -1 1 , 9 = 0 .

J<l h()., +ft(J. 0 0 -1 0

Assertions (i) and (ii) of the lemma follow from the solutions of 12(>') ± J4()..) = 0 and

considering the corresponding Zk, k = 1,2, ... , n. 0

LEMMA 2.6. Let Ai, i = 1,2,3,4, be the matrices in (2.28). Then there exists a

nonsingular matrix X such thal ATX = ArX D and A5X = AiX D, where

- . - - - . (9 -7V3
D = dmg(>'t,)I2, ... , ).2n) = d~ag r,;'

9 +7v3

. . (3 - 2V3 3- 2V3 + _ + _)
D = dlug(AllA21···,>'2n) = dzag filII'>' Q t ,a1 , ... ,0"_I,O:n_l 1

3 + 2v 3 -3 - 2v 3
(2.29)

15 - 9V3 + _ + _)
-15-9J3' 131 ,/31 ,···,Pn-t,Pn-t ,

(2.30)

and
3,,13±/43+40 cos 0,1,-2 <:"os2 Ok

( 28 16-.13)+(-./3+1 cosOt '
(37+8cosBk)±3J3 013+40c0501;-2c052 Ok

( 6"1 36V3)+(19+9,,13)cos8k '
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Proof First, note that the matrices of At and A 2 are nonsingular by applying Theorem

2.1 in [30]. Then by setting A = A4 and B = A2 in the preceding lemma, a lengthy

computation shows that all the eigenvalues of the pencil (AI. An (cf. (11]) lie on the curves

>._ and A+ of Figure 2.2 and have the values of the entries of the matrix given in (2.29).

···E,.=.,'~~'
_0.4

_0.6

-0.8

.,-1-----

FIG. 2.2. Curves contain the eigenvalues oj the matrix pencils (A.f,An and (ALAn. The

jour curves Qrdered from top left represent A_, X-, >.+ and).+ as Junctions of 9, where >.± =
3(3)'!O±({3+iOco,B 2CO'~8)'/O >. _ 37+8co,8±J(3)1/~(i3+iOco.8 2co.~8)1/~ TJ I /. Ih fi . d

( 28 16(3)'h)+{3.h+l)co'8' ± - (64 36(3)'/2)+(IO+9(3).h)co.o . Ie rec any cine Igum IS c-

fined for every 9 in [C05-1(122 5':J3)1/~), cos-1(10 _ 6(3)1/2)].

From the sign of the derivatives of the functions of the curves ,L and A+ on the interval

(0,'11"), it is concluded that A_ is decreasing, while A+ is increasing. Moreover, they do not

have any intersection point since A_('II") > A+(1i"). It follows then that all the eigenvalues

Ai, i = 1,2, ... , (2n), are distinct. By rearranging the corresponding eigenvectors it follows

that there does exist a nonsingular matrix X such that ArX = ArX D, where D is defined

as in (2.29).

To complete the proof, it suffices to show that if AIXi = AiAIXi, then AIXi = XjAT Xi,

with Xi being the ith column of X. It is clear that the claim holds for i = 1,2. So we

consider i = 3,4, ... , (2n) and fix x = Xi, A= Ai. By virtue of Lemma 2.5, there exist ()

and 9 such that x = [PI +P2g, WI PI +W2P2g, ... , P'i +P'2g, WIP'i +w2P'2gjT, where Pll P2,
WI, W2 are as defined there. Let 0, x and A be fixed. Set then A = A3, B = Al in the

previous lemma, and use the same symbols with a bar (to distinguish them from the ones

in the previous case) to denote the corresponding quantities in the present case. For e= ()

there are two solutions for X from

!I(X)J,(X) - !3(X)!,(X)
h(A)!,(X) - f,(X)!3(X)

cos 0
fI(A)J,(A) - j,(A)f,(A)
h(A)J.(A) - j,(A)j,(A)"

(2.31)
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S· A C· li A-B C-D (231)· I·mce Ii ;::::: 75 Imp es A+B = C+D' • Imp les

WX) +13(X)(J,(X) - h(X))
(lIP,) -13(A)(f,(X) +14(X))

(1,(,1) +h(A))(j,(A) - !4(A))

(MAl h(A))(j,(A) + !4(A»"
(2.32)

Recall that we are in the situation where>' is given, and we want to solve for Xfrom equation

(2.31). On the other hand, it is easy to verify that for this case the following statement

holds. If
l,(X) - h(X) j,(A) - 14(,1)
h(X) +14(X) j,(A) +14(,1)

then
f,(X) +13(X) 1,(,1) +13(,1)
j,(A) - j,(A) MAl j,(A)"

(2.33)

(2.34)

It follows then that one of the solutions of (2.31) is the solution of (2.33). We take it as

being the Xwe have been seeking. For this X, we obtain the corresponding WI, W2, g. Since

X satisfies (2.33), we also get that Wi = Wi, 9 = g. So we obtain the equality AIx = XA[ x.

Note that we have not shown that the elements of iJ have the order that corresponds to

the one in (2.30). For this we go back to equation (2.31), and see that for a given 0,
- -

we get two solutions for>. and A. Let us call them A± and A±, respectively. Since both

sides of equation (2.32) are decreasing with respect to either A, or ~ individually, A+(>._)

corresponds to )'+(X_). Hence D 2 is determined by D 1 as in (2.29). Tills completes the

proof. 0

2.4.1.1 Spectra of the Block Jacobi Iteration Matrix Let hand J2 be the

block Jacobi iteration matrices associated with the partitionings PI and PI! of the INTCOL

coefficient matrix, respectively. We now derive analytic expressions for a(h) and a(h).
Since it can be shown that the matrices Al and A 2 are nonsingular by Theorem 2.1 in

[30], then from Lemma 2.6 we have that the matrix A4 A2"1 A3A11 is invertible. Therefore

the blocks of R in (2.4) can be found explicitly. More specifically

Using the fact that for any two matrices A and B, a(AB);::: a(BA), we get that

a(R22 ) = a« -A4A,' A, + A3 )(A, - A4 A,'A3 t ' )
= a«-A4 A,' + A3 A;-')(I - A4 A,'A3 A;-')-').

Applying Lemma 2.6 we have that

{
Xi-Ai

a(R22 ) = 1- A'Ai' i;:::l,2, ... ,2n},

since A2"TAr and A1TAf commute. From Lemma 2.6, we have that X TA4A2"I(XT )-1 ;:::

D and X TA3All(XTtl = D. By a similarity transformation with the transformation

matrix diag(XT,XT) and an obvious permutation of rows and columns, it is seen that n
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of Theorem 2.2 Is similar to dlag(Dt , D2, ••. , Dn ), where Dj = '\ i c~s k'i.- '
"'iSIll n'

we have

35

A'sin
h

]
" n krr • So,

-",·cos~
• n

2- k1r- .
u(T» = {I'll' - (1.;- A;)I'COS- - Ail.; = 0,' = 1,2, . .. ,2n).

n

Combining the above results with those of Theorems 2.1 and 2.2, we conclude that

(J) {} {
n-l{ I 1 X; - A; kw - }}

U 1 = a U Uk=1 J1- J1- +- = 2 - cos -, ~ = 1,2, .. " 2n ,
J1- 1 - Ai>'j n

u(J,) {±A1> ... ,±A'n}
U {U;;::(I'II" - (Xi - A;)I'COSk~' - X;Ai =0, i =1,2, . .. ,2n)},

(2.35)

(2.36)

where Ai, 5.,. are the ones of Lemma 2.6. Note also that zero is an eigenvalue of J1 with

multiplicity 4n.

Recall now that equations (2.29) and (2.30) imply that the Ai, Xi lie on the curves

in Figure 2.2. This implies that Ai, Xi are real numbers with magnitudes less than 1. It

follows then that J.L + ~ is real and has absolute value less than 2 which implies that all

the eigenvalues of Jt , except 0, are complex and lie on the circumference of the unit circle.

Therefore, the spectral radius p(h) of J1 is equal to 1. On the other hand, in view of

Figure 2.2 and solving the equation in (2.36), we have that the spectral radius p(J2 ) of J2

is equal to

1 ( _ ~
p(J,) := a = '2 (1.3 - 1.3 ) cos;; + (2.37)

where A3' >'3 are those of Lemma 2.6. By inspecting the expression above, we also find

that it is bounded above by 1>'31. Thus we conclude that for any discretization grid size n,

p(h) < 1>'31 < p(J1 ) = 1. Consequently for the model problem in Section 2.4.1, the Jacobi

iterative method associated with the partitioning PH converges, but the same method

associated with the partitioning PI does not converge (because there does exist at least one

complex f-L E u(J1 ) with modulus 1).

2.4.1.2 Optimal SOR The optimal SOR method for the case where J1 is the Jacobi

matrix has been already obtained in [14], so we consider only the case where the Jacobi

matrix is J2 • Recall that J2 is consistently ordered weakly cyclic of index 2. Therefore the

Young-Eidson's algorithm [42] (see also [41, pp. 194-200]) can be applied to determine the

optimal SQR method. To apply the algorithm, the hull (smallest convex polygon) of u(h)
is required. For this we solve the equation for f-L in (2.36) to obtain

(A' - X)cos" ± J((A - 1.-) cos ,,)' +4A-X,) ) n )) n ))

I' = 2 . (2.38)

For real f-L we have already found that max If-LI == a in (2.37). However, f-L is a complex number

when Ai and >'j lie inside the rectangle illustrated and defined in Figure 2.2 . Furtherm-orc,
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for a given pair Aj, Xj satisfying Aj>'j < 0, all the complex eigenvalues of h associated with

them must lie on the circumference of the circle centered at (0,0) and with radius V-Ai).j.

Let b be the maximum value of V-J..)"j among those j such that -Xj >.; > 0, Le.,

J k~ - h h 122 - 54J3 r.;b = max ->._(-)>._(-), - E (w,-I( ) , co,-1(10 - 6v3)).
k n n n 59

(2.39)

Then, it follows that all the complex eigenvalues of Jz lie inside or on the circumference

of the circle with center at (0,0) and radius b. On the other hand, from (2.37), we have

a = p(Jz) E a( Jz). If n IS even, we may put k :=: ¥in (2.38) which implies that bi E a(Jz),
where i is the imaginary unit. Thus the ellipse with semiaxes a and b is the optimal enclosing

ellipse of a(Jz). Therefore in this case we get

(2.40)

where Lw is the associated block SOR iteration matrix with overre1axation parameter w.

In case n is odd, bi ¢ O'(Jz). However, the value of w given in (2.40) is still a very good

approximation to Wopl in the present case, because that b is only slightly greater than the

imaginary semlax1s of the corresponding optimum capturing eltipse and tends to the optimal

one (b = 0.0237973) when n --+ 00. Two examples of 0'(J2 ) for each of the two cases of n

even and n odd are illustrated in Figure 2.3.

o. ~ f :: >« ...:...-::-::.---:.:-,~=~: : :1-0.1
0.75 0.5 0.25 0 0.25 0.5 0.75 1

o~ f :-- . :... - ...:--_.::----:.. ~-~ : J-0.1
-0.75 -0.5 -0.25 0 0.25 0.5 0.75 1

o.{
:: ..:::.. _.:~-_._ .. :~.---.~._~=~..... : J-0.1
0.75 0.5 0.25 0 0.25 0.5 0.75 1

o. ~ f
. :. - ... :- ....-: ~ ._~_ .....~~~ . ... :

J-0.1
-0.75 -0.5 -0.25 0 0.25 0.5 0.75 1

FIG. 2.3. The spectrum u(J'l) of the Jacobi matrix 12 associated with the partitioningPII oj the iterior

collocation matrix.

2.4.2 The Neumann Case Here we consider the iterative solution of the interior

collocation equations associated with the following Neumann boundary value problem

u.. +u" = fin R = (0,1) x (0,1),
OulOn = 9 on OR.

(2.41)
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and a uniform mesh. For the analysis below we introduce a similar notation to that in

preliminary section of this chapter consisting of the matrix

aB
AB

A B
A b

, a= [all], b= [bll ].
aZl b21

which dlffers only in the definition of the vectors a and b.

Using Papatheodorou's tensor-product ordering of Section 1.3 and factoring out (1/9h2
),

the INTCQL coefficient matrix has the form

For this particular problem, the entries of Ai, i :::: 1,2,3,4, are independent of h and have

the same structure as before, namely

The values of Uj corresponding to Ai are the ones given in Section 2.4.1. Following the

analysis developed in Section 2.3, we obtain that the corresponding block Jacobi iteration

matrix JI is given by

P Q
I0 0

.

I
0 o P Q
Q P 0 0

o 0 P+Q
Q P 0

J'=

o P Q
P+Q 0 0

o 0
QP

where P and Q are defined in the same way as in (2.14). Through the similarity transfor­

mation 8J'8-1 , where S:::dlag(l, 1, -1, -1, 1, 1, ...), JI is transformed to the matrix J"

P Q
I0 0

I 0 0 P -Q
-Q P 0 0

0 0 P+Q
-Q P 0

0 P -Q
P+Q 0 0

0 0
-Q P

I
J" :::



38

Note that JII is of exactly the same structure as J' in (2.14) with the only difference being

that -Q is replaced by Q. Applying Lemma 2.3, we then have that, in this case

u(J') =u(J") = (u,:;U(Tk)) u u(P + Q) u u(-Q - P)

where
_ [(_Q _ P)eos k~7, (_Q _ P)sin krr]

Tk - _( _Q +P) sin k:, (_Q + P) eos~ .

Note that Q - P :::: A 4 A2"1, Q + p:::: -A3Ai'"1. Hence, we have

a(J/) :::: uk:ia(Tk) U a(A3 A1
1

) U a(-A3 A1
1

) (2.42)

where

[
A A-I COS k;r A A-I sin k;r ]T- 31 n,31 n

k- AAsinkrr _AA-1cosbr·
42 n' 42 n

Let PI:::: diag{I, -1, I, -I, ), where I is the 2 X 2 identity matrix,

and Pz :::: diag(l,-Iz,!z,-Iz,!z, ,(_l)n), where /2:::: [~ ~]. Then we have

We can apply Lemmas 2.5 and 2.6 to this case by interchanging the roles of a4 and az with

those of U3 and at, respectively. It follows then that there exists a nonslngular matrix X

such that Afx:::: AfxD and A§X:::: AfxD, where

_ . _. (15 - 7v'3 9 - gv'3 + _ + _)
D-dlag(>'1'>'2""'>'2n)-diag -15-7y'3' 9+9y'3' Cl:1,Cl:1,···,Cl:n_1,Cl:n_1 ,

- . - - - . (48-18v'3 18v'3 + _ + _)
D = dlag().1,).2"",).2n) = dlag ;;;,;;;, fJ1 ,fJI , .•. ,fJn - 1 ,fJn - 1 ,

-48 - 18v3 -18v3

the analysis of Section 2.4.2, we

(-28-16 3)+(V3+l COSOk '
(37+8co"Ok)±3V3 <13+<10 <:05 Ok 2C052 Ok

( 6<1 36,)3)+(19+9.;3) COSOkflt
8 be

k n

Combining the above results w1th (2.42) and following

conclude that

(2.43)
a(J') {±).1"",±).2n}

U {u,:ilttltt' - (Xi - Ai)tteosk~7 - XiAi = 0, i = 1,2, ... ,2nl}.

It 1s clear from the analytic expression for u( J') that all the eigenvalues of J except ±1, which

are simple ones, have magnitudes less than 1. Therefore p(J') = 1 and index(I - J') = 1

(i.e., rank(I - J)2 = rank(I - J')). Tills, together with the block 2-cyclic nature of J',

implies that we can apply the analysis in [13J and of Section 2.4.1.2 to obtain the optimal

SOR method for n even and a very nearly optimal one for n odd by means of the formulas

(2.40). Note that b is exactly the same as in the Dirichlet case while a = ).3.
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2.5 Numerical Results In this section we present some numerical results to confirm

some of the formulas and the convergence behavior of various iterative methods considered

in this chapter. We also compare the time and space performance of optimal SOR, UNPACK

BAND GE, and GMRES software for solving the INTCOL and HERMCOL equations. All

numerical computations were carried out on a Sun 4/470 with 32Mbytes of main memory

in double precision. The execution times measured are given in seconds and the space is

measured in words.

First, we attempt to confirm numerically the formulas (2.36) and (2.43). For this we

choose n = m = 3 and find the eigenvalues of the block Jacobi iteration matrices hand J'
by using the subroutine EVLRG from IMSLjMATH library. The eigenvalues are presented

in Tables 2.1 and 2.2, respectively. They agree with the ones obtained from the formulas

(2.36) and (2.43) at least up to the the number of the decimal digits displayed in these

tables.

TABLE 2.1

The 36 eigenvalues oj the Jacobi matrix J2 Jor n = m = 3.

±O.5726 ±O.3272 ±O.3169 ±O.2411 ±O.2136 ±O.I7t11
±O.1238 ±O.0858 ±O.0718 ±O.0718 ±O.052G ±O.0499
±O.0374 ±O.0263 ±O.0260 ±O.0123 ±O.0079 ±O.0014

TABLE 2.2

The 36 eigenvalues of the Jacobi matrix J' for n = m = 3.

±l.OOO ±O.753 ±O.732 ±O.573 ±OAOI ±O.366
±O.327 ±O.317 ±O.214 ±O.212 ±O.179 ±O.126
±O.058 ±O.037 ±O.026 ±O.012 ±O.OOI ±O.OOl

Second, we verify some of the convergence results obtained in this paper. For this

we apply the INTCOL and HERMCOL algorithms from the ELLPACK system [33] to

discretize several PDE problems on the unit square. For the solution of these equations

we have developed three new solution modules in ELLPACK based on block AOR, SOR and

adaptive SOR methods (cr. [15] ) and new indexing modules based on the tensor-product

ordering. Depending on the initial value of Wo selected for the adaptive SOR, we introduce

the following notation: SORI if Wo = I, SOR2 if WQ is equal to the optimal W for a model

problem, and SOR3 if Wo is the final adaptive w found by solving the same problem on a

coarser mesh unless n = m = 2 in which case we take Wo = 1.0. Throughout, we denote

the semi-optimal SOR with w the optimal value for a model problem by SORa. We have

implemented the adaptive procedure used by the ITPACK routines [36]. For completeness,

we note that the AOR method for the solution of Ax = b is defined by

(D - rL)xn+l = [(l-w)D + (w - r)L +wUJxn +wb,
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xxx
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xxxx
x x x x

xxx
xxx

, Pl/ =

xxx
xxx

x x x x
xx x x

x x x
x x x

, PIlI =

FIG. 2.4. Displays thre.f'. partilicmirlgs of tile INTCOL equations associated with a uniform mesh of size

n = m = 3. They ore denoted by PI, PIl, and PIlI wllere each x denotes (I 2m x 2m matrix cmd has the

same structure as the global one.

assuming the splitting A = D - L - U. Its convergence properties depend on the choice of

the pair of parameters (w,r) [12]. The pairs (1,0), (1,1) and (w,w) yield the Jacobi, Gauss­

Seidel and SOR methods while the pairs (w,D), (w,l) and (w,r) with r,# 0 give their

extrapolated counterparts. For comparison purposes we use AOR with (W,T) = (0.5,1.0)

pair of parameters to solve the INTCOL equations. This is the optimal AOR method used

by Papatheodorou in [30].

The iterative solvers implemented depend on the block partitioning of the collocation

coefficient matrix. In this study we consider three different matrix partitionings depicted

in Figure 2.4 for a specific mesh size n = m = 3.

The efficiency of the block iterative methods depends on the time required to solve the

linear subsystems DiX = b, where D i is the ith block diagonal element of A. In general we

expect the bandwidth of the matrices Dj to be small. However, for the block partitionlngs

in Figure 2.4 the upper and lower bandwidth of some D,-'s is (2n+2). For these Di'S, instead

of solving the corresponding linear subsystem DiX = b directly, we solve the transformed

system PDjP-ly = Pb where y = Px, and P = [el, en+l, e2, en+2"", en, e2n], with ei being

the standard unit vectors. Figure 2.5 depicts the effect of this transformation for a 3 x 3

mesh. It is easy to show that the bandwidth of PDjP-l is only 5. Thus the transformed

dxx xxx
xdx xxx
xdxx xxxx
xxdx xxxx

xdx xxx
xxd xxx

xxx dxx
xxx xdx
xxxx xdxx
xxxx xxdx

xxx xdx
xxx xxd

dxxxxx
xdxxxx
xxdxxx
xxxdxx

xxdxxxxx
xxxdxxxx
xxxxdxxx
xxxxxdxx

xxdxxx
xxxdxx
xxxxdx
xxxxxd

FIG. 2.5. Illustrates the PD;P-t transformation/or a 3 x 3 mesh.

diagonal subsystem can be solved much faster using BAND GE without pivoting.

In the tables below we display the maximum discretization error lIu - uklloo based on

a 65 x 65 grid, where u is the exact solution of the PDE problem and Uk is the computed
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Hermlte cubic piecewise polynomial solution. In order to compare the efficiency among

various iterative solvers considered, we used the same stopping criterion, namely

IIXn+l - xnll oo < € = 5* 10-6,
II X ntdl=

and the same initial solution XQ.

Tables 2.3a and 2.4a. indicate the convergence of fOUf block iterative methods applied

to the system of INTCOL equations corresponding to different mesh sizes. The ADR im­

plemented is based on the partitioning PI while the fest of the block methods (i.e Jacobi,

Gauss-Seidel, and SOR) are based on the partitioning PH of the collocation matrix. The

optimal parameters of AOR used are (w, T) = (0.5,1.0) according to the analysis in [30]. The

optimal SOR parameter Wopt was obtained based on the analysis presented in Section 2.4.

The data in these tables suggest that the block SOR has the largest asymptotic rate of

convergence.

Tables 2.4b and 2.3b depict the convergence behavior of three of the four iterative

methods considered in Tables 2.3a and 2.4a for the HERMCOL equations. AOR (0.5,1.0) is

not efficient for these type of equations. In this case all methods were implemented based

on the block partitioning PI of the HERMCOL coefficient matrix. It is worth noticing that

the spectral analysis of the Jacobi iteration matrix for INTCOL and HERMCOL equations

has shown that the Wopt is the same for both cases. The data in these tables suggest that

the block SOR has the fastest convergence.

Tables 2.4c and 2.3c depict the convergence data (number of iterations and discretiza­

tion error) of optimal SOR and adaptive SOR3 for both INTCOL and HERMCOL equations.

These data suggest that the adaptive SOR behaves almost as the optimal SOR for the two

model problems considered for relative coarse meshes.

Table 2.5 depicts the time and memory complexity of optimal SOR, the LINPACK BAND

GE with partial pivoting, and GMRES (generalized minimal residual) [34] under three different

preconditioners to solve the INTCOL equations associated with a model problem under

different mesh sizes.

In the case of SOR and GMRES the initial guess of the solution corresponding to an n x n

mesh is estimated from the previous collocation approximation based on an (n/2) x (n/2)
mesh. Throughout we refer to it as the multigrid type initialization. The execution times

of iterative methods include the total time to estimate the initial guess. The direct solver is

applied to the system obtained using the natural ordering while the block SOR utilizes the

mentioned above transformations to diagonal subsystems. These subsystems were solved

using BAND GE without pivoting. It should be added that in general BAND GE with partial

pivoting is necessary to solve the general collocation systems.

Among CG preconditioning iterative solvers GMRES method is recommended fOT non­

symmetric systems provided a good preconditioner is available. In these experiments we

consider right preconditioning, which are simply the block diagonal matrices associated
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with the block matrices PI, P// and PJJ I of the collocation matrix A. We refer to them

as PREel, PREC2 and PREC3. The GMRES procedure is restarted every 50 steps and the

stopping criterion is set to be

lib - Ax.II, < ,= 5 <10-5
lib - Axol"

The data suggest that the iterative methods have much smaller memory requirements. This

of course was expected. However, we were surprised by the time efficiency of the optimal

SOR that is better than the rest of the solvers considered and occurs at a level of relatively

coarse meshes_ In the case of GMRES, the preconditioner based on the block diagonal matrix

correspondlng to PH block structure 1s the best performing.

Table 2.6 indicates the performance oISOR (w takes the optimal values for the Dirichlet

model problem in Table 2.3), adaptive SOR3, BAND GE, and GMRES (restarted every 50 steps)

for solving the INTCOL equations obtained from the discretization of a general elliptic PDE

with Dirichlet boundary conditions on the unit square. All applied solvers were based on PlI

block structure. The multigrid type approach was used to start the iterations. The data

displayed include maximum discretization error and execution times. The data indicate

that the semi-optimal SOR is the fastest for fine meshes without effecting the discretization

error. Adaptive SOR3 appears to effect the discretization error.

Table 2.7 compares the convergence and efficiency of the semi-optimal SOR and the three

adaptive SOR methods considered in this section under different initial approximations Xo.

It is clear that the multigrid initialization is the best based on the number of SOR iterations

required to achieve the pre-defined tolerance. Among the adaptive SORs considered SOR2

behaves closest to the semi-optimal one. This is due to the fact that they use almost the

samew.

Table 2.8 compares the performance and convergence behavior of optimal SOR, adaptive

SORi, BAND GE, and GMRES(50) for model problem with Neumann (Tables 2.8a and 2.8b)

and uncoupled boundary conditions (Table 2.8c). The exact solution is the one used in

Table 2.3. Again, from the data including number of iterations required to achieve toler­

ance, maximum discreti7,ation error, the exact and estimated value of the SOR parameter

w Ilsed and execution times, we observe that optimal SOR outperforms the rest of methods

with GMRES(50) being the slowest. In this table, all iterative solvers used multigrid type

initialization. Moreover, it is noticed that the BAND GE could not run for mesh size 128 x 128

on the machine used due to memory limitations.
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TABLE 2.3

The convcryencc behavior oj four block iterative methods jar solving the INTCOL and HERMCOL

equations obtained by discretizing the equation v.;>"~ + UY!I = f with Dirichld boundary condition (v. = g).

The Junctions f and gore seleded so thai u(x,y) = o;6(x)~{y). where ¢(x) = 0, if x :'£ 0.35, or ilx;::': 0.65,

otherwise I/I(x) is a quintic polynomial determined so that it helS two continuQus derivativcs.

INTCOL
m~h AOR 0.5,1.0 Jaco i Gauss- 'Cl C ptlm SOR
size iter error iter error iter error Wopl Her error
2 x2 17 1.21 9 1.21 6 1.21 1.0314 6 1.21
1 x1 17 1.28c-2 29 1.28e-l 15 1.28e-l 1.1786 9 1.28e-l
8 x8 11 7.56e-2 91 7.55e-2 18 7.56c-2 1.4271 19 7.56e-2

16 x16 200 2.5ge-2 305 2.63e-2 151 2.62e-2 1.6536 10 2.59c-2
(al

HERMCOL
mesh Jacobi Gauss-Seidel Optimal SOR
size iter error iter CISOR wo '

iter error
2X2 12 1.19 7 1.19 ] .0314 6 1.19
1X1 32 1.28c-1 18 1.28e-l 1.1786 11 1.28e-1
8 x8 101 7.56e-2 56 7.56c-2 1.4271 21 7.57e-2

16 x16 311 2.63e-2 182 2.61c-2 1.6536 16 2.59e-2
(h)

INTCOL HERMCOL
mesh Optimal SOR Adaptive SORa Optimal SOR Adaptive SOIll
size W~, iter error W iter error iter error w iter error

2 x2 1.0314 6 1.21 1.013] 6 1.21 6 1.19 1.0176 7 1.19
4 x1 1.1786 9 1.28e-l 1.0131 15 1.28e-l 11 1.12e-I 1.0176 15 1.28c-l
8 x8 1.4271 19 7.57e-2 1.2685 32 7.56e-2 21 7.57e-2 1.2829 31 7.57e-2

16 xl6 1.6536 10 2.5ge-2 1.5821 59 2.59c-2 16 2.59c-2 1.6528 68 2.59e-2

(e)
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TABLE 2.4

The convergence behavior of four block iterotillc methods for solving tile INTCOL and IIERMCOL

equations obtained by discretizing the equation 11".. + uy!! = f with Dirichlet boundary condition (u ;::: 0).

The function f is selected so that u(z,y) = lO¢(x)¢(y), where l,6(x) = e-1CO(:<-O,1? (x 2 - x).

INTCOL
mesh ADR (0.5,1.0) Jacobi Gauss-Seidel Optimal SOR
size iter error iter error iter error Wopl iter error

2 x2 18 2.91e-I 11 2.9e-I 6 2.91e-I 1.0314 8 2.91e-l
4 x4 19 1.46e-l 35 1.4Ge-l 20 1,46e-1 1.1786 11 1.46e-l
8 x8 78 1.56e-2 131 1.56e-2 68 1.56e-2 1.4271 22 1.56c-2

16 x16 247 6.08e-4 388 6.31e-4 199 6.28e-4 1.6536 43 6.08c-tl
(al

HERMCOL
m~h Jacobi Gauss-Seidel Optimal SOR

size iter error iter error Wopl iter error
2 x2 12 2.91c-1 7 2.91c-l 1.0314 8 2.91e-1
4 x4 36 lA6e-l 20 1.46e-l 1.1786 11 1.46e-1
8 x8 129 1.56c-2 89 1.56e-2 1.'1271 24 1.56c-2

16 x16 378 6.37e-01 200 6.28e-01 1.6536 " 6.08e-4
(bl

INTCOL HERMCOL
mesh Optimal SOR Adaptive SORs Optimal SOR Adaptive SORs
size Wal>l iter error w iter error iter error w iter error

2 x2 1.0314 8 2.91e-l 1.0178 6 2.91e-l 6 2.91e-1 1.0287 7 2.91e-l
1<4 1.1786 11 1.'16e-l 1.0178 19 1.46e-1 11 1.'16e-l 1.0287 19 lA6e-l
8 x8 1.'1271 22 1.56e-2 1.3761 33 1.56e-2 24 1.56e-2 1.3605 35 1.56e-2

16 x16 1.6536 43 6.08e-4 ].3761 98 ILl6e-4 47 6.08e-4 1.3605 101 6.17e-4
(ol
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TAllLE 2.5

The time and memory complexity of five solvers for solving the discrete eqlJalions obtained by applying

INTCOL procedure to tile equation Un + U yy = f with Dirichlet boundary conditions. The junction f is

selected so that u(x,y) = lO.p(x).p(y) , where tJI(x) = e-100(%-0.1)'(x2 - x).

Optimal SDR BAND GE

mesh equations time iter workspace error time workspace error

2 x2 16 0.02 5 264 2.905c-1 0.02 464 2.905e-1
4 x4 " 0.14 10 1136 lA56e-l 0.07 2624 1.456e-l
8 x8 256 1.02 19 4704 1.563e-2 0.53 16640 1.563e-2

16 xl6 1024 6.22 27 19]36 6.083e-01 5.03 115712 6.082e-1
32 x32 0:1096 50.35 57 77184 5.795e-5 60.77 856061 5.795c-5
61 x601 16384 360.28 99 3100]6 2.035e-6 797.75 65699801 2.035e-6

128 x128 65536 303] .63 213 1242621 1.263e-7 NA NA NA
(a)

GliRES restarted every 50 steps
PREel PREC2 PREC3

mesh equations error time iter time iter time iter
2 x2 16 2.905e-l 0.02 3 0.03 6 0.03 7
4 x4 64 l,456e-l 0.20 15 0.16 10 0.24 18
8 x8 256 1.563e-2 1.87 28 1.15 18 1.80 28

16 x]6 1024 6.082e-1 19.52 64 9.56 33 14..89 48
J2 x32 4096 5.766e-5 108.25 79 48.96 36 83.65 66
64 x64 16384 2.056e-6 ]255.Q3 244 371.66 66 559.91 107

128 x128 655J6 1.14.00e-7 9134.46 4002 2571.77 106 5685,47 282
(b)

I Approximately the same error is found by using any of the three precondltioners as long as
the same stopping criterion is satisfied.
2 At this step the stopping criterion was not satisfied. The corresponding error was 1.18e-7

TABLE 2.6

The perjormance and convergence data of SORo, Adaptive SOIb, BAND GE, and GHRES(50) jor solving the

INTCOL equations obtained from the discrelization of the equation [2 + (y -l)e-Y~]u""" + [1 + (1+~::J)]uY!I +
5[x(x -1) + (y - O.J)(y - 0.7)]u = I, with boundary condilions (u = g). The junctions I and gaTe selectcd

so thalu(x, y) = ~t1; + (1 + x)(y - l)e-Y< + 5(x + y)cos(xy).

mesh BAND GE Adaptive SOR 3 SORo GMRES(50)

Size time error time CHOr time CHOr time error

2 x2 0.05 7.67e-3 O.OJ 7.67e-3 0.0 7.67e-3 0.02 7.67e-J

4X4 0.25 1.57e-J 0.17 1.57e-J 0.12 1.57e-3 0.15 1.57e·J

8 x8 1.80 1.24c-1 0.84 1.25c-4 0.67 1.24c-4 0.97 1.24e-4

16 x16 15.95 8.61e-6 3.05 1.24.e-5 4.59 8.62e-6 8.07 8.61e-6

32 x32 66.21 6.06e-7 12.15 9.30e-6 31.58 6.06e-7 70.23 6.06e-7

64 x61 849.99 4.35e-9 56.58 8.92e-6 216.13 8.58e-9 466.88 1.26e-8
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TABLE 2.7

Tile performance and convergence data of SOR and the three adaptive SORs for solving the INTGOJ,

equations obtained from the discretization oj the PDE problem llsed in the previous table.

Xo estimated by the 2x2 solution found by BAND GE
mesh SOIlo Adaptive SDR!
size iter error time iter error time w

, x, 8 1.57e-3 0.08 10 1.57e--3 0.12 1.1934
8 x8 14 1.24e-4 0.63 23 1.25c-4 1.03 1.2278

16 xlii 29 8.63e-G 5.42 39 1.37e-5 7.20 1.6173
32 x32 66 6.07e-7 49.38 75 2.50e-5 56.2 1.7896
64 x64 175 7.66e-8 521.97 153 3.09e-4 464.0 1.7796

Xo 0.5,0.5, "0' 0.5
mesh SOIlo Adaptive SOa:.
size iter error lime iter error time w

2 x2 6 7.67e-3 0.02 7 7.67c-3 0.02 1.02'.16
, x, 11 1.57c-3 0.12 20 1.57c-3 0.20 1.02016
8 x8 22 1.24c-4 1.03 32 1.2'.1e-4 IA2 1.3898

16 xl6 48 8.62e-6 9.30 54 8.57e-6 10.03 1.6735
32 x32 110 6.06c-7 81.65 104 1.91c-5 81.18 1.8000
601 x61 283 ·1.25c-8 854.1 396 2.57c-4 1196."- 1.8000

Multigrid type initialization
mesh SOIlo Adaptive SOill Adaptive SOR2

SIze iter error w iter error w iter error w

2 x2 6 7.67c-3 1.0314 7 7.67e-3 1.024 6 7.67c-3 1.0314
, x, 8 1.57e-3 1.1786 11 1.57e-3 1.024 8 1.57c-3 1.1786
8 x8 12 1.24e-4 1.4271 13 1.25e-4 1.3165 12 1.24c-4 1.4271

16 x16 19 8.62e-6 1.6536 9 1.24c-5 1.3165 17 8.62e-6 1.600
32 x32 32 6.06e-7 1.8054 8 9.30e-6 1.3165 15 7.37e-7 1.600
61 x61 51 8.58e-9 1.8907 6 8.92e-6 1.3165 12 5A8e-7 1.600
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TABLE 2.8

The performance and convergence data 0/ the optimal SOR, adaptive SORs, GHRES(50) and the BAND GE

for the solulicm of INTCOL eqlJutions obl(lined from the discretization of the PDE U.:rz + U YII = f with

Neumann boundary conditions (Tables a and b) and uncoupled mixed boundary conditions (TobIe c).

Optimal SOR Adaptive SOR:! BAND GE

m~h wop' time iter error w time iter error time error
2 x2 1.2926 0.03 10 2.48 1.091 0.02 9 2.48 0.02 2.'18
4 x4 1.3042 0.18 13 3.22e-1 1.091 0.25 23 3.22c-1 0.07 3.22e-l
8 x8 1.5498 1.17 22 1.40e-l 1.436 1.64 31 1.40e·1 0.52 1.40e-l

16 x16 1.7392 9.56 " 4.76e-2 1.704 12.21 58 4.69e-2 5.01 4.76e-2
32 x32 1.8550 79.09 " lAOc-2 1.800 82.21 " 1.15e-2 58.03 lAOe-2
64 x64 1.9153 661.84 197 2.18c-3 1.600 467.76 125 6.21e-3 797Jl7 2.20e-3

128 x128 1.90113 7716.36 599 8.05c-4 1.800 1584.63 77 5.24e-3 NA NA
(a)

m~h Optimal soa Adaptive SOR2 GKRES(50)
size iter error w iter error time iter error time
2 x2 10 2048 1.2926 10 2048 0.02 7 2.48 0.02
<X4 13 3.22e-l 1.3042 13 3.22e-l 0.17 12 3.22e-l 0.17
8 x8 22 lAOe-l 1.5498 22 1.40e-l 1.17 19 lAOe-l 1.21

16 x16 " 4.76e-2 1.600 55 4.63c-2 11.39 35 4.76c-2 10.23
32 x32 91 1.40c-2 1.800 93 1.Hc-2 80.19 91 lAOc-2 113.95
64 x64 197 2.18e-3 1.600 125 6.15c-3 481.64 191 2.l9c-3 1188.78

128 x128 599 8.05e-4 1.800 77 5.19e-3 1592.89 684 8.02e-4 14505.91
(b)

with boundary condition u 91 at z o or y 1 and Un 92 at x 1 or y 0
SOIlo Adaptive SOR3 BAND GE

mesh w time iter error w time iter error time error
2 x2 1.162 0.02 9 1.22 1.150 0.03 11 1.22 0.00 1.22
4 x4 1.2414 0.27 26 1.31c-l 1.150 0.35 32 1.31e-l 0.07 1.31e-l
8 x8 1.4885 ].64 31 7.38e-2 10494 2.21 43 7.38e-2 0.53 7AOe-2

16 x16 1.6964 12.48 60 2.60e-2 1.750 14.83 70 2.5ge-2 5.02 2.57e-2
32 xJ2 1.8304 68.5 75 7.78e-3 1.900 100.65 116 7A4e-3 59.15 7.28e-2
64 x64 1.903 520.75 ISO 1.27e-J 1.600 437.67 lOS 2.52e-3 794.17 1.14e-3

128 x128 1.9364 5773,44 431 4.35e-4 1.800 1601.95 81 2.07e-3 NA NA
(oj
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3. GENERAL INTERIOR HERMITE COLLOCATION METHODS FOR
SECOND ORDER ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS

In Chapter 2, we studied the iterative solution of the INTCOL and HERMCOL equa­

tions using the tensor-product ordering. However, the applicability of the INTCOL and

HERMCOL algorithms is limited to PDEs defined on rectangular domains. For the case

of general PDE domains, finding a method for the iterative solution of the discrete cubic

Hermite collocation equations is still an open problem. In this chapter, first we extend the

INTCOL algorithm for general rectilinear domains (by rectilinear we mean the boundaries

are parallel to one of the axes). Throughout, we refer to it by the acronym GINCOL. Then

we develop two indexing modules for the GINCOL algorithm. One is based on the finlte­

element ordering [43] and the other is based on the tensor-product ordering [30]. Using

the tensor-product ordering, the linear system derived by the GINCOL algorithm generates

the same block structure that is produced by the INTCOL algorithm. We experimentally

explore the applicability and the convergence properties of the block iterative methods for

GINCOL equations for some PDEs defined on an L-shaped domain and a more general

rectilinear domain. Furthermore, the tensor-product ordering is successfully applied to the

discrete equations produced by GENCOL together with the SOR and CG iterative solvers.

A number of experiments were carried out to study the computational behavior of these

iterative schemes and to estimate the various parameters involved.

The organization of this chapter is as follows. In Section 3.1, we formulate the GIN­

COL algorithm. In Section 3.2, two different indexing modules to be used with GINCOL

are developed and one tensor-product ordering is introduced for the GENCOL algorithm.

Finally, in Section 3.3, a wide class of PDE problems are solved by using the GINCOL

algorithm with some block iterative linear solvers and a number of concluding remarks are

made based on observations from these experiments.

3.1 GINCOL: The General Interior Collocation Method for a Rectilinear

Domain The GENCOL method presented in Section 1.2.1 can be simplified in case (i) the

domain n is rectilinear, and (ii) the problem has uncoupled boundary conditions, that is,

at no point are the boundary conditions mixed, I.e.,

u == 6 on an! Can,
~~ == 6 on 8n2 = an - an! Can.

In order to distinguish this case from the general collocation method case, the simplified

version is called general interior collocation (GINCOL). First, we use the algorithm in the
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Section 1.2.1 to generate a finite-element mesh nh. Then, since an entire boundary piece

is either horizontal or vertical, some unknowns associated with nodes on a boundary piece

can be determined beforehand using the following two assumptions:

(i) The boundary condition changes type only at a boundary node.

(ii) The boundary of the mesh f!h coincides with the boundary of the domain n.
The assumption (ii) is satisfied for the domain n when its boundary pieces are contained

in the union of the grid lines of the mesh. So the user is simply required to place a

grid line on each boundary piece of the domain n as part of the discretization. In this

case, the boundary collocation equations can be solved explicitly when the discretization of

the boundary conditions takes place. It is implemented by the code about the boundary

discretization in subsection 1.2.2.

Since the boundary element eb coincides with eb n n, we can simply select the four

Gaussian points on each mesh element as the interior collocation points. Note that there

are three unknowns associated with a concave corner of n and they have been solved for in

the bonndary discretization procedure. This makes the corresponding linear system over­

determlned. To derive a completely determined linear system, we allege that there is only

one unknown solved at a non-convex corner during the boundary discretization procedure

according to the following rule: if (U solved) then the three unknowns are Uy, Vx and

Uxy else the three unknowns are V, Ux and Uxy . Finally, we are left with the task of

generating COEF and IDCO and then eliminating the nonactive unknowns, namely those

predetermined during the boundary discretization process from BBBB. There are three

local two-dimensional arrays that are used for this task.

NODELM(i,I) = the global index of the ith local node in element I

INUN J{N(i, n) = the global index of the ith local unknown associated with node n

oLU N J( N( i, n) = the value of the nonactive ith local unknown associated with node n

A code skeleton for this procedure is:

LOOP OVER ELEMENTS OF nh:
GENERATE NODELM. COEF and BBBB

IF INTERIOR ELEMENT
THEN GENERATE INUNKN ASSOCIATED WITH THE
LOWER LEFT NODE OF THIS ELEMENT

ELSE GENERATE I NUN K N ASSOCIATED WITH THE LOWER
LEFT NODE OF THIS ELEMENT AND INUNKN
ASSOCIATED WITH OTIIER NODES OF THIS ELEMENT
ON TIlE BOUNDARY.
FOR TIlE NONACTIVE UNKNOWN SET INUNKN TO
ZERO AND SUPPLY TilE VALUE OF OLUNKN

ENDIF
ENDLOOP;
GENERATEIDCO AND MODIFY BBBB BASED ON NODELM,INUNKN
AND OLUNKN
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3.2 The Ordering of Unknowns and Equations In this section, we develop

finite-element and tensor-product orderings for the GINCOL algorithm. Moreover, we in­

troduce the tensor-product ordering for the GENCOL algorithm.

, " 2324 ," ,31

5

8

7

6

,

, ,, ,, ,, ,

"
, , , ,

"" 2431

715 23 31
, 7 15 23 , 31
, 6 14 22 ,30

614 2230

5" 21 29

" 13 21 28 36 "" , ,
" 12 20 , 29 , , ,

, I' ,,,. 3640 "48
311 19 27 35 39 43 47

" II 19 27" 39 43 ", 10 18 26 34 38 42 "210 18 26 3438 4246
I , 17" 3337 41 45

I , 17 "" 37 41 , 4

,

,
"

7

6

5

"

, ,, ,, ,, ,

"
, , , ,

16 IS 32 31

13 14 "", 7 20 22

"" 19 21
2S 27 x "1211

, 10 25 26

" 16 18 31 33 43 44 , 4

, 4 15 17 , 31 , , ,
8 7 2423 40 39 4847

5 6 21 22 3738 4546
, 3 12 14 28 30 4042 ", , 1113 27 29 39 41 , 4

4 3 20 19 36 35 ""1 , 17 18 "34 41 42
, I , 10 25 26 37 38 , 4

(,) (b)

FIG. 3.1. TWQ Qrderin9s of the collocation points and unknowns associated with GINCOL.

The finite-element ordering for GINCOL equations is a straightforward extension of the

ordering for INTCOL equations. So, we only illustrate thls ordering in Figure 3.1(a) here.

The tensor-product ordering has been introduced for the INTCOL and HERMCOL

algorithms. Here, we utilize it for the algorithms GINCOL and GENCOL. First, the GEN­

COL unknowns are split into two sets {u,uy} and {ux,uxy }. Then, on each x-grid line

we number the unknowns {u,uy } node by node (south to north) followed by the number­

ing of {u,x, uxy} unknowns corresponding to the nodal points of the same grid line. For

the tensor-product numbering of the GENCOL collocation points we consider the auxiliary

exterior boundary collocation points introduced in [22J to determine the actual boundary

points. By definition the auxiliary and interior collocation points are located on x-Gauss

grid lines corresponding to x-coordinates of the Gauss points. Then, these points are num­

bered along the x-Gauss grid lines from south to north and west to east. The indices of the

actual boundary collocation points and the auxiliary boundary points coincide. Figure 3.2

displays th.is scheme for an L-shaped region.

In the case of GINCOL, we have only interior collocation points, thus they are ordered

from south to north along x-Gauss grid lines as in the case of GENCOL. Then the numbering

of the active unknowns is determined by the indices of the interior collocation points as

follows. At each nodal point, the active unknowns use the same index as the nearest

interior collocation points. Figure 3.1(b) illustrates this ordering scheme for an L-shaped

region.

The finite-element ordering is attractive because it yields a coefficient matrix which

has smaller bandwidth than the one using the tensor-product ordering. The advantage of

the tensor-product ordering is that the coefficient matrix for the GINCOL algorithm has
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FIG. 3.2. Tcnsor-prodllc! ordering oj tile collocation points (lnd unknowns associated with GENCOL.

the block structure indicated in Figure 1.5. It is worth noticing that for this case the x's

denote submatrices of various orders. The coefficient matrix corresponding to GENCOL

algorthim using tensor-product ordering is also a block matrix. However, its structure

depends very much on the placement of the boundary collocation points. Figure 3.3(b)

shows the detailed structure of the coefficient matrix for GINCOL in the case of the L­

shaped domain of Figure 3.1. For GINCOL the diagonal blocks of the coefficient matrix

is always a band matrix with bandwidth 2 and non-zero diagonal elements. Some block

iterative linear solvers may benefit from thls property.

Figure 3.3(a) shows the detailed structure of the coefficient matrix for GINCOL in

the case of the L-shaped domain of Figure 3.1. The finite-element ordering provides the

efficiency of bandedness but the presence of many zeros on the diagonal of the coefficient

matrix prevents most iterative methods from being applied. So, the most reliable and

preferable way to solve the linear system is to use Gauss elimlnation with scaling and

partial pivoting [9]. However, direct methods tend to require much more memory as well

as more time and their parallelization is difficult. It is very desirable to have a suitable

iterative solver for the collocation equations in general, this can be accomplished by using

the tensor-product ordering.

3.3 Application of Iterative Linear Solvers In this section, we use the algorithm

GINCOL developed in the previous section to discretize a number of elliptic PDEs with

uncoupled boundary conditions on an L-shaped domain Q1 as well as on a general rectllinear

domain Q2 shown in Figure 3.4. We consider only the tensor-product ordering as the finite­

element ordering prevents us from applying an iterative linear solver.

For the iterative solution of the GINCOL equations, we consider two approaches: the

overrelaxation, AOR(SOR)·type, approach and the conjugate gradient, CG-type, approach.
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Among the AOR·type methods, because of the presence of the block structure it Is cus­

tomary to use a block iterative method instead of point iteration. Three different block

partitionings of the INTeOL coefficient matrix in Figure 2.4 are applied to the GINCOL

coefficient matrix.

Among the CG-type methods, the preconditioned GMRES (generalized minimal residual)

method [34J is an often successful method for solving nonsymmetric linear systems. The

preconditioner used should be easily inverted and the diagonal blocks of PI, PTJ and PTU

can be used. After experimentation we conclude that PI! preconditloner is the best for

GMRES.

TABLE 3.1

Tile convergence behavior of block iterative methods for solving Ihe GINCOL linear system obtained by

discretizing the eqlJafion U""" + u YlI = f in OJ with Dirichlet boundary condition (1.1 = g). The junctions f
and 9 arc selected so that u(x, y) = e=+Y.

mesh P, PIlI

(r
siz

:)
AOR adaptive SOR SOR SOR

neQn Her error w 1.0 iter error w iter error w iter error
4 x4 (48) 24 1.91e-5 0.8285 41 2.04e-5 0.7537 10 2.00e-5 0.5 24 2.52e-5
8 x8 (192) " 1.18e-5 0.8285 58 8.20e-6 0.7374 48 8.73e-6 0.5 50 2.29e-5

16 x16 (768) 225 4.62e-5 0.8285 219 3.46e-6 0.7334 191 7.63e-6 0.5 242 3.30e-5

mesh PH
size adaptive SOR adaptive SOR SOR

(neqn) w 1.0 iter error w(1.01 iter error w Her error
4 x4 (48) 0.8285 " 2.04e-5 1.6880 " 2.13e-5 1.1786 , 2.06e-5

8 x8 (192) 0.8285 58 8.20c-6 1.7998 28 7.75e-6 1.4271 l' 1.43e-6
]6 x16 (76fl' 0.8285 21' 3.46e-6 1.7070 SO' 8.34.e-6 l.G536 45 8.34e-7

1 At this step the slopping criterion is not satisfied. The corresponding iteration error is 6.35e-5.

TABLE 3.2

The convergence behavior of block iterative methods for solving the linear system obtained by discrctizin9

tile eqlJation Un + U yy = f in 02 with Dirichlet boundary condition (1.1 = g). The functions f and 9 are

selected so that u(x J y) = e=+!1 .

m~h P, Plll

sIze AOR adaptive SOR SOR SOR
(neqn) iter error w 1.0) iter error w iter error w iter error

8 x8 (188) 4' 1.22c-5 0.8281 <0 3.52e-6 0.7371 36 2.86e-6 0.5 45 S.72e-6
16 xl6 (752) 179 1.35c-5 0.8285 156 1.97c-6 0.7334 138 5A2e-6 0.5 175 2.90e-5

m~h PH
sIze adaptive SOR adaptive SOR SOR

(neqn) w 1.0 iter error w 1.01 iter error w Her error
8 x8 (188) 0.8284 32 1.39e-S 1.7901 20 3.58e-6 1.427] l' 1.907e-6

16 x16 (752) 0.8284 124 2.53e-S 1.6669 45 1.68e-6 1.6536 41 2.38e-6
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In Tables 3.1 to 3.3, we study the convergence behavior of SOR under different block

partitionings of the GINCOL collocation matrix in different rectilinear domains. Specif­

ically, we display the maximum discretization error Ilu - uhllco based on the grid points

inside the domain, where u is the exact solution of the PDE problem and Uh is the com­

puted cubic Hermite piecewise polynomial solution. These tables also give the number of

iterations required for the various methods to converge. These numbers are good indicators

of the actual efficiencies of the methods. The mesh size entry is the size of the mesh in the

smallest rectangle that contains the domain. The values in parentheses beside them are the

orders of the linear systems. For the adaptive SOR method, we also display the final value

of w used; the initial guess of w is given in the heading. In order to compare the efficiency

among the various iterative solvers, we use the stopping criterion, namely, !lit1 ir II~ < f
Xn+l ~

for SOR and It::::~:~I1~ < f for GMRES with the same initial solution Xo = [0.5,0.5, ... ,0.5f.

In the iterative computation, one wants the error in solving the linear system to be

less than the dlscretization error in approximating the PDE. In all tables the convergence

tolerance f = lO-s is used for SOR and f = 10-6 for GMRES. As the data in Tables 3.1 and

3.2 indicate, this tolerance is too large as the discretization error on the coarsest mesh is

already about 2 X 10-5 for the first example and even less for the second one. Nevertheless,

these data clearly show that all these iteration methods converge for the test cases used.

For the non-adaptive SOR, the relaxation parameter w is the optimal w value corresponding

to the case of the same problem defined on the smallest rectangle containing n. The AOR

method used here is the one used in [30].

TABLE 3.3

The convlwgence behavior of block iterative methods for solving the linear system obtained by discrctizing

the equation tl.1"1" + tl. yy = f in fh with Dirichlet boundary condition (u = g). The functions f and 9 are
selected so that u(x, y) =: 10¢(x)¢(y), where ¢(x) = e-100(1"-O,I)~ (x2 - x).

mesh P"
size adaptive SOR adaptive SOR SOR

(neqn) w 1.0 iler error w 1.01 iter error w iter error
8 x8 (188) 0.8281 30 7.89e-2 1.90 52 7.89e-2 1.4271 21 7.8ge-2

16 x16 (752) 0.8284 91 2.03e-2 1.9 69 2.03e-2 1.6536 44 2.03e-2
32 x32 (3008) 0.8284 243 5.54e-4 1.8701 70 5.68e-4 1.8054 92 5.68e·4

The fewest iterations by a factor 3 to 5 are required using the PI1 precondltioning and

an SOR iteration with relaxation parameter near the usual 1.8 value. The adaptive SOR can

locate a "locally optimum" parameter less than 1 which provides performance similar to

that using the other precondltioners. These data suggest that this iteration approach has

the promise to become an efficient and robust solver for the CINCOL collocation equations.

In Tables 3.4 to 3.6, we measure the computational complexity of the GMRES and SOR

iterative schemes for solving the CINCOL equations and compare them with BAND GE direct

solver [33]. BAND GE is applied with partial pivoting and "natural ordering" of the equations
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TABLE 3.4

The performance data of some solvers for solving the discrete equations obtained by applying GINeOL

algorithm to the equation Un + UY!I:::: f with Dirichlet boundary conditions in domain ~h. The June/ion f
is selected 80 that u(x,y):::: lO0;6(x)¢(y), where ¢(x):::: e-lCO(Z-O.l)~ (x 2 _ x).

BAND GE GMRES(50) SOR
mesb neqn error time error iter time error iter time w
8x8 188 7.89e-2 0.21 7.89e-2 16 DAD 7.89e-2 17 0.8 1.1786

16x16 752 2.03e-2 5.75 2.03e-2 51 6.23 2.03e-2 38 4.37 1.4271
32x32 3008 5.68e·4 22.65 5.61e-4 58 27.97 5.68e-4 71 28.63 1.6536
64x64 12032 3.03e-5 279.60 7.27e·5 122 242.97 3.0ge-S 145 233.93 1.8051

and unknowns. The iterative solver is used to solve the linear system using tensor-product

ordering. The data indicate that iterative solvers are more efficient for fine grids and produce

solutions with the same level of discretization error. Furthermore, the convergence behavior

of GMRES and SOR does not depend on the PDE operators considered in these experiments.

For example, in the case of the SOR method the same w values were used for a model problem

and a general one. FinaUy, Table 3.6 shows the application of the iterative schemes to the

solution of the GENCOL equations using the tensor-product ordering. The PDE problem

used here is defined on a rectangle, thus the optimal value of w can be found in Chapter 2

for SOR. In tills case we see that the iterative schemes are becoming more efficient than

direct solvers even for coarse meshes.

Additional preliminary experiments indicate the GMRES is an efficient alternative to BAND

GE for the solution of GENCOL equations with tensor-product ordering obtained from the

discretization of PDE problems defined on general domains. AU results indicate that SOR

is applicable to solve the GINCOL equations with tensor-product ordering, at least for

rectilinear domains. The extension of GINCOL to general domains is part of our ongoing

research efforts.
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FIG. 3.4. The domains llsed in the computational experiments.

TABLE 3.6

The per/armorica data oj some solvers for solving the discrete equations obtained by applying GENCOL

and GINCOL procedures to the equation u",,,, + U yy = f with Dirichlet bourldary conditions em lhe rectangle

(-1,1»( (-]. 1). The JIJndicm f is seh:cled so that u(:!:, y) = lOr,IJ(x )rP(y), where ¢l(x) = e-lOO(1"-O.l)~ (:z:2 -:1:).

GENCOL
BAND GE GHRES(50) Opt SOR

mesh neqn error time error iter time error iter time
2x2 36 2.99e-I 0.04 2.99e-l 8 0.05 2.99e-1 6 0.48
4x4 100 8,45e-l 0.39 8,45e-l 13 0.17 8.45e-1 10 0.93
8x8 324 1.34e-l 0.83 1.34e-l 36 4.30 1.34e-l 23 1.52

16x16 1156 2.33e-2 8.55 2.33e-2 53 9.883 2.33e-2 4T 7.72
32x32 4356 5.68e-4 104.98 5.69e-4 73 49.95 5.6ge-4 99 57.05
64x64 16900 2.91e-5 968.83 3.35e-5 191 589.633 3.0ge-5 284 625.88

GlNCOL
BAND GE GHRES(50) Opt SOR

mesb neqn error time error Her lime error iler time
2x2 16 2.9ge-l 0.02 2.99e-1 7 0.02 2.99e-1 6 0.48
4x4 " 8.45e-l 0.07 8,45e-1 12 0.08 8,45e-1 10 0.65
8x8 256 1.34e-l 0.40 1.34e-1 20 0.68 1.34e-1 22 U5

16x16 102-1 2.33e-2 8.88 2.33e-2 51 19.7 2.33e-2 43 6.30
32x32 1096 5.68e-4 11.68 5.86e-4 66 54,417 5.69e-4 92 49.3
6<lx6<l 16384 2.91e-5 648.75 5.98e-5 186 -198.35 3.09e-5 246 540.93
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4. A GENERALIZED SCHWARZ SPLITTING METHOD BASED ON
HERMITE COLLOCATION FOR ELLIPTIC BOUNDARY VALUE

PROBLEMS

The Schwarz Alternating Method (SAM) coupled with various numerical discretization

schemes has been already established as an efficlent alternative for solving differential equa­

tions on various parallel machines. In this chapter we consider an extension (Generalized

Schwarz Splitting-GSS) of SAM for solving elliptic boundary value problems with general­

ized interface conditions that depend on a parameter that might differ in each overlapping

region [38]. The work in [3,40] and the results of Chapters 2 and 3 motivate us to study· the

convergence properties of GSS associated with the cubic Hermlte collocation discretization

technique [22]. Following the work in [38J and [26J, we explore this problem at the matrix

equation level formulation. More specifically, we study the iterative solution of the corre­

sponding enhanced GSS collocation discrete matrix equation for a model elliptic boundary

value problem.

This chapter is organized as follows. In Section 4.1, we give a brief description of the GSS

on a rectangle at functional and matrix levels. In Section 4.2, first we define a matrix with a

specific structure and then we investigate some basic properties associated with it. Using the

results obtained, we derive the block Jacobi iteration matrix corresponding to applying the

GSS with hicuhic Hermite collocation discretization for the solution of the Poisson equation

under Dirichlet boundary conditions on a rectangular domain split into overlapping stripes.

In Section 4.3, we carry out a spectral analysis of the enhanced block Jacobi iteration

matrix corresponding to the one-dimensional problem. Furthermore, we determine the

domain of convergence and find a subinterval of it in which the optimal parameter for

the one-parameter GSS case lies; moreover 1 we obtain sets of optimal parameters for the

multi-parameter GSS case. In Section 4.4, we analyze the convergence properties of the one­

parameter GSS case for the two-dimensional problem. Finally, in Section 4.5, we present

a number of numerical examples in the one- and two-dimensional spaces that verify the

theoretical results obtained in this chapter. In addition, we compare the convergence rates

of the SAM and GSS methods with minimum and maximum overlap and draw several

conclusions.

(4.1)ll,
all

4.1 A Generalized Schwarz Alternating Method We consider the Dirichlet

problem



58

f'I

~----------------~ ~----------------~
r' ...---------f'I.----------.... r'

f' ...---------f'I.----------.... f'-4 1 .... 2 ... 3 ....

FIG. 4.1. A decomposilion ofn for k = 3

f'3

where L is a second"order linear elliptic partial differential operator, !1 is a rectangle (a, b) x

(c, d) E R2 and 8n is its boundary.

In order to formulate the GSS for PDE problem (4.1), we decompose n into k overlap­

ping rectangles (stripes) !11, ... ,fh. defined as llj = (tj/,tir) X (c,d) with a = tIl < t 2/ <
... < tkl < b and a < tir < tZ r < ... < tkr = b. Furthermore, for k ~ 3 we assume that

tz/ < ttr and t(j_2jr < til < t(i-l)r for i = 3, ... ,k. This assumption guarantees that no

three consecutive stripes can have a common overlapping area and that any two consecutive

stripes do overlap. We set fil = {til} X(c1 d) and r ir = {tir} X (c, d), and assume that both

sets f1/ and fkr are empty. We also define n = ani - (f if U fir). An example of such a

decomposition for k = 3 is depicted in Figure 4.1.

Then, the Generalized Schwarz Splitting method applied to problem (4.1), with a do­

main splitting as above, consists of solving the k coupled subproblems

x En"
x E fi,
x E f il ,

X E rir,

(4.2)

for i = 1, ... , k, where the w's are user defined parameters.

Problem (4.2) can be solved iteratively for a given initial guess (u~O), ... , 1tkO»). Following,

we illustrate the application of Gauss-Seidel type iteration for the GSS PDE subproblems:

x E ni,
x E fi,
x E 1\/,

X E fir,

(4.3)

where i = 1,2, ... ,k and j = 1,2, .... There are many ways of implementing a discrete

analog of the algorithm (4.3). This is due to the many choices for the parameter wand ta

the many alternatives of the discretization technique ta be selected far each subproblem.
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If the discretization scheme used to solve the subproblems in (4.2) is the same as the

one used for the solution of the original problem (4.1) 1 then it is easy to see that problem

(4.1) is reduced to the solution of a linear system, say Ay = f,

An A 12
A21 A" A23

A32 A33 A34

A43 1A44 A"
As< Ass

YI It
yz h
Y3 h
Y<t J<l
Ys Is

while problem (4.2) is reduced to solving the larger system (enhanced) Ay = j

Wn A'2
A~l B~2 C~2 A~3
A 21 B" C" A23

A32 A33 A3,

A~3 B~4 C~4 A~5

A'3 B" C" A"
As< Ass

Yl
Y2
Y;
Y3
Y,
y~

Y5

(4.4)

where A is a kxk block tridiagonal matrix. In both cases, we assume that the unknowns have

been decomposed according to the splitting in Figure 4.1. Notice that, corresponding to the

overlapping region fh n ~h, we have f~ = [ ~2 ] , J~J = [X], A~l = [ A~l ] , A~3 = [A~3] I

A;l = [A~I]' A;3 = [A~3]' B~2 = [112], C22 = [_~2 ], B;2 = [-:2] and C;2 =

[::,J with E , = [O,O, ... ,O,h1(w,),h2(w,)], E 2 = [h
'
(WI),h2(wl),O, ... ,O] and 0 being

zero vectors or submatrices, where hi'S arc vectors derived from the interface boundary

conditions. Similar relations hold for the equations associated with the overlapping region

n2 nn3 ·

In view of the way algorithm (4.3) is derived, it is apparent that in order to study the

convergence properties for a given discrete implementation of it, it suffices to study the

corresponding properties of the block Jacobi iteration matrix associated with the enhanced

linear system (4.4). On the other hand, ODe should bear in mlnd that for different imple­

mentations of the algorithm (4.3) the convergence properties of the corresponding iterative

methods based on the linear system (4.4) may be different for the same problem. So, one

may not have a single block Jacobi matrix to study for the different implementations of

the algorithm (4.3). To simplify the subsequent discussion, we shall confine ourselves to

selecting the cubic Hermite collocation discretization technique to discretize all the sub­

problems. For this specific implementation, we shall derive the corresponding block Jacobi

iteration matrix for a model problem and shall study the impact of the various choices of

the parameter w, subject among others to the restriction WI = W Tl on the spectral radius of

the Jacobi matrix. For this study we will exploit some basic properties of a specific matrix

structure in the section that follows.
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4.2 Spectral Analysis of the Block Jacobi Iteration Matrices In this section,

we define a set of matrices which share a particular structure, study their properties, and

develop the prelimlnaries needed for the fest of the analysis. Then we will use the results

we shall obtain to derive the block Jacobi iteration matrix corresponding to a GSS scheme

with bicubic Hermite collocation discretization technique for a model problem in the two­

dimensional space. It is worth noticing that the analysis and the results of this section can

also be used to handle the one-dimensional problem.

4.2.1 Preliminaries First we define a square matrix T( m, n, 0:1, fit, (t2, f32) of order

4mn such that

alAI + f3tA2 A 3 -A.t
(llA3 +fhA4 Al -A2

Al A2 A3 -A.I
A3 A4 Al -A2

(4.5)

Al A2 A3 -A.I
A3 A4 A, -A,

A, A, U2AS - .82 A4
A3 A, a2At - .82A 2

where each Ai, i = 1,2,3,4, 1s a square matrix of order 2m and al,.81, a2,.82 are scalars.

For slmplicity, we denote It by T 1n the remainder of tills sect1on.

Next, we introduce the two matrices

(4.6)

o
o
o

5,
o
o

We assume that N is nonsingular and its inverse is written in the same block form as N,

namely N- t = [~: ~~]. Then, it follows from the obvious relation N = [~ ~] M [~ ~I ] 1

where I denotes the identity matrix of order 2m, that M-1 = [~~4 _B~s]. Based on the

mater1al introduced so far we can state and prove the follow1ng statement.

LEMMA 4.1. If the matrices -.8IBI +atBS and .82Bl + a2Bs are invertible, then the

following relations hold

C,

(_N- I M)n-l [""I]
~,I

T

o
o
o

,T =
o
o
5,

(4.7)

where

{

51 = (-~,B, + ",IB3)-1([,B,I, -"'II] (_N- l M)n [~:n),

5, = (-~,B, - ""B3)-1([,B,I, -"',I] (- M- l N)n [~:n)
(4.8)
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with C1 and C2 being matrices of order 2m that can be uniquely determined.

Proof. It is sufficient to show the first part of (4.7), since the second part follows by

a similar argument. It is trivial to show, using (4.5) and (4.6), that the last 2n - 2 block

elements of both sides of (4.7) are equal. To determine SI, we use the first two blocks of

both sides to get

(4.9)

Then, premultiplying both members of (4.9) by [PII, -O:II]N-1 we obtain

[~,I, -a,II(-N-'M)" [~:n = (-~,B, +a,B,)S,

whlch determines 51. C1 can be determined uniquely from (4.9) by premultiplying it first

by N-1 and then solving for C1 from either the first or the second block component of the

resulting equation. Since C 1 Is not used later, its explicit expression is not needed. 0

Now, let us assume that T and O'lAS +,B.~ are nonsingular and Vt and V2 denote the

submatrices of the last 2n - 1 block components of the matrix products T-t [I, 0, ... ,0, of
and T-1[0,I, 0, ... , OjT respectively. Then, since T-tT is the identity matrix, we obtain

VI(O'tA1 + I3tA2) + V2(O'tAS + J3tA4) = O. This implies V2 = -Vt(O'lA. + J3tA2)(atAS +
J3tA4)-1. Hence, the matrix of the last 2n - 1 block components of the matrix product

T-t[A[,ALo ... ,ofis

(4.10)

To simplify the expression above, we state and show the following lemma.

LEMMA 4.2. If both At and As are nonsingular, then

Proof. We have

A, - (a,A, +~IA,)(a, A3 +~, A,)-' A,
= A,(I - (a,I +~,AI'A,)(a,I +~,A,'A,)-')
= A1(atI + ,131 A3"lA4 - all - J3tAl }A,J(O'tI + J3 IA3"l A4)-t
= ~,A, (A,' A, - AI' A,)(a,I +~1 A,' A,)-I

and the fact that N-1 N = 14m implies [~: ~:] [~: ~:] = [~ ~]. Thus, the following

relations hold

(~,BI - a,B,)(A1 - (a,A, +~IA,)(a,A, +~,A,)-IA,)
= (~,BI - a,B')~IA,(A,'A, - AI' A,)(alI + ~,A,'A,)-'
= J3t(J3tBtAtA3"l A4 - J3tB1A2 - at BsA1A3"1 A" +0'1BsA2)(a1I + J3tA3"lA4)-t
= ,131(,131(1 - B2As)A3"1 A4 - J31BIA2 +O'tB"AsA31 A4 +0'1BSA2)(0'11 + J3tA31 A4)-1
= ~I(~,A,' A. - ~,(B,A. + B,A,) +a,(B,A, + B,A,))(a,I + ~,A,I A,)-'
= ~,(a,I +~,A,' A,)(a,I +~,A,'A,)-' = ~,I. 0
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Now, combining Lemma 4.2 with the expression in (4.10), we can easily show the first

relation of the Lemma 4.3. Similarly, using the second equality of (4.7) we can derive the

second relation of the same lemma.

LEMMA 4.3. Let the assumptions of Lemma 4.1 hold and the mat1'ices T, A l , A 3 Sll

and 82 be invertible. Then, we have

A, c;
A3 (-N-IM)"-I [",1]
0 P,I

T-' (-P, )([lhI, -",I](-N-I M)" [;;:JJ )-1
0 (-N-IM) [",1]
0 P,I
0 I

and

0 I
0

(-M-IN) ["'
1]0 P,I

r-' (-P,)([P,I, -",I](-M-I N)" [;;;JJ t '
0 (-M- I N)"-I [",1]A3 P,I

A, C',
where C{ and C~ are matrices of order 2m that can be uniquely determined.

4.2.2 Derivation of the Block Jacobi Iteration Matrix In this section we con­

sider the Dirichlet problem for Poisson equation on the rectangular domain n and the n
splitting defined in Section 4.1. We use the bicuhic Hermite collocation technique to dis­

cretize the correspondlng continuous GSS PDE subproblems. To simplify the discussion,

in the sequel, we use a uniform mesh with m + 1 v-grid points and l +1 x-grid points for

each subdomain. Moreover, it is assumed that the overlaps ni n niH, i = 1, ... , k - 1 are

of equal size with (/0 + 1) x-grid points in each of them, h = h", = d~c = b~" = h y and

n = lk - (k - 1)10 • In order to make the entries of the collocation coefficient matrix inde­

pendent of the mesh size h, the basis functions for the standard bicubic Hermite collocation

are modified as in [30], and instead of imposing the interface boundary conditions

we impose

{
wlu,(x) + (1- wllha,;;!x)
W~Ui(X) +(1- w~)ha~!",)

It is worth noticing that

WI = wi
h-w'h+w'I I

and
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To form the corresponding linear system we use Papatheodorou's tensor-product ordering

(see also [30]) to order the unknowns and the equations. Therefore, the original problem

(without applying the GSS scheme) leads to the solution of the linear system Ay = f with

the unknown and the right hand side vector being [yi. yI, . .. ,VfnF and [IT, ft, ... ,flt]T
respectively, where Yi and Ii are vectors oflength 2m. More specifically, the components of

Y2n and Y2i-l, i = 1, ... , n, are the approximate values of u and h ~~ at the nodes on the

corresponding x-grid line while YI and Yzi, i :::: 1, ... , n - 1, are the approximate values of

h ~~ and h2 ::8y at the nodes on the corresponding x-grid line. The enhanced linear system

(~.II), Ay = f. after eliminating the unknowns associated with the values of Ui and ~ on

the interface boundaries by using the interface boundary conditions from each subproblem,

is expressed in a block form as follows

V, U tiI j,
L D, U ih J,

(4.11)

L D, U
L D, ilk J.

In (4.11),
r w'-l l-w' w'-! l-w'

D1 = T(m,L, 0, 1,=,-=-, 1), D 2 = T(m, 1,:......:r-'-, 1, =....,-:., 1) and D k = T(m,L,~, 1, 0, 1),
W r W, W r WI

while U is a matrix of block order 2L with A 3,A11 1-:"~A3' l-:"~Al as its (2L - 1,2Lo),
W r W r

(21,2/0 ), (2/- 1, 2lo+ 1), (21,2/0 + 1) block elements and O's elsewhere and L is a matrix of
. w'-l w'-l .

block order 2L With Al,A3,::r..,-:.Al,~A3 as Its (1,2L-2Lo ), (2,21-210), (1,21- 210 + 1),
WI WI

(2,21 - 210 + 1) block elements and O's elsewhere. Yi and]; are vectors consisting of 4mL
elements each and their relations to those of the original linear system are the following iii =

[ -T -T T T -T ]T
Y2(i -1)(1-10 )+1' ... , Y2{i-I)(I-1o)+21o-1 ' Y2(i-1 ){1-lo)+2/0' ... , Y2(i-l)(I-lo)+2/-1' Y2(i-l)(I-lo)+21+1

h = U!ci-l)(/-lo)+1"'" f!ci-I)(I-lo)+2lf. It is worth noticing that it can be shown that
Yi = Yi if the matrix it on the left hand side of equation (4.11) is invertible (see, e.g., [37]).

Let J be the block Jacobi iteration matrix associated with the matrix coefficient iI of

(4.11). To simplify the notation, we assume that

D1
1 [0, ,0,AI,AiY = [X[,Xl,···,Xl,jT D2"l[A'f,AI,o, ,of =[Yr,Yl""'Y2'ff

D2"I[O, ,0,Ar, Ai]T = [Zr, zl,···, ZI,jT Dk"I[Af,A5,0, ,of = [Wl, wi,···, w?;f

and introduce the new quantities

I -wi
CI=--,-,w,

I-w'
Cr = ---'.

w',
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Then, it is easy to show that the spectrum a(J) of J satisfies a(J) = a(JI) U {a}, where

o X
Y 0 0 Z
- -
Y 0 0 Z

Y 0 0 Z
i' 0 0 Z

W 0

In view of the structure of J', it is not difficult to see, through a similarity transformation

using the matrix diag([~ -~IJ], [~c1] ,...), that a(J') = O"(P/)U {a}, where J" IS of

the same structure as J' with its entries being

.J! = X21-21o - C/XZI-2Io+lo ~ = YZlo + c r YZ/o+l, Z = ZZlo +Cr ZZlo+l,

Y = YZI-210 - qYZI-2Io+1o Z = Z21-210 - CjZ21-2Io+I, W = WZlo +Cr W 2Io+l.

Applying now Lemma 4.3 we can obtain that

X ~ -[I,-c,I](-M-1N)'-" m([I",I](_M- 1N)' [~])-1,

Y -[I",I](-N-1M)'-" [-~I] ([I,-c,I](-N-'M)' [-~I])_1,

Z -[I, ',l]( -M-' N)" ['n ([I, "l](-M-I N)' ['n )-1,

i' -[I, -c,T]( _N-1 M)" [-~,I] ([I, -c,l](-N-1 M)' [ -~I] )-1,

Z -[I, -c,I]( _M-1 N)'-" ['n ([I, ,,1](_M-1 N)' [,{] )-1,

W ~ -[I",I](-N-1 M)'-" m([I, -c,l](-N-1M)' [~])-"

To simplify the notation further, we restrict ourselves to considering the case Cr = C/.

That is, we assume that the interface boundary conditions are of the same type. Then,

using the fact that (M-1N) = diag(I,-I)(N-IM)diag(I,-I), it is shown that X = W,

y = Z and Z = Y. Consequently, we take that a(J) = a( -Gk) U {O}, where

OX
Y 0 0 Z
ZOO Y

(4.12)

Y 0 0 Z
ZOO Y

X 0



z

x

with Y

[I, c,I](-N-'M)'-Io [~l ([I, -c,1](-N-IM)' [~] )-',

[I,c,1](-N-IM)'-lo [-jI] ([I, -c,I](-N-IM)' [-jlj)_I,

[I,-c,I](-N-IM)'o [-~,I] ([I,-c,1](-N-IM)' [-jlj)_I.

Note that Gk is a 2(k - 1) X 2(k -1) block matrix.

4.3 One-Dimensional Case
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4.3.1 The One-Parameter GSS First, we consider the case where WI and Wr arc

the same in each overlapping region. In this section, we consider the GSS algorithm (4.3)

together with the cubic Hermite collocation discretization scheme for the boundary value

problem

{

'U;r;r = I, a < x < b,
u(o)=g" u(b)=g,.

For this problem, we have At = -2V3, A2 = -1 - y'3, A3 = 2V3 and A4 = -1 +
vf:3. where the Ai'S arc defined in Section 4.2.1. Since these entities are scalars and not

matrices of order 2m, we can now write (_N-1 M) explicltly. Simple computations show

that (_N-1M) = [~ -11]. In turn, this implies that (_N-1M)i = [~ ~j]. Therefore,

after some simplification of the previously found expressions takes place we can obtain that

for the case Cr = C/

o(J) = O(-Gk) U {OJ,

where Gk is the following matrix of order 2(k - 1)

0
(I-Io)-c~

I+c~

.l.=.1IL 0 0 1lI.±.kr.
1+2c~ 1+2c~

1lI.±.kr. 0 0 .l.=.1IL
1+2c~ /+2c~

J.::l.iL 0 0 ~
1+2c~ /+2c~

1lI.±.kr. 0 0 .l.=.1IL
1+2c~ 1+2c~

(I-/o)-c~ 0
I+c~

From the expression above, it is readily observed that Gk is block 2-cyclic consistently

ordered or weakly cyclic of index 2 [39] (see also [41] or [1]), therefore a(Gk) = a(-Gk).

It is worth mentioning that in [26] a matrix of precisely the same structure is considered

and recurrence relationships to minimize the spectral radius of Gk are obtained. However,

for the cases k = 4 and 5 the expressions that can be obtained are very difficult to handle,

while for k > 5 we do not know how to slave the equations analytically. We have exactly

the same situation. In the present work as in [26], it is shown that p(Gd can be made zero

for Cr = 1-10 and for the case k = 2 or k = 3. Thus, we have the theorem below.

THEOREM 4.1. For k = 2,3 and Cr = l-lol we have p(J) = O.
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For the case k > 3, the analysis in [26J holds except that the expressions for the

corresponding entries of the Gk matrix are different. However, in order to go a step further

in the direction of determining the optimal value of Cr we shall focus on two issues: i)

determine the interval of Cr for which the block Jacobi method converges and ii) determine

a genuine subinterval of the interval In (1) in which the optimal Cr lies. For this we state

and prove the following theorem.

TH IWREM 4.2. Under the assumptions made and the notation used so far the following

f'elalion holds

prJ) = p(Gk) < 1

if and only if Cr E (- ~, 00). Moreover, the minimum (optimal) value of p(J) is attained at

some Cr E (I-l01 00).

Proof First, we consider the case Cr < -1. Since Gk is similar to

G~ =

-H!L 0 0 1o.±1f.:
f:tzci I+Zc~

_ fo.Hfr. 0 0 .l::1.rL.
I+Zc~ I+Zc~

(f-Io)-c~ 0
I+c~

and -G~ 1s an irreducible nonnegative matrix with all nonzero entries strictly increasing

with Cr 1n (-00, -I), it follows that p(Gk) is strictly increasing. Moreover, it is easy to show

that limc~-+_cop(Gk)= 1. Consequently, we obtain p(J) > 1. In case -1 < Cr < -t, we

have
Idet(Gk)1 = Idet(Gk[eZ, ell e<t, e3,···, CZk-2, e2k-S])1

= e-1n - cr ?12.l::1.rL. _ llk-2 > 1.
I+c~ I+Zc~

Note that the inequality above is satisfied because 11~~cr > 1 and 1~21~~ < O. Therefore, at

least one of the eigenvalues of Gk must have modulus greater than 1, implying that p( J) > 1.

In the case -4 < Cr $ -~, Gk is an irreducible nonnegative matrix with all nonzero entries

strictly decreasing wHh Cr increasing. Specifically, we have limcr-o(_lo/Z)- p(Gk) ::::: 1. This

implies p(J) ~ 1. For the case Cr > -~ and Cr f. i-lo we have p(J) < 1 because Gk is

irreducible and the absolute sum of the first row is less than IIGklloo ::::: 1. As for the specific

case Cr ::::: L-10 , Gk is reducible, since its first and last rows are null vectors. However, after

deleting the first and last two rows and columns, the reduced matrix is irreducible and its

spectral radius is the same as that of Gk. Then, following the same arguments as previously,

we obtain again p( J) < 1.

Coming to the second assertion of the present theorem, it is apparent that the minimum

value of p( J) is attained for some Cr E (-~, 00). However, to obtain the genuine sllbinterval

mentioned in the statement of the theorem a milch deeper theoretical analysis, based on a
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number of other statements, is required. This analysis is presented in the next subsection.

o
N W h l' l-w' d w' Th hote 1 eave W r = '+ h' SInce Cr = ~ an Wr = h I h+ I' us t e con-

~ ~ "'r "'r
vergence interval in terms of w (= Wr :::: wE) is (0, 2J

o
h) :> (0,1] and the optimum occurs

for some w in the interval (0, I+(/ lo)h) C (0,1). In addition, as h - 0+ the convergence

interval tends to (0,1] while the interval in which the optimum occurs tends to (0,1).

Note 2 The problem of determining a "betterll interval in which the optimum Cr lies

than the one already obtained, i.e., (i-lo. 00), is an open problem that is being investigated.

However I a number of numerical experiments have shown that the value Cr :::: l - Lo (Le.,

w:::: 1+(/ lo)h) 1s a good approximation to the optimal value of Cr'

4.3.2 Appendix to Section 4.3.1 In this subsection we prove the second part of

Theorem 4.2. This is accomplished after a number of statements presented as lemmas are

proved.

LEMMA 4.4. Let pCB) be the spectrnl radius of any matrix B of even orde,·. Then, we

have del(B - AI) > 0 far all A> p(B).

Proof. Let p(>') = det(B - .>..1). It is clear that p(>') is a monic polynomial. It then

follows that peA) --+ 00 as ). --+ 00. Suppose that det(B - PI1) ::; 0 for some PI > pCB), then

there must exist a number P2 ~ PI such that P(P2) = O. Tills, however, contradicts the fact

that pCB) is the spectral radius of B. 0

For the following statements, we define the three matrices below

o I
, 001-1

1-100 I

I 0 0
1- I 0 0

I

1- I
I

o

o I
I 001-1

1-100 I

I 0 0
1 - I 0 0

1

1 - I
I

o

and
I

I-I
o
o

o
-p(l)

I
1- I

1- I
I

-p(l)
o

o
-p(l)

1 - I
I

I
1- I

-p(l)
o

o
-p(l)

I

I-I
I

-p(l)

where 0 < t < 1. Notice that the indices denote the order of the corresponding matrices

and n is any nonnegative integer.

LEMMA 4.5. For the spectral radii p(A2n ) and p(B4n ) of A 2n and B 4n we have p(A2n ) ~

p(B'n).
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Proof. Let [Xl, Xl,"" x2n]T be the eigenvector of the irreducible nonnegative matrix

A'ln. corresponding to the spectral radius p(Aln ). Then, It is easy to show that the vector

(Xl. X2," •• , X271., X271."'"' X2, Xt]T is an eigenvector of B otn with corresponding eigenvalue A =

p(A2n ) from which it follows that p(A2n) ~ p(Botn ). 0

LEMMA 4.6. If pet) is the spectral radius of B 2n , then det(C2/,:_1) > 0 for all k =

1, ... ,n.
Proof It is easy to see that for k = lour assertion holds. For k > 1, we expand

det(C2k_d with respect to its first row to get det(CZk_l) == tdet(B2(k_t) - p(t)I) + (1 ­

t? det(C2(k_l)_t). Since B 2(k_l) is a principal submatrix of the nonnegative matrix B 2n , It

will be p(B2(k_l)) ..:::: p(E2,,). On the other hand, by Lemma 4.4 we obtain that det(B2(k_l)­

p(t)!);::: 0 for k = 2, ... , n. Thus, the proof of the present lemma is completed by induction

on k. 0

LEMMA 4.7. The spectral radius p(t) := p(B2n(t)) oj B2n strictly inc,·eases with t for

O<t<1.

Proof We first observe that B2n is a nonnegative and irreducible matrix as 0 < t < 1.

Then, it follows that p(t) is a simple eigenvalue of B2n and det(B2n - p(t)I) = O. Taking

the derivative of det(B2n - p(t)I) = 0 with respect to t and using the following two ba.'>ic

properties

f,( det([a" a" . .. , a'nF))

and

det([ftal' a2, ... , a2n]T) + det([ull :1 U2, ... , a2nf) +...
+ det([al' a2,' .. ' fta2n]T)

det([al' , ai_l, aj +b;, ai+l, ... , a2n]T)
det([al' , ai_l, ai, aiH,· .. , a2nY) + det([al' ... , ai_I, bi, ai+!, ... , a2nY),

with each aj or bi denoting a vector of length 2n, we obtain

n-l 2n
2{L det(B" - p(t)l) det(B'(n_l)_" - p(t)I)}p'(t)p(t) +L det(Bk ) = O.

k=O 1,,=1

(4.13)

In (4.13), det(Bo - p(t)I) is defined to be 1 and ih is a matrix with the same entries a.'>

B2n - p(t)I except that its entries in the positions (1.:, k), (k, k +2( -1/) and (1.:, k - (-ll)
are 0, -1 and 1, respectively. Since p(t) is a simple root of det(B2n -)..I) = 0 and from

Lemma 4.4 we have det(B2n -)..I) > 0 for).. > p(t), it is implied that l>. det(B2n -)..I) > 0

for).. = p(t). Thus, the coefficient of p'(t) in (4.13) is positive, because it is equal to the

value of d~\ det(B2n - )..I) at ).. = p(t). So, to show that pl(t) > 0, it suffices to show

that L:I~:l det(Bk) < O. For the terms corresponding to k = 1 and k = 2n, it is easy

to show that det(Bt} = det(B2n ) = - det(C2n_ l ). Thus, from Lemma 4.6 we obtain

det(Bl ) = det(B2n ) < o. For the remaining terms, we shall consider pairs such that k = 2i

and k = 2i + 1 simultaneously. First, we switch the (2i)th row of B2i+l with its (2i + l)st

one and multiply the new (2i)th row by -1. Note that the determlnant of the resulting

matrix is equal to det(B2i+d and only its (2i + l)st row differs from that of the matrix B2 i.



69

Then, we apply the second property above to get det(B2i) + det(B2i+d = det(Tj ), where

T; is the matrix of order 2n shown below

(2i)t" ~
(2i + l)st ~

-p(t)
t

I-t

t
-p(t)

o
o

-p(t)
1- t

t

1 0 0 -1
1 -p(t) -p(l) 1

t
I-t

-p(t)
o

o
-p(t)

t

1 - t
t

-p(t)

Expanding the determinant of T, with respect to its (2i)th row, we obtain

det(T;) = - det(A'n_2i - p(t)I) det(C2i_1)) - det(A,; - p(t)I) det(C'n_IMl)). (4.14)

Now, we wHI derive another expression for det(Tj ). For this, first we add the (2i)th row of

B 2n - pet)! to its (2i +1)st one. The resulting matrix has all its rows the same as those of

the matrix Ti except for its 2ith row; its determinant is zero because det(B2n - pet)!) = o.
Then, we multiply its (2i)th row by 1(1 - t) and add the new matrix to the matrix Ti.

Note that the determinant of the resulting matrix is the same as det(T;). In view of the

structure of the new resulting matrix, we can easily get

1
det(T;) = - det(A'n_2i - p(t)I) det(A,; - p(t)I).

1-t
(4.15)

From (4.15), we readily see that det(Ti) :=: det(Tn_i). In the discussion that follows, we

assume that 1 < i::; j, where j:=: [~l is the largest integer not exceeding n/2. Since A2i is

a principal submatrix of A2j, we get p(A2i)::; p(A2j). Furthermore, by Lemma 4.5 we have

p(A,;) <:; p(A'j) <:; p(B'j) <:; p(B'n). It then follows that det(A,;-p(t)I) 2: 0 by Lemma 4.4.

If we assume that det(T;) > 0 then both det(A'n_2i - p(t)I) and det(A2; - p(t)I) "e

nonnegative by (4.15). On the other hand, from Lemma 4.6 we know that both det(C2i_l)

and det(C2n-(2i+l») are positive, therefore, the right hand side of (4.14) Is nonposltlve, which

contradicts the assumption det(Ti) > O. Consequently, we obtain det(B2i) +det(B2i+d ::; 0

for 1 ::; i < n. This together with the negatlveness of the first and the last terms completes

the proof. 0

Let us now consider the case where Cr E (-~, 1-10 ), Since Gk Is a nonnegative matrix,

p(Gk) ;::: p(B2(k-3») for t :=: 1'+;'2
r

because B2(k-3j Is a principal submatrix of Gk. On the

other hand, it is easy to show that P(Gk) :=: p(B2(k-3) for t :=: 3:=~o and Cr :=: 1- 10,

Therefore, applying Lemma 4.7 and the fact that I'+i~r > 3:=~1o for Cr E (-~, I - 10]lead

us to the conclusion that the spectral radius of the matrix Gk in (4.12) with Cr :=: I - 10

Is less than anyone corresponding to Cr E (-~, 1- 10 ), This result with the first part of

Theorem 4.2 show that the optlmal value of Cr Is attained at some polnt in the Interval

[I - 10,00). Tltis completes the proof of the second part of Theorem 4.2.
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4.3.3 The Multi-Parameter GSS As we have observed, there are many choices

for the parameters w in algorithm (4.3) and therefore in the linear system (4.11). Here, we

shall consider the most general case, that is the one where there are two pairs of parameters

wfi) and w~;) introduced for each subdomain ni. Let cVl and c~i) be defined in the same way

as c/ and Cr were defined from WI and Wr before. Let J be the block Jacobi iteration matrix

associated with (4.11). Then, following slmllar analysis to that in Section 4.3.1, we get

a(J) = a(-Gk)U{O}

where
OX

Y2 00Y2

Z2 0 0 Z2

Yk-l 0 a YJ.--l
Zk_l 0 0 Zk_I

X 0

and
1-lo-r}2l

X = (il
I+cr

_ I I (k_l)
V 0 Cr

....1. = (kJI+c,

Following the same approach as in the proof of [26, Theorem 3.1]' it can be shown that the

next theorem holds.

THEOREM 4.3. Let cVI = (i - 1)(1-10), c(il = (k - i)(I-lo), i = j, ... ,k, where j is

any integer in {l, ... ,k}, and the remaining parameters c~i) and cVl be any numbers such

that 1+ cPl =f:. 0 and I + c~i) + c~i) :j:. O. Then, we have p(J) = O.

Note In view of the structure of the corresponding Gk matrix, it is observed that among

all the sets of parameters the set cfi) = (i - 1){l- 10), c~i) = (k - i)(l- [0), i = 1, ... , k,

mlnlmlzes the maximum order of the Jordan blocks of Gk which is k - 1. We have also

observed [rom a number of experiments carried out that the maximum order of Jordan

blocks affects very slightly the number of iterations required to achieve a specified accuracy.

4.4 Two-Dimensional Case We consider the Poisson equation

6.u = f in n

with boundary conditions

u=gonan

where n is a rectangle. For this problem, we have that Al = -TTl + tTz , A z = sTI +wT2,

A3 = TTl + tT2 and A<j :::: sTI + wT2, where

T ._[a,a'la3 -a,] '-121- ,t_ , ,
as a4 al -U2 (2m)
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with
T = 2,/3, , = -1 - ,/3,

where _! -L _ 2±..l.Q
t - 2 + 3.;3' W - 36 .

Note that i denotes the "conjugate" of t = lr + tn/3 , Le. t = i l - tzV3 and Ti is defined

a<; in [301.
Following the proof of Lemma 5.1 in [27], it can be shown that there exists a nonsingular

matrix V such that VTz = DVT1 with

where
x±,
OJ ~

Thus, it follows that there exist nonsingular matrlces P and Q of order 2m such that

PAiQ = Dil i;:::. 1,2,3,4, and each Di is a diagonal matrix. Then, it can be shown that

Let P ;:::. [el, eZm+l, ez, eZm+2,"" ezm, e4m], where ej has 1 as its ith component and D's

elsewhere. It is clear that

- [Q-J 0] -I [Q 0] - . - -P 0 Q-J (-N M) 0 Q P=dJag(DJ, ... ,D'm),

where iJi = [~~~ ~~~] with the property det{ iJj) = 1, j ;:::. 1, .. " 2m. On the other hand,

it is easily found out that

- (-T + ,,1,)(' + w,l,) - (T + [,1j)(8 + w,l,) 432 -192,1j + 7,1;
dlj= (-T+,,1,)(s+w,l,)-('+W,lj)(T+[,1,) = 432+24,1,+,1;

Also, it is observed that illj > 1 because all Aj'S are less than o. Hence, we may set

dlj = cosh(}j for some OJ > o. Using the fact that det(Dj) = 1, it is proved that

d2jd3j = sinh8j. Therefore there exist nonsingular matrices Qj = [ kii _f&] such
VJ;; Vd;J

that Q j lJ5jQj = diag(coshOj -sinhOj,coshBj+sinhOj ). Let 0= diag(Ql> ... ,Q2m),

then we obtain that 0-1P [Q~l Q~l] (_N-1M)'P [~ ~] Po = diag(coshpOI - sinh pOl>

cosh pOl +sinh pBI , ..., cosh p02m - sinh p02m, COShp02m +sinh p82m ). Thus, using the equa­

tion

. B ] [COShPB'coshp8j-smhp j 0 -1_ }

Qj [ 0 coshpOj + sinhpOj Qj - _ flUsinhp8.
VJ;; }

- &SinhPB']V~ } ,
coshpOj
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we can summarize the discussion and conclude that

where

{

DIp = diag(cosh p81 , cosh pOz, ... , cosh P(}2m)

-1Jzp = diag(Iff sinhp(h,Ifsinhp821 ···,I~ sinhp(}2m).

-D3P = diag(~ sinhpfJ11~ sinh pfh, ... ,J~: sinhp(}2m)

(4.16)

(4.17)

Applying now (4.16) to express X, Y and Z of the matrix Gk defined in (4.12) we can

come to the following conclusion.

THEOREM 4.4. The spectrum of the block Jacobi iteration matrix associated with the

enhanced linear system (4.11) for the two.dimensional Poisson model problem is given by

aU) = a( -GU U {OJ.

The matrix G~ is of the same structure as Gk defined in (4.12) with

X = (DZ(I-Io) +Cr D1(I_lo)(.D21- CrDlIt1,
y = ~b2(l-lo) -_c~iJ3(1;/g)(iJ2!- 2crih! + C~~3!)-1':'1

Z = (Dzlo - 2crD l /o +crD3 /o)(Dz/ - 2crDll + CrD31)

and Dip, i = 1,2,3, being defined in (4.17).

COROLLARY 4.1. The SAM algorithm converges for all possible combinations of 1,10

and k.

Proof. In the traditional approach to SAM (cr is chosen to be zero) X, Y and Z can

be simplified to

X = Y = d· ('inh(21- 210)8, _'i_nh--'(,--2,1-=21-"0,-)8,,,'m,,)lag. , ... ,
smh 2Uh sinh 2182m

and
z = dlag(si~h 21081 , ... , si~h 21082m ).

smh 2181 smh 2182m

Then it follows from

sinh(2l - 210 )8 + sinh 2108 :::::: _2_co-;':-h-c(l-;---;-;;2-Olo"-)8-;'-;i",n,,h_18
sinh 218 2 sinh 18 cosh 18

that

co'h(l- 210)8
cosh 18

I I cosh(l- 210 )8;
p(Gk ) S; IIGklloo :::::: 8i,;~~~,2m coshl8j < 1. 0

Note It is well understood from the proof of the corollary above that the amount of

loll is a key factor that affects the convergence rate of SAM.
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4.5 Numerical Examples In this section, we present a number of numerical ex­

amples to verify the theoretical results obtained in the previous sections. We use the zero

vector as the initial guess of the solution of the enhanced linear system (4.11). We display

the maximum error Ilu - Ul.[lco based on an n X n grid of points, where u is the theoretical
"solution of the continuous problem and Ul. is the computed one. The iteration step (iter)

"denotes the number of the block Gauss-Seidel iterations required to satisfy the stopping

criterion IIY(]~I;(~jl~~)!JDCI < t, where y(i) is the jth iteration approximation to the solution

of the linear system (4.11) and ( = l.Oe - 6 and € = 5.0e - G for I-D and 2-D problems,

respectively. Throughout, we denote by I-GSS the one parameter GSS and m-GSS the

muti-parameter GSS.

TABLE 4.1

The convergence of the SAM, 1-CSS (Illd m-CSS methods for J.dimensicmal model bou!ldary value
problem witli exact solution u(x) = C-IOO(~-O.l)~ (x2 -x). The number of slJbdomains (k), grid size, !lumber

of iterations token for the splitting scheme to converye and the discretization error are displayed for two

different domain splittings.

I-GSS(cr 1-10 ) SAM m-GSS

'. , 2 10 - 1 '. , 2 1
0

_ 1 '. , 2 '. I
(k, grid) iter error iler error iter error iter error iter error iter error

(2,10) 2 6.64e-3 2 6.61e-3 6 6.64e-3 13 6.64e-3 2 6.64e-3 2 6.64.e-3
(2,22) 2 8.42e-5 2 8A2c-5 4 8.42e-5 10 8.36e-5 2 8A2e-5 2 8.42e-5
(3,17) 3 3.27e-4 3 3.27c-1 7 3.27e-4 23 3.27e-4 3 3.27e-1 3 3.27e-4
(3,29) 3 2.67e-5 3 2.67e-5 5 2.67e~5 38 2.57e-5 2 2.67e-5 3 2.67e-5
(4,26) 4 4.84e-5 4 4.84e-5 8 4.82e-5 73 4.72e-5 3 4.84e-5 3 4.84e-5
(4,46) 3 4.28e-6 3 4.25e-6 7 4.05c-6 125 6.12e-6 3 4.31e-6 3 4.30e-6

For the one-dimensional case, we are using the boundary value problem

u"(x) = J(x), x E (0,1),
u(O) = go, u(l) = g"

where f(x), 90 and 91 are selected such that the exact solution is u(x) = e-100(x-0.ll
2(x 2 _x).

We apply both the traditional SAM and the one-parameter GSS with Cr = I -/0 . This is

the optimal value for the case k = 2 or 3 both for minimum and maximum overlaps. For the

multi-parameter GSS and the domain split with minimum overlap, among the many choices

of the parameters c~il and cVl, we choose cVl = (i - 1)(l-/0 ), and c~i) = (k - i)(l-lo),

i = 1, ... ,k. The numerical results obtained are summarized in Table 4.1. The data in

Table 4.1 verify our theoretical results, namely that the one·parameter GSS outperforms

the traditional SAM and for k = 2 and 3 we get the optimal convergence. However, 1-GSS

is slower (based on the number of iterations) than the multi-parameter GSS.

Figure 4.2 displays the relation between the number of iterations and the parameters

Cr for the 1-GSS for four pairs of (k, I), where k denotes the number of subdomalns and I

denotes the number of subinterval in each sundomain. Our experiments are carried out for

maximum (half) overlap. From these plots, we can conclude that Cr = I - 10 is indeed the
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FIG. 4.2. Plots of the number of iterations required by i-GSS to achieve convergence. Iterations versus

Cr for the one_dimensional problem with maximum oller/op and different pairs (k, I).

optimal value for the case k = 3 while the optimal value of Cr for k > 3 is on the right of

/-/0 as this was shown in Section 4.3.1. Moreover, it appears that the optimal value of

Cr can be expressed as a(l- fa} for some number ex, which seems to increase with k. Also,

from the same plots, we can observe that the traditional SAM (case Cr = 0) has a very poor

convergence rate compared to that of the one-parameter GBS with Cr = I -10 .

For the two-dimensional case, let the domain n be a unit square. First we consider the

Poisson equation
U zx + U yy = f(x, y),

u(x,y) = g(x,y),

where f(x,y) and g(x,y) are selected so that

(x,y) E n
(x, y) E an, (4.18)

(4.19)

Then, we consider the more general PDE operator

• 1
[2 + (y - l)e-' ]uxx + [1 + (1 +4x 2)]u" +5[x(x - 1) + (y - 0.3)(y - 0.7)]u = f, (4.20)

taken from [33], with Dirichlet boundary conditions and the same solution (4.19) on the

domaln n.
For the Poisson problem using a 2-way splitting (k=2), we can derive all the eigenvalues

of the corresponding Jacobi matrix by Theorem 4.4 for any I and lo. In Figure 4.3, the

relations between the spectral radli and the parameters w, Cr are depleted for maximum

overlap. In these figures, we can see that for a fixed parameter w the spectral radlus

decreases with the value of l increasing. In addition, we observe that for a given l the
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minimum of the spectral radius always occurs near w = 0.8. Note that Cr = W, which is

close to the value i-/o = 1/2 for maximum overlap and for small values of t.
Tabies 4.2 and 4.3 display the convergence behavior of SAM and I-GSS for thoese two

problems for different splittings and grids with maximum and minimum overlap. Since

the theoretical values of the optimal parameter Cr for these problems are not known, we

experimented with the value Cr = I - to which corresponds to the case k = 2 as this can be

seen from Figure 4.3. In Table 4.2 and 4.3 we observe that an improvement regarding the

number of iterations required is obtained by using Cr = l- 10 rather than Cr = O. The data

indicate that the improvement is more significant when 1 is a small number. The reason 1s

that the spectral radius of the corresponding Jacobi matrix might be very small when I is

getting bigger (as shown 1n F1gure 4.3), which implies that the stopping criterion can be

achieved by a small number of lterations. However, in our ex.periments we also observe the
II (j) y<i- I )11

value of Y lly<JJII== at each iteration and conclude the one-parameter GSS with Cr = 1-/0

does outperform the traditional SAM for any l.

4.6 Concluding Remarks and Discussion In this paper we have studied the pa­

rameterized ess at a discrete equation level (matrix formulation), coupled with the cubic

Hermite collocation discretizat10n scheme for both the one- and the two-dimensional model

problems. For the one-dimens1onal problem, we have found the optimal parameter val­

ues which correspond to the smallest possible spectral radius of the block Jacobi iteration

matrix associated with (4.11) for k = 2,3 in the one-parameter case and for all k in the

multi-parameter case. We also determined the interval in which the parameter Cr must lie

so that the convergence of the Jacobi method would be guaranteed. Moreover, a subin­

terval of the previous one was found in which the optimal value of Cr for k > 3 should

lie. The determinat10n of the opt1mal parameter Cr in question 1s still an open problem

but our analysis suggests that this optimal value is a number greater than I - 10 • For the

two-dimensional case, our analysis consists of Theorem 4.4. This theorem improves our

understanding of the relation between the parameter Cr and the convergence properties of

the corresponding block Jacob1lterat1on matr1x. In addition, it provides a simpler matrix

Gi. to determine this relation. In particular, for k = 2 we have experimented w1th several

comb1nations of land w or Cr with 10 = 1/2 to obtain the corresponding spectral radius as

shown in Figure 4.3. From the experiments, we can see that w = 0.8 is independent -of l

and may give an almost optimal convergence rate among cases with l being fixed.
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FIG. 4.3. The Jacobi matrix spectral radius versus W (lnd c~ parameters for the two-dimensional Poisson

model problem with 2-way domain splitting (k = 2) and maximum overlap
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TABLE 4.2

The convergence oj tile I-GSS fer = 1- 10 ) and SAM fer = 0') for (I Dirichlet model problem witll

minimum and maximum overlap splittings of the PDE domains. The exact solution is u(x,y) = lO.p(x).p(y),
where .p(x) = e- 100(:<-0.1)2 (x2 _ x). The number oj subdomains (k), grid size, number oj itemlion and

discretization error arc displayed Jar both splittings.

"
, 2

"
1

<. ,
"

<. O. <. ,
"

<. O.
(k, grid) I iler error iter crror iter error iter error I

(2,IOxlO) 6 3 7.74e-3 3 7.74-3 , 7.74e-3 5 7.74e-3 5
(2,22x22) 1< 2 1.53e-4 2 1.53c-4 2 1.53e-4 2 1.53e-4 11
(J,17x17) 8 2 6.08e-4 3 6.08e-4 5 6.08e-4- 7 6.08e-4 6
(3,29x29) 1< 2 4.69c-5 2 4.69e-5 6 4.69e-5 10 4.61e-5 10
(4,26x26) 16 3 ~I.09e-5 7 9.09e-5 6 9.08e-5 20 8.94e-5 7

1- 4,10 _1/2 1-4,/0 -1
<. I

"
<. O. <. 1-10 <. O.

k grid iter error iter error iter error iler error grid
2 7x7 3 1.74e-2 5 1.74e-2 5 2.29e-2 10 2.29e-2 8x8
3 9x9 5 1.56e-2 7 1.56e-2 , 3.19e-3 6 3.19e-3 llxll, llxll , 3.19c-3 5 3.19e-3 6 7.34e-4 10 7.33e-4 14x14
5 13x13 5 3.21e-4 6 3.24e-4 7 6.08e-4 16 6.06e-4 I7x17
6 15x15 , 8.51c-4 8 8.50e-4 7 2.21e-4 " 2.18e-4 20x20

, 6, Lo 1/2 , 6, /0 1

<. 1- /0 '. O. <. ,
"

<. O.
k grid iter error iter error iter error iter error grid
2 IOxiO 3 7.74c-3 3 7.74.e-3 3 I.13e-3 , 1.13e-3 12x12
3 13x13 2 3.24c-1 3 3.24e-1 5 6.08e-4 7 6.08e-1 17x17, 16x16 3 7.64e-1 , 7.Me-1 6 1.53e-4 16 I.51e-4 22x22
5 19x19 5 3.21e-4 12 3.21c-1 7 7.37e-5 30 7.18e-5 27x27



78

TABLE 4.3

The convergence oj the I-GSS (er = I - 10 ) and SAM (er = 0') jar a general PDE with minimtlm

and maximum overlap ~plittings oj the unit square. The exact sO/lllion is u(x,y) = lO<;l(x)¢(y), where
</J(x)- = e-100(O:-o, 1)~ (x 2 _ x). The number of lIubdomains (k), grid size, flumber of iteralion and discretization

error are disployed for both spliUings.

'. '/2 '. I

'c I
" 'c O. 'c I '. 'c O.

(k, grid) I iter error iter error iter error iter error ,
(2,10xlO) 6 3 7.72e-3 3 7.72e-3 4 7.72e-3 5 7.72e-3 5
(2,22x22) 14 2 1.54e-4 2 1.54e-4 2 1.54e-4 2 1.54e-4 11
(3,17x17) 8 3 6.0Be-4 3 6.08e·4 5 6.08e-4 6 6.08e-4 6
(3,29X29) 14 2 4.70e-5 2 4.70e-S 6 4.70e-S 10 4.66e-5 10
(4,26X26) 10 3 9.12e-5 5 9.12e-S 6 4.70e-S 17 8.98e-5 7

, 4,10 '/2 , 4,10 1

'c ,
"

'c o. 'c I '. 'c O.
k grid iter error iter error iter error iler error grid
2 7x7 3 1.75e-2 5 1.75e-2 5 2.31e-2 10 2.31e-2 ax8
3 9x9 5 1.57e-2 7 1.57c-2 4 3.17e-3 6 3.17e-3 11x11
4 11x11 3 3.17e-3 5 3.17e-3 6 7.34e-4 9 7.33e-4 14x14
5 13x13 5 3.24e-4 6 3.23e-4 6 6.08e-4 15 6.06e-4 17x17
6 15x15 6 8.50e-1 8 8.19c-1 6 2.21e-4 18 2.18e-4 20x20

I 6,/0 I 2 1- 6,10 1

'c I '. 'c O. 'c ,
" 'c O.

k grid iter error iter error iter error iter error grid
2 10xl0 3 7.72e-3 3 7.72e-3 3 1.13e-3 3 1.13e-3 12x12
J 13x13 3 3.21e-4 3 3.21c-1 5 6.08c-1 6 6.08c-1 17x17
4 16x16 3 7.63e-1 3 7.63c-1 6 1.54c-1 14 1.54c-1 22x22
5 19x19 6 3.21e-4 11 3.21c-1 7 7.10c-5 36 7.37c-5 27x27
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