Purdue University
Purdue e-Pubs

Department of Computer Science Technical

Reports Department of Computer Science

1976

Evaluation of Numerical Methods for Elliptic Partial Differential
Equations

Elias N. Houstis
Purdue University, enh@cs.purdue.edu

Robert E. Lynch
Purdue University, rel@cs.purdue.edu

T. S. Papatheodorou

J. R. Rice
Purdue University, jrr@cs.purdue.edu

Report Number:
76-204

Houstis, Elias N.; Lynch, Robert E.; Papatheodorou, T. S; and Rice, J. R., "Evaluation of Numerical Methods
for Elliptic Partial Differential Equations" (1976). Department of Computer Science Technical Reports.
Paper 145.

https://docs.lib.purdue.edu/cstech/145

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.


https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

EVALUATION OF NUMERICAL METHODS FOR ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS

E.N. Houstis, R.E. Lynch, T.S. Papatheodorou and J.R. Rice
Computer Science Department
Purdue University
West Lafayette, Indiana 47907

CSD TR 204
October, 1976



EVALUATION OF NUMERICAL METHODS FOR ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS

E.N. Houstis, R.E. Lynch, T.S. Papatheodorou and J.R. Rice
Computer Science Department
Purdue University

CSD TR 204
QOctober, 1976

CONTENTS
I. Statement of the Problem and Procedures, Conclusions.
11, Comparison of Standard Finite Differences and Collocation with Hermite Cubics.,

1. The Numerical Methods and Problem Set
2. Results of the Comparisons
3. Conclusions
III. Comparison of Collocation, Galerkin and Least Squares
1. The Methods
2. Results of the Comparisons
3. Conclusions
IV. Three Observations
1. Unequal Mesh Spacing for Collocation
2. Additional Accuracy at the Mesh Nodes for Collocation
3. Accuracy Depends on the Operators as well as the Selution
V. Comparison with Previous Work
References
Appendix 1: 17 Graphs of the Comparison Data for 17 Problems
Appendix 2: Synopsis of the Numerical Methods
Appendix 3: The Interpolation of Boundary Conditions for Collocation
Appendix 4: The solution of Problem 17.

ABSTRACT

We systematically evaluate four methods for solving two-dimensional,
linear elliptic partial differential equations on general domains. The four
methods are: standard finite differences; collocation, Galerkin and least-
squares using Hermite cubic piecewise polynomials. Our test set of 17 problems
ranges from simple to moderately complex. The principal conclusion is that
collocation is the most efficient method for general use. Standard finite
differences is sometimes more efficient for very crude accuracy (where
efficiency is not important anyway} but it is also sometimes enormously less
efficient even for very modest accuracy. The accuracy of the Galerkin and
least-squares methods is sometimes better than collocation, but the extra
cost always negates this advantage for our problems.



EVALUATION OF NUMERICAL METHODS FOR
ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS

STATEMENT OF THE PROBLEM AND PROCEDURES, CONCLUSIONS.

Our approach to evaluating numerical methods for partial differential
equations has already been outlined in Houstis, et al [1975]. This approach
is a specific instance of the general framework presented by Rice [1976a].
Briefly this approach is to first choose a sample set of problems from the
domain of interest. The domain here is linear, second order elliptic
partial differential equations which are somewhat 'general'. That is, they
have various complications (variable coefficients, curved domains, reentrant
corners, etc.) that are typical in applications and which prevent the
straightforward use of specialized methods or theories. One next selects
some solution methods (four in this paper) and criteria of performance
(accuracy achieved, execution time and memory used) and finally one applies
the methods to the sample set of problems while measuring the performance
criteria.

The cost of solving partial differential equations forces a small
sample set (17 problems here) and thus the reliability of the evaluations is
not as high as we would like, Nevertheless, most of the phenomena observed
here are quite consistent over the problem set which suggests that the
probability of this being the result of chance is quite low.

One key to validity of an evaluation such as this is the precise definition
of the problems, methods and measures of performance. The sample problem set
is presented in the next section. The numerical methods are briefly discussed

in Sections II and III and a more detailed synopsis of them is given in

Appendix 2.



A common weakness of previous efforts of this type is the lack of
precision and information about the numerical methods. It is well known
that it is insufficient to simply state '"Method X was used". Variations
in the implementation §f Method X affect the performance measures by factors
of 2, 10 or 1000. Wé believe that we have implemented all the numerical
methods used in a way that gives close to maximum performance. We have
particularly striven to be 'fair'' to each method and have not used special
techniques (e.g. assembly language code)} for one in order to enhance its
performance relative to the others,

We summarize our procedure and conclusions as follows:

Problem Class: Second order linear elliptic partial differential

equations of general nature i.e. some complication present in
coefficients, domain or solution.

Solution Requirements: Moderate accuracy (1 to 3 digits correct)

achievable "in core" (60,000 words or less of memory needed}.

4 Numerical Methods: Standard Finite Differences; Collocation,

Galerkin and Least Squares using piecewise cubic polynomials
(Hermite cubics).

Criteria of performance (efficiency): Execution time for a given

accuracy. Accuracy is the maximum error divided by the size of

the solution and is usually measured in decimal digits.

Conclusions:

1. There is normally a "cross-over point' at low accuracy beyond which
Collocation is more efficient than Standard Finite Differences. Even
when finite differences is more efficient, it is by a small amount while

Collocation is sometimes dramatically more efficient than finite differences.
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2. There is practically no difference at all between Galerkin and Least
Squares in performance. They tend to be slightly more accurate than
Collocation but are very much less efficient because of the increased

work to compute the coefficients in the matrix problem to be solved.

COMPARISON OF STANDARD FINITE DIFFERENCES AND COLLOCATION WITH HERMITE CUBICS.

ITI.1 The Numerical Methods and Problem Set. The first comparison made in

this paper is between the standard finite difference method (5-point star)
and collocation with Hermite cubics. See Appendix 2, Fix and Strang [1973]
and Collatz [1966] for detailed information on these methods. Simply stated,
in collocation the coefficients of the approximate solution are chosen to
satisfy exactly the partial differential eﬁuation and boundary conditions
at selected points. |

In simple situations with 2 uniform mesh length of h , the finite
difference method is second order, O(hz) and collocation is fourth order,
0(h4). Thus, asymptotically in these situations, as the accuracy increases,
collocation becomes more efficient than standard finite differences. This

suggests the existence of a cross-over point in the performance where

collocation becomes more efficient. One of our objectives is to ascertain
whether simple collocation applies to more general problems and to determine
the expected location of the cross-over point. The operators, domains,
boundary conditions and true solutions for the 17 problems we used are given
in Table 1. The first 8 were previously considered by us in Houstis et al,

[1975). We give additional information about some of them:

Prob. 2/3. Torsion in a bimetal shaft, Ely and Zienkiewicz [1960].
The shear modulus G is a step function with G1/G2 = 3 (see Figure la).
We have replaced the step by a short interval (length = 0.001) where a

cubic polynomial blends the two values of G smoothly. We measure accuracy



(b)

(c)

2 geometry and boundary conditions for problems 2, 3, 14 and 17.
>blem 16 uses the geometry of (¢) with the boundary condition u = g

:Tywhere.

]
1
'
t
I
{
|

G =G G =G,
u=20
= 0 (Prob 2)
u =1 (Prob 3)
uN=0 uN=0
u= 2
u=y b=y
u=0 u =0
u=290
u =99
us=g




Table 1.

The 17 problem space sample used in this paper. The letters

values are determined to make the problem have the specified true solution.

to papers where the problem or a closely related one has been considered.

Partial Differential Equation Operator

f and g denote functions whose
The references are

Size of Boundary
Problem True Solution Solution Domain Conditions References
Xy -Xy - u - - .
1 (e ux)x + (e uy)y Ty - f 1.3 Unit Square u=0 [9]
u=ev’ sin(7x} sin(ny) ,
1 1 . . .
2/3 (E'ux)x + (ﬁ'uy}y = f with £f= -260r 0 0.87 or 0.8 See Fig, la | See Fig. la (71 [9]
u is unknown ,
4 u .t uyy = f 7.6 Ellipse u=g [9]
u = (e¥+e’)/(Lexy) ,
s + =0 2.6 i
Upx * By = . Circle w =g [9]
u = tan"t (y/x) ,
6 u,_ + [1+y2]u -u - (l+y2}u = f 7.4 Unit S =0 9
X vy " y . it Square u-u, = [9]
u= ey {xz- x)zlog(1+y2) ,
X
7 w * uyy = - 6xye e’ (xy + x +y - 3) 0.58 Unit Square =0 191 [14]
u= et x - XA - YD,
8 Ut uyy = f 0.1 Unit Square u=0 9]

INTERTE RN 7, BT SN




Table 1 Continued

Partial Differential Equation Operator Size of Boundary

'roblem True Solution Solution Domain Conditions References
9 4uxx + uyy - 64 u=f 2.0 Unit Square u=0

u = 4(x2—x)(cos(2ny) - 1),

10 U + uyy - [200 + cos(3mx)+sin(27y)]u = f 3.2 Unit Square u=0 [10]

u = 15.4—c05[4ﬁx)]sin{wx)(yz—y)[5.4-cos(4ﬂy}]
+{1/(1+4%)-1/2]
b= 4x-.5) % + a(y-.5)2

2 - .
1/12 Ut uYY - 100u = (u“-100)cosh y /cosh y with u=10 or 20 2.0 Unit Square u=g

u = cosh 10x/coshl(® + cosh uy/cosh y ,

13 u_+u_=f 1.0 Unit Square u
XX Yy

n
o

u=9(x) * ¢(y) , see text |,

14 Uk Uy T f 2.0 See Fig. 1b | See Fig. 1b [6]

u = y[(x-2)24yPo1]e 002X (7-2) 13, (209 %y (349D,
15 u_+u =f 0.6 Unit Square =0

XX yy
2

=10 $0()%0) , e(x)=e 1005Y (2 oy
16 W ¥ Uy = 26 XY 4.9 See Fig. 1c u=g [17]

u=e "y

- : 100.0 See Fig. lc | See Fig. 1c 17])

17 uxx + uyy f B g [

see text and Appendix 4




here by comparing with a numerical solution we have computed which we
believe is much more accurate than the ones considered in this paper.

Prob. 4. The ellipse is centered at (0,0) with major and minor
axes of 2 and 1. BX symmetry only a quarter of the elliptical region
was used in the compﬁtation.

Prob. 5. The cércle has radius 0.5 and center at (0.5,0.5). The
soluticn is uniquely determined by imposing the additiocnal condition
u{0,0.5)=0.

Prob. 8. The true solution has a discontinuity in the ''2.5"
derivative.

Prob. 10. This is a version of a problem from stratospheric physics,
see McDonald et al [1974].

Prob., 11/12. These problems are of boundary layer type; the square
is centered at the origin and has side 2. Symmetry was not used.

Prob. 13. The product solution ¢(x) $(y) has a steep slope (or wave

front) along a right angle at the center of the domain. We have

] X < .35
$(x) = { P(x) .35 <x < .65
0 .65 < x

where p(x) is a quintic polynomial determined so that ¢ (x) has two continuous
derivatives.

Prob. 14. This problem is similar to that of steady flow past a sphere,
Desai and Abel [1972]. The true solution satisfies the same boundary
conditions and has the same shape as the solution of the physical problen.

Prob. 15. The solution has a sharp peak at the center of the square
and it is very small for (x-.5)2+{y—.5) > .01.

Prob. 16/17. This problem is derived from that of heat flow in the

concrete shield of a nuclear reactor, see Zienkiewicz and Cheung [1965].
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Problem 16 only has the geometry and operator of the real problem. The
true solution of Problem 17 (see Appendix 4) is a complicated function
which exhibits the same shape (including small singularities at the three
reentrant corners) and satisfies the same boundary conditions (except along
x=0 and y=0) as the solution of the physical problem.

Problems 1, 7, 8, 9, 13 and 1S are separable and all the operators

except for Prob. 6 are formally self-adjoint.

I1.2 Results of the Comparisons. The data obtained are presented in two

forms. In Appendix 1 we give a set of 17 graphs of the accuracy achieved
versus computer time used. For both methods the error is measured only at

the nodes of the grid used. For most problems we have also measured the

error at many more points in the domain and this sometimes gives a considerably
different result. This is discussed in more detail in Section IV. We used

a CDC 6500 whose long word length gives ample insulation from round-off

errors in these calculations.

In Table 2 we tabulate the cross-over points for all 17 problems. This
is expressed both in terms of accuracy measured in digits as log(max error/
solution size) and the number N of subdivisions in each variable. For the
non-rectangular regions we give an approximate "equivalent'' value of N
which would give about the same number of unknowns, if the region were
rectangular.

We see from Table 2 that the cross-over points range from 0 to 4 digits
with 2 as a median value. One of the high cross-over points comes from
Problem 16 where high accuracy is obtained by very coarse meshes. Let NF
and NC denote the values of N at the cross over point for finite differ-
ences and collocation, respectively. There is a fairly consistent pattern
in the relaticnship of the values of N; and N. , namely /N;VNC is about

1. The value of NC is small (from 1 to 6 with 3 as median) for all cases.

8
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Table 2. Tabulation of the cross-over points for 17 problems. The accuracy
(in digits) and numbers N, and N, of grid lines is given for the comparison
of Standard Finite Difference and” Collocation with Hermite Cubics.

Digits = NF NC fl\F

Problem log(max error/solution size) Finite Difference Collocation _ﬁg
1 1.8 5 2 1.12

2 3.0 13 4 0.90

3 1.5 12 3 1.15

4 3.0 12 4 0.87
- 1.9 6 2 1.22
6 0 1 1 1.00

7 1.8 5 1 2.23

8 4.0 5 2 1.12

9 3.0 9 4 0.75
10 1.1 8 3 0.94
11 2.2 13 6 0.60
12 1.3 9 4 0.75
13 1.3 15 5 0.77
14 3.6 17 5 0.82
15 1.2 15 4 0.97
16 4.1 16 4 1.00
17 1.8 20 6 0.75

OQur results here differ in some cases from those published earlier,
Houstis et al [1975]. The efficiency of both programs has been improved
but their relative efficiency has not changed much. In our earlier paper
we measured the error at many points over the entire domain (bilinear
interpolation was used to extend the finite difference solutions). The
few noticeable differences from the earlier data are due to this change in
error measurement. We also previously gave data on memory usage as well
as execution time. We have omitted memory data here as the cross-over points
for memory are somewhat the same as for execution time (this is true also for

the new problems intrcduced in this paper).



We timed separately the formation and the solution of the linear
equations. Both finite differences and collocation are very similar in

the breakdown of execution time as seen in Table 3.

Table 3, Sample data on the breakdown of execution time between
formation and solution of the linear equations.

Time for linear system Ratio of
Formation Solution Formation/Total
Prob. 1. Collocation, N=4 0.25 sec 0.46 sec .54
Finite Differences, N=10 0.25 0.56 .50
Collocation, N=8 1.0 4.5 .22
Finite Differences, N=17 0.9 3.6 .20
Prob. 10 Collocation, N=8 1.4 4.4 .24
Finite Differences, N=17 1.2 3.4 .26

The solution of the matrix equation was always by Gauss elimination
(frontal or profile version) and it is possible that iterative methods
or nested dissection would be significantly more efficient. Indeed, this
is known to be true for certain simple problems and finite differences.
However, we are concerned with problems with some complexity (even though
we included some simple examples in our sample) and there the theoretical
relationship between iterative methods and Gauss elimination is unknown.
Iterative methods also normally involve choosing one or more parameters
and that could be very delicate for complex problems. Thus we must leave_
the question of the impact of using iterative methods on these problems as
an open question for future research. The few comparisons that we are aware

of have various defects that leaves the situation inconclusive in our minds.

IT.3 Conclusions. A study of Table 2 and the graphs in Appendix 1 shows
that collocation becomes more efficient than standard finite differences
at rather low accuracies and/or small values for N. Fur:hermore, when finite

differences are more efficient, it is by a small margin whereas collocation

10
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IIT.

is often dramatically more efficient than finite differences. These results
cover a reasonably broad range of two-dimensional linear elliptic problems
and show that there is no reason from the point of view of efficiency to
use the standard finite difference methods for this class of problems.

It is also relevant to note that in practical problems one must almost
always compute solutions to higher accuracy than actually required. That
is to say, the only reliable ways to be certain that one has an error of,
say, 5% (or less) involve computing a solution accurate to 1% or better.

This is especially the case for low accuracy requirements (e.g. 1-10% error).

COMPARISON OF COLLOCATION, GALERKIN AND LEAST SQUARES.

III.1 The Methods. 1In all three of these methods we use Hermite cubic
polynomials as approximations. More specific details are given in Appendix

2 but there are two facts worth noting here. First, both the Galerkin and
Least Squares methods involve the evaluation of integrals and these have been
estimated by using 9 point quadrature in each grid rectangle based on the
tensor product of the 3 point Gauss rule. All the information from the
equation must be evaluated at 9 points, this compares with 4 points needed
for collocation in each element (grid rectangle).

Second, the Galerkin and Least Squares methods were implemented only for
the case where the boundary conditions can be exactly satisfied by chosing
the Hermite cubic basis appropriately. This restriction makes them intrinsic-
ally less flexible and should give them an advantage over collocation whenever
they are applicable. To offset this advantage we used the same Hermite
cubic basis for collecation on those problems where all three methods are
compared. In complex problems it can be very difficult (and tedious) to
modify the original problem into one where the boundary conditions can be

satisfied exactly by piecewise cubic polynomials.

11



There are only six problems (1, 7, 8, 9, 10, and 15) where Galerkin
and Least squares could be applied, but the results are so consistent

that this number seems sufficient to draw general conclusions.

IIT1.2 Results of the Comparisons. The graphs given in Appendix 1 for these
six problems show the data for all three methods. An examination of these
-graphs shows that there is rarely a significant difference between the
Galerkin and Least Squares method. Table 4 gives a sample of some additional
typical data for comparing the collocation and Galerkin methods.

One sees from Table 4 that collocation is always faster for equal
accuracy. The advantage decreases as N increases and an operations count
shows that eventually the Galerkin method is faster. This is because
eventually most of the time is spent in solving the linear system and the
Galerkin system is symmetric and hence can be solved twice as fast as the
nonsymmetric collocation system. The timing data given in Table 4 is
compatible with an operations count analysis for these two methods. One
also sees for a fixed set of elements (grid) that collocation is sometimes
much less accurate than Galerkin and never more accurate. However, the
graphs show that the accuracy advantage of Galerkin never compensates for
its speed disadvantage in these cases. One may compare accuracy from the
graphs by noting that the last point plotted for each method has the same
number of elements.

Note that Problem 10 involves fairly complicated functions in the
differential operator and that this has a large negative effect for the

Galerkin and Least Squares methods.

ITI.3 Conclusions. We see that collocation is a more general method and
that it is also more efficient than Galerkin or Least Squéres. Collocation
is more delicate to apply because the boundary collocation points must be

selected carefully for complicated regions. See Appendix 3. Thus collocation

12
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is the method of choice among these three for the class of problems
represented here.

Table 4. Selected data comparing collocation and Galerkin for six
problems. Times are given in seconds. '

Factors of Time Break Down
Speed Accuracy ' Collocation | Galerkin
Advantage |]Advantage Matrix | Matrix I Matrix | Matrix

Prob No ffor Coll. for Galer.}N|Formation {- Sol. Error ti Sol. Error

1 |41z [2tos [ 137 | 203 [s.eq0y | 205 | 218 [ 2,407
, 7| 792 | 2960 | 1.8v107* | 10.57 | 3.67 | 1.0%i0

7 |36 2 ol 159 | .a77 | 2.8v07f | 201 | 538 | 2.6%107%
8| .645 [4.45 | 1.7*10 8.1 | 5.8 | 1.7%10

8 |25t08 |25t 3] 081 | .23 |1.6007 | 112 | .z 6¥107
: 8| .633 |4.33 | 4.8%10 7.89 | 5.95 210

5 |3to7 1toa f2| .04 | .o53 5#1072 | .566 [ .05s | 1.5%107
7} 489 |2.88 | 1.6*10 6.88 | 3.71 | s.6%10

10 |6to15s |1to2 |2] .os2 | .os5 |s&.5+1073 | 1.98 | .059 |8.6*107}
ol 1.71 | 6.66 7*107° |40.0 | 9.15 4*10

15 |sto10 Jrto7 fo 230 | 482 |3.4v107; | 4810 | .54 8+10_
sl o5 |4.39 g*107° [18.8 |s.82 [ 1.1*10

IV. THREE OBSERVATIONS.

IV.1 Unequal Mesh Spacing for Collocation. There are two disadvantages

to collocation compared to standard finite differences: (1) It is not
well known, (2) Its implementation is more complicated. The extra complexity
(which is not great) of collocation partially stems from its greater
flexibility. One manifestation of this is that unequal mesh spacings can

~ be used with no extra difficulty, no loss in accuracy and a negligible
increase in computation. By no loss of accuracy we mean that collocation
remains a fourth order method as contrasted to standard finitie differences
where unequal mesh spacing reduces the order from second to first.

In fact, unequal mesh spacing can dramatically increase the accuracy

of collocation solutions and often one can see (with little trouble) a

reasonable mesh to use. Several examples of this occur among the 17 problems



considered here, including Prob. 13 (wave front on a right angle) and
Prob. 15 (sharp peak at center). We solved both of these problems with
unequally spaced meshes and the resulting improvements are tabulated

in Table 5. The unequally spaced meshes for these examples were chosen
in what seemed a plausible way, but no systematic attempt was made to

optimize the mesh.

Table 5. Illustration of the possible improvement in accuracy of the collocation
method by using an unequally spaced mesh.

ERROR
Case Equally Spaced Mesh Unequally Spaced Mesh
Prob 13 , N=6 1.5%1072 1.8%107°
N=8 7¢10"° 4.1+107%
Prob 15 N=3 .57 .29
N=6 .16 .06
N=8 .08 .026

IV.2 Additional Accuracy at the Mesh Nodes for Collocation. For general

collocation there is a phenomencn called super convergence, see deBoor and

Swartz [1974] where the order of accuracy at the mesh nodes is higher than
elsewhere. However, in theory this phenomenon does not occur when using
cubic polynomials. Nevertheless, we observed substantially improved accuracy
at the nodes for some problems while there was none for some others. For

two proBlems there was a constant increase in the accuracy at the nodes:

a factor of 4 for Prob 7 and 15 for Prob 4. In some other problems (e.g. 8,
10, 11, and 13) there was a moré erratic factor of increase, but it exceeded

4 in some case of each of these problems. No such phenomenon occured for

14
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|
the Least Squares or Galerkin methods.

There is a plausible explanation of this as follows: The nature of the
theoretical error term for collocation is different at the mesh nodes than
that at other points, but the use of cubic polynomials results in the same
order of accuracy for both cases. However, for some problems the coefficient
of the principal error term at the nodes might be significantly smaller than
that of the general error term. This could account for the phenomenon that

we observe.

IV.3 Dependence of Accuracy on the Nature of the Operator as well as the

Solution, It is obvious that the difficulty of obtaininé a numerical solution
of a partial differential equatioﬁ depends on the nature of the differential
operator as well as the nature of its solution. This fact may be overlooked
as the theory plans heavy emphasis on the nature of the solution. The effect
of the operator, however, c¢an be duite significent. For example, compare

the widely varying results that are obtained for Problems 6, 7 and 16 whose
solutions are ngarly the same. On the other hand, Problems 1, 7 and 9 have
very similar results as one would guess from the fact ‘that the differential
operators and boundary conditionsiare similar in nature and all three have
very well-behaved solutions. We ﬁave considered several sets of different
probiems which all have the same ;olutiOn and have seen a very wide range

of difficulty in obtaining the same function from problems with different

operators.

15



V. COMPARISON WITH PREVIOUS WORK.

There has been little effort on systematic comparisons of different
methods for solving partial differential equations; our previous paper
[Houstis et al, 1975) was one of the first. There have been a number of
abstract comparisons based on asymptotic rates of convergence and asymptotic
operation counts for the solution of linear systems of equations. See
[Rice, 1976] and [Birkhoff. and Fix,1971] for a large number of examples
of this analysis and references to earlier work. Experience has shown that
operation counts are reliable for estimating the efficiency of sclving
linear systems of equations, For iterative methods one must take extreme

care to terminate the iteration at a level compatible with the discretization

error of the method. This point is commonly overlooked and invalidates some

otherwise interesting comparison studies.

The usefulness of asymptotic rates of convergence as guides to the
efficiency of numerical methods for elliptic problems is still open to
question. Specifiéaliy, it is not known how reliable these rates are as
guides for the moderate accuracy requirements of typical applicationms.
Discussions of this question is given in the last section of Strang and Fix
[1973] (there asymptotic rates are reliable guides for 3 example problems),
in Birkhoff and Fix [1974] and in Swartz [1974] where several different
order methods are compared.

Roache [1972] has a section entitled 'Remarks on Evaluating Methods"
(pp. 109-112) and he strongly favors simple, low order methods and describes
the performance of higher order methods as ‘'disappointing". He supports
the conclusions with citations of 12 papers, half of which have no relevant
material on the question of the performance or comparison of methods.

Most of those papers which involve shock wave and turbulence computations

suggest that low order methods are the best of the methods used. However,

16
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we (and some of the authors) interpret these papers' results on smoother
problems differently than Roache. One paper explicitly states that first
order methods compare poorly and a third order method gives ''striking"
improvement in accuracy with no more computation for some shock wave
problems [Burstein and Mirin, 1970]. A comparison of methods for weather
prediction by [Grammeltvedt, 1969] suggests to us that fourth order methods
may be superior, but Roache states the opposite. None of these papers
attempts a controlled comparison of methods and thus no definitive con-
clusions can be reached from them.

Eason [1976] has a bibliography of 241 items relevant to the least
squares method for partial differential equations. He tabulates the
references in various ways including Table IIT. Comparisons where least-
squares methods are superior in accuracy, convenience or computing speed
and Table IV. Comparisons where least-squares methods produce equivalent
or comparable results. Eason is a strong advocate of the least squares
method which may explain why a table where least squares does worse is not
included. For example, Table III has 26 entries for collocation and 14
for Galerkin. We have examined most of these references and they are, in
general, one of two types. First, someone attempts to solve a problem, say,
with collocation using 12 polynomial terms and with least squares using 8
trigonometric polynomial terms. The problem has an unknown solution so the
actual accuracy is unknown. The author reports his subjective evaluation of
the quality of the results obtained. Usually there is insufficient data
about the calculation to attempt to reproduce the results. Note that the
differences observed are primarily due to using polynomials versus trigo-
nometric polynomials rather than using collocation versus least squares.
The second type of paper is more systematic, but involves trivial problems

in one way or another (i.e. either the problem is trivial or the method used

17



is trivial). For example, one sees solutions of three fairly simple
problems by five methods which compute a quadratic polynomial approximation.
Then general conclusions are stated. We did not locate any systematic

and realistic evaluation of methods among these 40 references. Most

papers do not even give conclusive evidence in the particular context of
the problem they consider.

If there is any consistent pattern in the results, it would be that
authors find that the collocation of boundary conditions is delicate.

Maﬁy find that least squares approximations to the boundary conditions give
better results, primarily because they do not use good boundary collocation
points. This does suggest that collocation of the differential equation
combined with least squares for the boundary conditions would give a more
Tobust numerical method with little or no penalty in efficiency.

Leissa et al [1969] present a systematic study of the value of 9
methods for two plate bending problems: a simply supported elliptic plate
and a square plate supported a 4 'random' points. In both cases the
"exact" solution is a series expansion truncated at 48 terms, but the authors
do not view this as just another numerical method which might give worse
results than some of the other methods they apply. The nine methods are
compared on the basis of 11 criteria e.g. 'suitability for programming',
“applicability to general regions", "ease in learning". Efficiency and
accuracy were not included directly as criteria and apparently were not
systematically measured. It is important to note that all of the 9 methods
considered were of limited flexibility and none could be applied to all

17 problems included in this study.
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APPENDIX ONE

GRAPHS OF THE COMPARISON DATA FOR 17 PROBLEMS

The data for the comparison of methods is plotted on log-log paper with
accuracy achieved versus execution time. The accuracy is plotted as the actual
error at the location of the maximum error. The execution time is in seconds
on a CDC 6500. A consistent scheme of plotting is used for the four methods:
solid for collocation, dots for finite differences, dashes for Galerkin and dot-
dash for Least Squares. Occasionally, some extra curves are plotted which are
identified by a special label. .
One may crudely estimate the "time order" a of these methods by measuring

the slopes of the curves of error vs. time when plotted on log-log paper. The

order o estimated is for the relationship
N -0t
Error = O(Time )

If one assumes that most of the computer time is spent in solving the linear

systems, then one would have
Error = O{N-4n)

This assumption is clearly not satisfied here. In Table Al we present our
estimates of a and 4a. We see that there is some correlation with the simple
model which gives 4a = 2 for finite differences and 4a = 4 for the Hermite

cubic method. There are also some very wide deviations from this.

Table Al., Measured slopes o to estimate the order of the methods from their

actual performance.

Finite Diff. Collocation Galerkin Finite Diff. Collocation Galerkin

Problem o 4a Q 4o a 4o Problem o 4o o 4a o 4a

)} 0.65 2.6 1.44 5.8 1.9 7.6 9 0.58 2.3 1.5 6.0 1.4 5.7
2 1.13 4.5 2.4 9.6 — 10 0.53 2.1 1.15 4.6 ?
3 0.94 3.8 1.7 6.8 — 11 0.54 2.2 1.06 4.2 —
4 0.59 2.4 1.37 §5.5 — 12 0.38 1.5 0.68 2.7 _
S 0.47 1.9 4.0 16.0 —_ 13 0.67 2.7 ? —_
6 0.55 2.2 1.46 5.8 —_ 14 0.73 2.9 1.5 6.0 —

7 0.61 2.4 1.39 5.6 2.0 6.2 15 0.85 3.4 1.19 4.8 1.2 4.8
8 . 0.58 2.3 0.67 2.7 1.5 6.1 16 1.44 5.8 2.34 9.4 —_
17 1.05 4.2 1.05 4.2 —
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Figure Al. The data for Problems 1 to 4. Galerkin and Least Squares data is
given for Problem 1. For Problem 4 we also plot the maximum error over the
whole region to compare with that at the nodes.

Figure A2. The data for Problems 5 to 8. The solution to Problem 8 has a mild
singularity, which seems to affect the collocation solution more than Galerkin
or Least Squares.

Figure A3. The data for Problems 9 to 12. Galerkin and Least Squares show
erratic behavior for Problem 10. The "boundary layer' of Problem 12 adversely
affects both methods of solution.

Figure A4. The data for Problems 13 to 15. The effect of collocation with a
non-uniform mesh for the wave front on a right angle (Problem 13) and for an
isolated sharp peak (Problem 15) is seen. The erratic behavier of collocation
with a uniform mesh for Problem 13 seems to be due to the chance relationship
between the mesh and the wave fromt,

Figure AS. The data for Problems 16 and 17 with the complicated geometry of
Figure 1(c). The complex geometry does not adversely affect Problem 16 where
surprising accuracy is obtained. The singularities and complex geometry also do
not seem to adversely affect Problem 17 (recall that the true solution is of
size 100.) where the geometry forced non-uniform meshes for both collocation and
finite differences.
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APPENDIX TWO

SYNOPSIS OF THE NUMERICAL METHODS

1. Standard Finite Differences. This method has the following components.

{a) Grid: A rectangular grid is placed over the domain and ail points in
the domain or on its boundary are used. The grid is uniformly spaced
except for Problems 16, 17 where the geometry made that undesirable.
(b) Approximation to the operator: The derivatives in differential equation
are replaced by simple central, 3-point finite difference approximations
involving the grid points.
(c) Appreximation to the boundary conditions: Derivatives in Neumann or
' mixed boundary conditions are approximated as indicated by the diagram
x-derivative at P estimated from

/

value at P and the 2 x-points.

y-derivative at P estimated from

‘*L value at P and the 2 y-points.

The values at the y-points are

found by linear interpolation from

the 0-points.

(d) Equation Solution: The linear system is solved by Gauss-elimination

taking into account the zeros in the system (profile or frontal method).

2. Collocation. This method has the following components.
(a) Elements: A rectangular grid is placed over the domain. Rectangular
elements whose center is not inside the domain are discarded. The grid is
uniform unless noted except for Problems 16, 17.
(b) Approximation space: the Hermite bicubics defined at the end of this appendix.
(¢) Approximation to the operator: The approximate solution satisfies the

differential equation exactly at the four Gauss point of a rectangular element.

For non-rectangular elements near the boundary the four Gauss points are

40



projected inside the element as indicated by the diagram.

x = differential equation
x X x A collocation points

(d) hpproximation to the_boundary conditions: The boundary conditions are
interpolated at a selected set of boundary points for either Dirichlet,
Neumann or Mixed boundary conditions. If the domain is a rectangle and the
problem has Dirichlet conditions = 0 (Problems 1, 7, 8, 9, 10 and 15) then

the Hermite bicubics are selected so as to automatically satisfy the boundary
conditions and no boundary approximation equations are used. This is the same
procedure as for the Galerkin and Least Squares methods. See Appendix 3 for
details on how the boundary collocation points are selected.

(e) Equation Solution: Same as for standard finite differences.

Ritz-Galerkin and Least Squares. The components of these methods are:

(a) Elements: same as for collocation.
(b) Approximation space: same as for collocation.
(c) Approximation to the operator: In each element E of the partition we have

the Galerkin equations

16
iZI o jl-'if {pD, B, D Bj + QD B, D, B; + T B; Bj}dXdy = ,;f £ P'j dxdy

where the operator L and the true solution U are defined by

%* * * *
LU = (p Ux)x + (q Uy)y + 10 = f
and
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Dx’Dy = differentiation operators

Bi(x,y), Bj(x,y) = the i and j elements of the Hermite bicubic basis

«; = coefficient of B, in the approximate solution (the index i

refers to one element only)

The Least Squares equation in each element is

‘16

Z a, JSf L({B,) - L(B,)dxdy = [fS f L(B;)dxdy
i1 * g * ] F ]

The intégrals in these equations are appro#imated by the S-point Gauss
quadrature rulg for rectangles (only rectangular domains were used with

tﬁese methods). ‘

(d)-Approximation to the boundary conditions: the boundary condition were
exactl} satisfied by‘the Hermite cubic basis for all problems (1, 7, 8, 9, 10
and 15) attempted with these methods. |

(e) Equafion solution: The local equatioﬂs are assembled (by the direct
stiffness method) to form the global matrix. This equation is solved by

Gauss elimination for positive definite matrices,

. The Rectangular Bicubic Hermite Element. The situation is shown in the diagram
S A
(0.b) |® ®| (a.b)

w
(]

x/a and 0 <5 <1

+
[}

y/band 0 <t <1

The numerical labels on the corners

0 €] .

(0,0) (a,0) *

are used later to index the points,
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We use 8 one dimensional functions to construct the 16 basis functions

for the rectangle:

B, = 1-35%+25> | By = 1-3t%42¢3
B, = s%(3-2s) | B, = t2(3-2t)
B 5 = as(s-1)° B = bt (t-1)°
Bx4 = asz(s—lj By4 = btz(t-l)

*
Then u (x,y) 1is approximated in each rectangle by

u(x,y) = Bxl Byl U1 ¥ sz Byl UZ * Bx2 By2 U3 * Bxl Byz U4
B
* Bx3 Byl “x1 Bxd yl %2 * Bx4 By2 %3 T Bx3 ByZ Tx4
* Bxl By3 Uyl * BxZ By3 cry2 * sz By4 °y3 * Bxl By4 cyd
* Bx3 ByS Txyl * Bx4 ByS Txy2 * Bx4 Byd Txy3 ¥ Bx3 By4 Txy4
where u, = value at the point i
g ., 0 . =xand y derivatives at the point i
xi’ “yi
Txyi = Xy (cross) derivative at the point 1i.

The 16 functions in the above equation are the ones denoted by Bi(x,y)

earlier in the Galerkin and Least Squares equations, e.g. Bl(x,y) = Bxl Byl'
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APPENDIX THREE

THE INTERPOLATION OF BOUNDARY CONDITIONS FOR COLLOCATION

The most sensitive aspect of collocation is the placement of the
boundary collocation points for non-rectangular domains. First, one must
tzke care that these points are reasonably separated from the pﬁints in
the interior where one collocates with the differential operator. This
is not difficult to do even in an automatic way, but the penalty for
oveﬁlooking this point is an ill-conditioned computation with large errors.

:One first overlays the region with a rectangular grid and discards
the elements which inteérsect the domain sliﬁhtly or not at all. Let Sb
be the number of boundary sides of the resulting rectangular partition.
Then the number of boundary collocation points required is ZSb + 4, We use
two basic schemes for Qistributing the boundary collccation points as

illustrated by the diazgrams below for a simple rectangle:

A

%

——a—

2-Point Scheme Midpoint Scheme

Figure A6. Two schemes for distributing boundary collocation points. The

x's are the systematic collocation points and the 0's are the four extra ones.
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b

A theoretical anaiysis shows that the Z-pbint scheme is superior
for ‘rectangular regions provided the two points are taken to be the
Gauss points for each boundary segment. We compared using the Gauss
points with equally sbaced points and found the equally spaced points
give slightly better accuracy and they are slightly easier to use.

We made numerous numerical experiments which confirmed that the 2-point
scheme is superior for rectangular regions.

The extension of these two schemes to curved domains is illustrated

in Figure A7.

PRI S

oL % ey R
S e )

2-Point Scheme Midpoint Scheme
Figure A7. The two schemes for a simple curved domain. The lines show

how the collocation points are placed on the edge of the rectangular partition
and then mapped onto the portions of the boundary intersecting each rectangular

element.

The theoretical advantage of the 2-point scheme no longer holds for curved
boundaries and our experiments confirm that it has no advantage over the
midpoint scheme in this case. In fact it is, on the average, slightly less

accurate. Furthermore, the midpoint scheme automatically gives collocation
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of the boundary conditions at any extremities of the domain (for example,
for a piecewise rectangular boundary such as in Problems 16 and 17, see
Figqfe 1}). It is often essential that collocation of the boundary conditions

be made at all exterior corners of the domain.

Our procedure is to use the 2-point scheme for boundaries which are
straight (or nearly so) and parallel to a coordinate axis and to use the
midpoint scheme otherwise. The two schemes may be used together for a domain

such as shown above and we do this as shown in Figure AS8.

c

&

} 3
~n
h
>

A\

Figure A8. - The combination of the two schemes for a partially rectangular
‘fegion. The mapping from the point on the rectangular edges to the curved

boundary is indicated.

There seems to be no particula;ly advantageous method to distribute the
4 extra collecation points beyond putting them in elements with exterior
corners and spreading them somewhat evenly around the boundary. We always
map the midpoint type collocation points to segments of the curved boundary
which are interior to the rectangular partition. The points are placed
uniformly on each such éegment. At times this may leave rather large segments
of a curved boundary "unused", but we have not found a reliable method to
place collocation points on the intermediate segments. We do place collocation

46



outside the rectangular partition for the 2-point scheme. An example

is shown in Figure A9 which illustrates these procedures.

Figure A9. Example which illustrates boundary collocation points for
the 2-point scheme which are outside the rectangular partition and
collocation for the midpoint scheme are inside. Collocation is not

done on two large boundary segments.
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APPENDIX FOUR

THE SOLUTION OF PROBLEM 17 AND FUNCTIONS INVOLVED IN THE OTHER PROBLEMS

We describe the exact solution u of Problem 17 for the reactor
heat shields Vz u = f.

We set
u(x,y) = 100 g(x,y,9,0,0)/ g(x,y,a,b,c)

where, by construction, the numerator on the right is zero on the stair-step
outer boundary of the domain {see Figure 1). The numerator is the product
of (x-1), (y-1), and three factor of the forn =,2/° sin(3(e, + /2)/2)
where T, is the distance between (x,y) and the reentrant corner (xi,yi).
i=1,2,3. The denominator is a modification of the numerator which is
positive in a region containing the boundary of the heat shield and which

is equal to the numerator along the circular part of the boundary. Note

that this function has the correct singularities at the reentrant corners.
Specifically:

g(x,y,a,b,c) = [(x-1)(y-1) + a C(x,y)] ni=1 T(x,y,xi,yi,b,c)

2

Cix,y) = (x° + y2 - .64)°

T(X,¥, X3, ¥;5 by ©) = R(x,y, x4, ¥5, B) S(x,y, %4, ¥4, €)

ROGY, X;» ¥;s D) = [(es)? + (v-y)? + b couy?/?

Sy, X;, ¥;5 € = sin(2[arc tan([y-y;1/[x-x;1) + 7/21/3) + ¢ C(x.¥)
with branch cut along Y-¥; = XX, X <X
After some experimentation, we found that a = - .5, b= .1, ¢=7.

gives a solution u which is similar to that one expects for the temperature

in the heat shield.

48



Remark about the evaluation of u and f = Vzu:

In our first attempt at the construction of a suitable u, we used a
somewhat simplier function [which later proved to be unsuitable because
it had zeros in the interior of the region]. A Fortran program was
writ;en for the evaluation of u and it was processed by a symbolic
differentiator to obtain function subroutines to evaluate L. and uyy'

s uyy were more complicated and much

longer than the one we eventually wrote for our more complicated function.

The resulting programs for u, L.
We note that u, u uyy can each be evaluated by successive calls to
a number of very simple subroutines. Each of these evaluates V, Vxx, '

Yy
where V is a product V = WZ. Schematically the program is:

WXX =

ZX =

ZXX

v

[ A

VX WX*Z + W*ZX

VXX WXX*Z + 2.*WX*ZX + W*ZXX

and similarly for the y-derivatives.

The values of V, VX, VXX, VY, VYY are stored in a common block for use by
subsequent routines. In most cases, statements like the first six above:
W= ..., ... ZXX = ... , do not appear since the values are already computed

by previously called subroutines. The program is quickly written and debugged.
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wenaw PROBLEM "1 DATA SANRN
FUNCTION COEF<(X>YsJd
2 = EXP(X¥Y)
RZ = 1.72 i
GO TO <104,1025103s10451050+J
101 CDEF = 2
RETURN
102 COEF = RZ
RETURN
103 COEF =Y % 2
RETURR
104 COEF = X % RZ
RETURN '
105 COEF = -1,/¢1., + X + Y
RETURN )
END
FUNCTION FC(Xa Yy J)
GO TOD ¢101s102> 5 J
101 Pl = 3.1415926535€979

Z = EXPOXY)
RZ =1, 72

PIX = PIaX

PIY = PI¥Y

P12 -= PI*Z

SINX = SINCPIXY
SINY = SINCPIY)
TRUE = ZASINKeSINY
TEMP = PI®PI¥TRUE

XTRUE = X®TRUE
YTRUE = Y#TRUE
FR = PIZOCOS(PIX)ASINY
FY = PIZACOSCFIY)>®SINX
DXTR = YTRUE + FX
DYTR = ¥TRUE + FY
DIXTR = Y*YTRUE - TEMP + 2,%Y#FX
DBYTR = X®KTRUE - TEMP + 2,MXWFY
F = ZADDATR+RZANDYTR+YRZUDRTR-KFRZMDYTR-TRUE/ (1. +R+Y)
RETURN
10e F = 0.
RETURN
END
FUNCTION TRUECX»Y)
PI = 3,14159265358979
TRUE = EXPC(XMYIMSINC(PI®XIMSIR(PINY)
RETURN
END
FUNCTION BCOEF (XsYsJdD
GO TO <101510221033J
10t  BCOEF = 1.
RETURN
102 BCOEF = 0.
RETURN
103 BCDEF = O.
RETURN
ERD
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¥xmax PROBLEM 2 DATA Wakmw

FUNCTION FEXsYsr Jd
GO TO <101,102>»J

101 F=0.
RETURN

102 IFCY.EQ. 0, .OR.X.EQ.1.> GO TO 1
IF(Y.ER.0..0R.Y.EQ..5) GO TO ¢
F =1,
RETURN

1 F = 0.

RETURN

END

FUNCTION COEF(Xs Y>> Jd>

GO T 19253549509 J

COEF = GCXs YD

RETURN'

COEF = G{XaY>

RETURN

CDEF ='0.

RETURN"

CDEF = 0.

RETURN,

COEF = 0.

RETURN

END

FUNCTION G<X» YD

E = .00001

.9-E

.0+ E

Ke - X1

IFC X JLE., %1 > GO TO

IFC X .GE. X2 » GO TO 2 |

FOL = 3,—6,%(X=X1 %MD/ (DKEDN) +4, (K1) 23/ (DR¥*3)>

G =1.,POL

RETURN

A 2 @ M -

gaXxX X
xx [
wun

FUNCTIDN BCOEF(Xs'rs S
GO TO C101,102510309+J

101 IF(X .6T. 0. ,AND. X .LT. .25> GO 7O 1
IFCX L,G6T. .75 .AND. X (LY. 1.> GO TO 1

BCDEF = 1.
RETURN
1 IFCY JEQ. 0.> GO 7D 2
BCOEF = 1.
RETURN
[ ECOEF = 0,
RETURN
102 ECOEF = 0.
RETURM

103  IF(X.GT.0. .AND, R.LT.,253GB TO 11 . .
IF¢X.GT.. 75 «AND. ®.LT.1,> GO TO 11

BCOEF = 0.
RETURN
11 IFCY .EQ. 0. > GO TO 22
ECOEF = 0.
RETURN
ce ECOEF = 1.
RETURN
£ND
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swws PROBLEM 3 DATA Mwsmm

[
<
-

-
(=}
g

b

[4) B S T ']

101

io02
103

11

FUNMCTION F(X>Yad)

GO T <10ty10255J

F = —-20.

RETURM

F = 0.

RETURN

END

FUNCTION COEF <Xy J)

GO TO C1+2y334955+J
COEF = G{XsY)

RETURN

COEF = G(HaYD

RETURN

COEF = 0.

RETURN

COEF = 0.

RETURN

COEF = 0.

RETURN -

END

FUNCTIOR GCXsYD

E = .00001

b3 «S5-€

Xe B + E

DX He - ¥4

IFC ¥ LE. ¥1 > GD 1O {
IFC X JGE. X2 > GO TO 2
FOL = 2.-6.%¥(X-X1)Wu2/(DKUDXI+4, ¥ (¥—K1 IMEI/{DXENT)
G = 1.sP0OL

RETURN

G =1.73.

RETURN

G =1,

KRETURN

END

FUNCTION BCOEF<{X»Yi1J>
GO 7O <101»1025103),.)
IF¢(X .GT. 8. .AND. X .LT. .26 GO T 1
IF(K .GT. .79 AND. ¥ ,LT. 1.2 GO TO

nnn

BCOEF i = 1.

RETURN

IFCY .EQ. 0.> 6O TO 2
BCOEF-= 1.

RETURN

BCOEF = 0.

RETURN

BCOEF = 0.

RETURN

!
IFCX.GT.0. .AND. X.LT..25>G0 TO 11
IF¢{X.GT..75 .AND. X.LT.1.> GO TO 11
BCOEF = 0.
RETURN
IFCY .EQ. 0. > GO TO 22
BCOEF = Q.
RETURN |
BCDEF = 1.
RETURN
END
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a &~ D

wWuma™ PROBLEM 4 DATA Wwwnw

FUNCTION TRUECXeY)
TRUE = (EXPC(XY + EXPCYI)ZC1, + XKEY)
RETURN : N
END
FUNCTIDN DXTRUECX>Y)
Z = 1.7C1.+¥%Y)
DXTRUE = EXP(X)>)#Z-TRUE(Xy Y)NY™2
RETURN
END
FUNCTIDN DBYTRUECX» YD
Z = 1.7C1. K%Y
DYTRUE = EXF(YI%Z —TRUECK) ¥)NXuZ
RETURN
END
FUNCTION DXYTRCX»YD
2 = 1.701,+R%Y)
DRYTR = ~CKEXP(X)MX+EXPLYIMYIMZMZ
~TRUECK> YO¥Z2+2, ¥ TRUE Ky Y ) X R YWZMN2
RETURH
END -
FUNCTION F(Xy¥s JD
EX = EXPCX2
EY = ERPCYD
Z = 3,7C1. + XMY3
GO TO <1,2) » .J !

F = CEX + EY ~ 2.%ZM{YMER+XNEY-ZMCEX+EY ) RCKMX+YMY) Y )02

RETURN
F = (EX+EY)¥Z
RETURN
END
FUNCTION COEFC(XyY»J>
GD 7O (1,2;31425)sJ
COEF = 1.
RETURN
COEF = 1.
RETURN
COEF = 0.
RETURN
COEF = 0.
RETURN
COEF = 0.
RETURN
END
FUNCTION BCOEFCXs Y. JD
GO 7O <1:2532»J \
BCDEF = {.
RETURN
BCDEF = 0.
RETURN
BCDEF = 0.
RETURN
END -
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mamm PROBLEM 5 DATA mexmw

101
102

101
102
103
104
105

3

FUNCTION TRUECHsY)

TRUE = ATANCY M) + I,

RETURN

END

FUNCTION F(XsYsdd

GO TQ €101,102> s J

F =0,

RETURN

IF(X.EQ..5 .6ND. Y.EQ.0.3> GO TO 1
= - (Y- KX + Y - .25

RETURN

END ;
FUNCTION CDEF (MY JD .
GO 7O ¢10151025103y1045105)5J
COEF = 1.

RETURN

COEF = 1.

RETURN

COEfF = 0.

RETURN

COEF = 0.

RETURN

COEF = 0,

RETURN

END

FUNCTION BCOESF (XvY» Jd

GD TO <15253> »J

IF¢(X.EQ..S5 .AND. Y.ER.0.> GOTO 11
BCOEF = 0.

RETURN

BCOEF = -1.

RETURN

IF¢X,EQ..5 .AND. Y.EQR.0.> 6O 7O 22
BCOEF = Y7.5 - 1.

RETURN

IF¢ X.EQ. .5 .AND. Y.EQ.0.2 GO 7O 33
BCOEF = %-.5 ~t.

RETURN

BCOEF = 0.

RETURN

END
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wamss PROBLEM 6 DATA Wlswx

iol
1o2
103
104
105

101

1oz

101
ioe

103

I

FUNCTION COEFC(RsYsJd
GO TO <1015102:,103r104510523J
COEF: = 1.
RETURN
COEFR = 1,+YRYy
RETURN
COEF = -1,
RETURN
COEF = —(1.+Y®Y)
RETURN .
CBEF = O.
RETURN
END
FUNCTION F¢Xs's JD
GO TO <101s108> » J
F = (-4, 8K%eaxs] 5, %14, #X+2, DNALBGCL, +'vNyYI—
2 E(CRER KW K YN YRR LY 1 D /(L. YYD
RETURN '
IF(X.EG. 0. .OR. Y.EG.0.Y GO TO 1
F = (ALOGC2. y-1, ) ¥(Kak-_W)yxnp
RETURN
F = 2.#EXPCRHYD
RETURHN
END
FURCTION TRUEC(KsY) :
TRUE = ERPLX+YI+(CKMKL-_%>™M2>2¥a DGC 1. +Y®YD
RETURN
END
FUNCTIDON BCOEF (X Y>J>
GD TO ¢10151302,103):.)
BCOEF = 1.
RETURN
IF(X.EQ.D.Y> GO TO 1
IFCX.ER.1.> GD TO 2
BCOEF = 0.
RETUSN '
BCOEF = 1.
RETURN
BCOEF = -1.
RETURN
IFCY.EQ.0.Y GO TO 11
IFCY.EQ.1.> GO TO 12
BCOEF = oO.
RETURN
BCDEF = 1.
RF.TURN
BCDEF = -1.
RETURN
END:
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Wiks# PRUBLEM 7 DATA Wwaxmw

101
102
103
104
105

10f
102

101
102
103

FUNCTION COEF(CXy Yy
GO TO <1015102 1035104510553

COEF = 1.

RETURN

COEF = 1.

RETURN

COEF = 0.

RETURN

COEF = 0.

RETURN

COEF = 0.

RETURN

END

FUNCTION FCXyYyJ)

GO 7O ¢101,108> » J

F = 6. BREYREXP CKONERP (YIRCXMY4X+Y~3, )
RETURH -
F = 0.

RETURN

END

FUNCTION TRUECXsY)

TRUE = 3.8EXP(XISEXP(YIN(K-1. ¥ M (Y1 Huy

RETURN

END

FUNCTION BCOEF<X,Y»>Jd
GO TD <101,102,103>,J
BCOEF = 1.

RETURN

BCOEF = 0.

RETURN

BCDEF = 0.

RETURN

END
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XN PROBLEM & DATAR woekaam
FUNCTIDN COEFCX:YsJ?
GO TO (1015102,19035104» 105>y}
101 CDEF = 1.
RETURN
102 CDEF = {.
RETURN
103 COEF = 0.
RETURN
104 COEF = 0.
RETURN
t 05 COEF = D.
RETURH
END
FUNCTION FCXy Yy JD
GO 70 <101s5102> » J
101 KR = SERTL{X)
¥R = SERTLYD
F = 3,75 % (¥R M YR W (X¥8 + Y¥Y) - XR ¥ Y - X W YR)
RETURN
102 F = 0.
RETURN

END
FUNCTIDN TRUECK»,Y>
¥R = SQRT(K>
YR = SORT(Y)
TRUE = XRWXEXWYREYRY — XNYRNYRY _NREUEXRY 4 Xky
RETURN
END
FUNCTION BCDEF(XsYsJD
6D TO <101»10251030s.J
101 BCOEF = 1.
RETURN
102 BCOEF = 0.
RETURN
103 BCOEF = 8.
RETURN
END
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wauxw PROBLEM 9 DATA Mexm
FUMCTION TRUECX,Y)
PI = 3.14159265353979
TRUE = 4.%X(R&X-X)*(COS(2,%PINY)-1.)
RETURN
END
FUNCTION FC(XsYrJ2
GO 7O <10t>102%, 0
101 PI = 3.14159265358979
F = ¢332, + (256,+16. APTNPIYE(X-XMK) )M
s COSC2, RPIMY 2+256 . ¥(RK®EK-> 32,
RETURM
102 F = 0.
RETURN
END
FUNCTION CDEFCX>Ys J2
GO TO <101,102+103»104510555J
101 COEF = 4.

102 COEF = 1.
103 COEF = 0,

104 COEF = 0.
RETURN
105 COEF = -84,
RETURN
END
FUNCTION BCOEF<X:Y>Jd
GO 7O ¢101,102,103)sJ
101 BCOEF = 1.
RETURN
102 BCOEF = 0.
RETURN
103 BCODEF = 0,
RETURN
END



wnemd PROBLEM 10 DATA Mwesn

101

FUNCTION TRUEC(XsY>
PI1=3,1415926535895793
FOURP=4, *P]
FPX=FOURP*X
FP'f=FOURP#*Y
CK=COSCFPX)
CY=COSCFPY>

F1=-CX+5.4

Fe=-Cv+5.4

F3= (X-.5)%(X-.30+(Y-.5)8(Y-.5)
F32=16.¥F3I%F3
F24=F32#%F22
Z2=1./¢C1.+F34)

F4=2-.5

SPX=SIN(F1¥%)
GOFY=Y®Y-Y

TRUE=F 1#¥SPX¥G0F Y*F 2%F 4
RETURN

END

FUNCTTION F<Xs e JD

GO TO <101519020,J
PI1=3.141592653539793
FDURP=4. %P1
FPX=FOURP*X

FPY=F DURP%Y
SKTPSQ=FOURP¥FOURP
SK=SIN(FPX)
SY=SINCFPY>
CX=COSCFEX>
CY=COSCFPY?>

Fi=-CX+5.4

fe=-cvY+5.4

DXF 1=F QURPASX
DYF2=FOURPMSY
DDXF1=SXTPSQNCX
DDYF2=SXTPSA*CY

F3= (K=.5)%{}¥-.5>+ (Y-, 5>M(Y-,5)
F32=16.#F3%F3

F33= F324%4.%F3
F34=F32%F 32
Z=1.7C1.4F34>

F4=2~.S

DXF3= 2.M(X-,5)

DYF3= g.%(¥-.5)
DDF3=2.

22=2%2

H=F32%22

H22=F3EmZ2

H6=W32AF 33m2Z
DF4=-16.*N32

DXF4=DF 4%DXF 3

DYF 4=DF 4®DYF3
A1=-192. %W
AZ=-16.%U32¥DDF 3
A3=512.%U6
DXF38S=DxXF3%DXF3
DYF3S=D¥F3%DYF3
DDXF4=XA1+A3)%DXF IS+A2
DDYF 4=CA1+A3YXDYF 3S+A2
SPE=SINCFPI¥X)
PICPX=FI¥COSCPI*X)

GOF Y=YyMY-¥
DGOFY=p.%Y-1,
UXX=DDXF 1 SPX*GOF YWF 2aF 4
¥+ DXF 1 %P ICPXMGLF YXF 2XF 4
M+ DXF 1ESPXRGOF YWDXF 49F2
*+ DXF 1 MP [CPXIGOF YMF28E 4
N _F1XPIMPIRSPXAGOFYNF 2NF4
3P IMPICPXEGOF YHF2WDXF4
M+DXF 1 MSPXuGOF YRF2WDXF 4
M+F 1 %P I CPXMGUF Y 2mDXF 4
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102

101
102
103
104
105

R+F | MSPRMGOF YHF 2RDDXF 4
UYY=F 1aSPXeDGOF YNDYF 2% ¢
R4 1 XSPRE2, WP 2XF 4
BiF 1 XSPXEDGOF YXF22DY'F 4
MAF I RSPXEDCGOF Y¥XDYF2¥F 4
B 1 ¥SPXRGOF v *DDYF2%F 4
W4F 1 XSPXRGOF YADYF2RDYF4
MAF FRSPR¥DGOF Y¥F22DYF 4
¥iF ¥ SPHMGOF Y*%DYF 2%DYF4
WiF 1 SPXUXGOF Y*F 2%DDYF 4
g=100.;CDS(Q.iPIlX)+SIN(3.*PI*Y)
U=TRUE{(X>Y>
F=UXA+UYY+AEU
RETURN

FUNCTION CDEF<XsY¥,J>
GD TO <10151025103,1045105)sJ
COEF=1.

RETURN

COEF=1.,

RETURN

COEF=0.

RETURN

COEF=0.

RETURN
PI1=3.141592653585793

CDEF=100.+COSC2. XPIMK>+SINC3. ¥PINY)

COEF = ~COEF
RETURN

END

FUNCTIDON BCREF(X»Ys.JD
GO TO (12030 J
BCOEF=1.

RETURN

BCOEF=0.

RETURN

BCOEF=0.

RETURN

END
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Ewwmk PROBLEM 11 DATA Wwes

101
102
103
104
105

101
102

101
102
103

FUNCTION COEFKXs¥sJ> !
GO 7O <1015102,103,1045105)sJ
COEF = 1.

RETURN

COEF = 1.

RETURN

COEF = 0.

RETURN

COEF = 0.

RETURN

COEF = -109.

RETURN

END

FUNCTION F<¥%s 'Y JD

GO TO <101s102> » J

F = Q.

RETURN

F = TRUE(X» Y

RETURN

END

FUNCTION TRUECX»Y)
TRUE = (COSH(10,%x>+COSHC(10, %Y>>,COSH(10.)
RETURN

END

FUNCTION COSHC(X)

COSH = (EXP(XY+EXP{-X)>/2.
RETURN

END

FUNCTION BCOEFKX),YsJ>
GO TO <(101,102,1083>5J
BCOEF = 1.

RETURN

BCDEF = 0.

RETURN

BCDEF = 0.

RETURN

END
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wxanw PROBLEM 12 DATA wwwww
FUNCTION COEF<{XsYy >
GO TO <1013 1025 10310451655
101 COEF = 1,
RETURN
102 COEF = 1.
RETURN
103 COEF = 0.
RETURN
104  COEF = 0. \
RETLRN
105 COEF = -100,
RETURN
END
FUNCTION F<XXsYsJD
GO 70 C101,102> » J
101 F = Z00.¥COSHC(20.%®Y>-COSH(20. >
RETURN
102 F = TRUECXY)
RETURN

END
FUNCTION TRUECH»Y) -
TRUE = CDSH<10,*X>/COSHC10. >+COSHC20, ™Y)>/COSH(20.)
RETURN ‘
£ND
FUNCTILN COSHC(X)
COSH = CEXPCRI+EXPL-K>32,
RETURN
END
FUNCTION BCOEFC(Xs'YsJ)
GO TO (101,10251035»J
101 BCOEF = 1. .
RETURN
i02 BCOEF = 0.
RETURN
103  BCOEF = 0.
RETURN
END
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NENNE PROPLEM 13 DATA NmiEm
FUNCTION CDEFCXyYsJd
GH TH ¢101.102-10351045105)sJ
101 COEF = 1.
RETURN
102 COEF = 1.
RETURN
103 CDEF = 0.
RETURN
104 COEF = 0.

105 COEF = 0.

FUNETION F<XrYrJd
G0 7O <10ts102) » J
101 F = DEPKXKIWPCY)> + POOWDRPLYD
RETURN
102 F = TRUECXs Y2
RETURN
END
FUNCTION TRUE{Xs'Y2
TRUE = P(XI%PCYY
RETURN
END
FUNCTION BCOEF<XsYsJD
GO TO <1015102,1035».J
101 BCOEF = 1.
RETURN
102 BCOEF = 0.
RETURN
103 BCOEF = 9.
RETURN
END
ZUNCTIDN PLXY

B Db

E .15

¥t = .5 -E

¥ = .5+ E

IFCK LT, X1> GO TO ¢

IFCH .GT. %2> GO TAQ 2

DPHI = B - A

DX = X& - %i -

P = A + DPHIX(KX-K]>MNZ/ (DWNI) -3, KDPHIM(H K1 ) MEIM X-HD)
$ sDXuN4 3 &, MDPHIM(X~X1>Mme3u(X-X2 ) ue2 DKIKS

gETURN

e = .0 + E
IFCX (LT. X1> GO 7D 1
IF(X .GT. ®2> 60 TD 1

DPHI = B - A
DX = K2 = X1
C3 = OPHI/DX¥W3

Cq4 = -3.MDPHI/DKMAL
= 6.®DPHI/DXMXS
D2P = 6.WCIECK=-H1I+6.WCHE(X-X1IM(K-K2)+

s 6. WM KX 1) MN2+6 WCTR(K—X]1 2M(K-K2) MN24
s 12 %COX(X-X1 IMM2M (K -X2 >
s _+ 2. ¥COX(X-X1)>%u3
RETURN
t epP = 0.
RETURN
63
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wwys® PROBLEM 14 DATA lexmme

10!

w ®w U B e

io2

N & 0 N -

FUNCTION TRUECTsS)
E = .0625

X o= 4,47
Y = 4,43
Tl = 7, MYR((R-2, YEM2+YHY-1.D
TE = EXP(-ER(Y-2, )RKM(X=4,))
T3 = ((X-2.2%MR+3, YHCYRY+3, )
TRUE = TiXT2/T3
RETURM
END
FUNCTION F(T»Ss. B>
£ = .D6ES
GO TOC101»1025»J
X = 4,™T
Y = 4,43
F1=7, %Y

FR=(X-2. )uu2+YHy-1,
F3=EXP{~EM(Y-2, YWXM{N—-4,))
Fa=1,/{(X-2, )¥W¥2+3, )
FS=1./7CYMY+3, )

DXFi=0,

DXF2=2 ., ™(X-2, >
DRF3=(Y~2. YR(K-4, YMFI3+(Y-2, )NXNFZ
DXF3 = -E£%¥ DARAF3

DXF4=u2 M(X-2. )7 ( (XK=, INND$3, > MMD
DXF5=0.

DX2F1=0.

Dx2F2=2.

DR2F3=(Y-2, Y¥F3+(Y-2. )B(X-94, Y¥DXF3+(Y-—2. )MF 3+ (Y=L, YXMDKF 3

DX2F3 = -EW DX2F3

DXEF4=6. M{ (X2, YUMD—~1, )/ ((X-2, YNNS4+, YWE3

DX2F5=0.

DYF1 = 7,

DYF2=2. %Y

DYF3=-EAXM(X-4, YNF3

DYF4=9. <

DYFS=~2. %Y/ (YAY+3, N2

DY2F1=0.

pYeFe=z2.

DY2F I=ENENRNLR(Kag, duRnFy

DY2F4=0.

DY2FS5=6, (YY1, D/ CYNY+3, DEN3.

T1=F 1 WDXOF 2XF INF 4MF S+F | NDXF2MDXF INF4NF S+
F 1% DXF 2MDXFINF 4WES+F 1 RF 2MDKR2F SMF 4F S+
F { MDXF2WF S¥DXF QNES+F | W 2MDXF 3€DXF 4»F 5
+F 1 £DXF 2#F SMDRF 4 8F S+F 1 AF2WDXF 3KDXF 48F S+
F 1 %F 2% 3XDXEF49FS

T2=DYF 1 %DYF 2¥F 3%F 4¥F5+DYF 1 ¥F 2MDYF 3%F 4#F 5+
DYF 1 XF 2WF 3XDYF 44FS+DYF 1 MF2%F 3%F 4%DYFS

T3=DYF 1 #DYYF2¥F 3%F 4&F 5+F 1 ¥DY2F 2NF 3XF 4WF S+
F 1ADYF2MDYF 3MF 4XF S+F 1 ¥DYF 2%F 3%F 49DYFS

T4=DYF 1 SF2WDYF IWF 4XF S+F | ADYF 2WDYF 3MF 4MF5+
F 1NF2®DY2F 3XF 44F 5+F | MF2MDYF3%F 49DYFS

TS=DYF 1 NF2NF 3MF 4%DYF S+F 1 XDYF 2%F 38F 4%DYF S+
F 1%F R DYF 38F 48DYF 5+F | MF2MF 3MF 4MDY2FS

F=(T1+TR2+T3+T4+TSOM{6.

RETURN

F=TRUECT;S?

RETURN

END

FUNCTION COEF(XsY>J)

GO TO <1,2031425),J

COEF=1.

RETURN

COEF={.

RETURN

COEF=0.

RETURN

COEF =0,

RETURN

COEF=0. 64



m s

w

RETURN

END

FUNCTION BCDEF<X»Y»J)
GO 70 <1+2»355J
BCOEF=1.

RETURN

BCDEF=0.

RETURN

ECOEF=0.

RETURN

END
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mes® PROBLEM 15 DATA #wamu

101
102
103
104
105

101

102

101
102
103

FUNCTION COEF (X» Y2 JD

GO TO <101,1025103,1045105>yJ

COEF = 1.

RETURN

CDEF = 1.

RETURN

CDEF = 0.

RETURN

COEF = 0.

RETURN

COEF = 0.

RETURN

END

FUNCTION F(XsYy >

P=.1

GO TO ¢101:102> » J

TEMP = —((¥~.SONN2+(Y—. 5)NM2) /PHND

Fi = EXPCTEMP

IKU = -2, M(X—. 5I%TRUE (K Y /PHNZ +
S Fim(a.m¢-1. %Y1, YWy P

DRXey = --2.%(TRUECX) Y2 +(R8-. SOXDXU) -PHN2
$-2. ¥ (K- SORF L1 R(2, XK1, I¥(Y-1, )WY /PENZ +
S 2. ¥F1MCY-1, 0%V AP :

DYU = —P.#% (Y-, DOXTRUE(K Yy /PaNZ +
$ F1%(2. %Y1, OM(K-1. 08 /P

DYaU = -2.%(TRUE(Hs ¥I+<Y~. SYNDYU)PH%2
$-2. % (Y-, SOMFINC2 WY1, F(K-]1, INL/PHET +
S B.¥F1¥(X-1.5%X/P

F = (DXzu+DY2U)

RETUEN

RETURN

END

FUNCT{UN TRUE (X ¥

F = . '

TENMP = —({¥-.5S)e2+(Y-_5)Ng) Plkg

TRUE = EXPCTEMPI#C(RK-1, Y¥XACY-1, )¥YAP

RETURN

END

FUNCTION BCOEF<%'Ys . 1>

GO TO 101510251032, J

BCOEF = 1.

RETURN

BCOEF = 0.

RETURN

BCOEF = 0.

RETURN

END
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W PROBLEM 16 DATA WlXmx

101
102
103
104
105

101
io2

101
1§ir4
102

FUNCTION COEF(KsY>»JD
GO TO <101,1025103+104,1055+J
COEF = 1.

RETUEN

COEF = 1.

RETURN

COEF = 0.

RETURN

COEF = 0,

RETURN

COEF = 0.

RETURN

END

FUNCTIDON FC(XsYsJd
GO TOC10151020sJ

F = 2.9TRUECK ¥
RETURN

F = TRUECX:Y)
RETURN

END

FUNCTION TRUECXs YD
TRUE = EXP{X+Y)
RETURN

END

FUNCTION BCOEF (KsYrJ)
GO 70 <101510251037+3
PCOEF = 1.

RETURN

BCOEF = 0.

RETURN

BCOEF = 0.

RETURN

£ND
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FUNCTIAM FOOL YD)

£ COMPUTES EITHER THE TRUE SDLUTION OF PROBLEM {7 OR
THE LAPLRCIAN UxX + UYY .
LOBICAL NDIERY
IF J .=, i« THEN EVALURTE THE LAPLACIAR
ELSE EYRLUATE THE TRUE SOLUTION

NODERY = .TRUZ.
Ir¢ 2 JE& 1 > HODERY = .FALSE.

CALL EVLATECX, ¥ NODERVY,
A G QR G BXEy @YY IFLAG D

F = 17?720000600000000000k
IF{ MODERY > F = G
Ifr¢ .NDT7. NODERY .AND, IFLAG .ER. 0 > F = @XX + QYY

RZTURN
END
SUZRIUTINE EVLATECKXs Yy HODIN»
A G VK BYY QWK GYYYs IFLAGY

INFUT XX Y NODINy ONLYHM. BUGSLL » BUGGYAL
LOCAL ¥RRIARLES XK>Y,NODERV FDOR XXaYYsNODIN
CUTPUT @4 W OV VKK GvYYs IFLAG

IFLAG SET 7O 0 IF SUCCESSFUL, SET TO 1 IF NOT
WHEN URSUCCESSFULs &Y SET TO ZERO AND QVXs BYYy QYXE QVYY
ARE SET 7D TMDEFINITE, THIS OCCURS AT REENTRANT BOUNDARY
COENERS

EVALURTES Gy AWMy OVYs QVRAr RYYY

Qv = SIZE®RVAL
SIZE 15 CONSTANT SET IR DATH
VAL = GYAL{Gs Gr 0D /GYALLASESCD
A BEsCy QRE CONSTARNT SET IN DATA
SWe = BYALTERVAL (I YSL IS REFYAL (7D
BYAL = (X - 1)%(Y - 1) + AXCIR2
CiPe = Re¥Z + Yweg - REOSGR
RHOSGR 13 CONSTANT SET IN DATR
FYALCI? = RDVALKIJ#THVAL(ID
RIVALCIY = £ ( K — RFTCID dweg + (Y ~ YPTCID) HmMz
+ BMCIRZ >*«(1r32
¥PTC(ISyRPTCIY IS I-TH REENTRANT CORNER POINT
THYAL = SNVAL + CECIRE
SNVALLIY = SINC 2¥ANVALCLZ3 D
EMVALCTY = ARCTAMC CY=YBT(I2)/7(H~-XPT(I>» 3 - Pls2

Y-AKIS

1

1 X

i I

1 I

i cJ —

I i

1 I

: I

I S I-———

1 INTERIOR 1

1 1

: 1

i 7 Iewm-1

Y i

I T

1 :

S — 1o X-ARIS
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COMMON ~SUBCDOM/ :
P, PILe, PID4, THOPI» THRID2)

A

B TWUTH- T TWTHSES INETHR FRTHs NODERY»

B (3] YTy XDSERy YDSQRe RDIQR>

b X s Y s KSGR v YSGR » ANGLE ’
D SICE s A s B y C 1

T =40 » RHEOSGR y RPYC2) » YPT(3) s JUNKC(20) ’
E ANvAL s ANVALX y RANYALY > ANVALXX » ANVALYY ’
o BYAL(EY s BVALX(EY> » BYALY<Z2) » BVALXX(2) » BVALYY(2) »
H CIR » CIRX y CIRY » CIRXX » CIRYY r
S CIRZ s CIrex y RIR2Y sy CIRERX s CIR2YY ’
J ET{E s CTrC(E> s CTY<(2) s CTRX<(2> y CTYY(C22 [}

K FYRL{2, 30 FYALR(EY»3)> FVALY(253): FYALXX(23s3)s FVYALYY(2:3)»
L GYAL{2) 5 G¥PLRCZY o SVYALY(2Y » GYALXX(2Y) 3 GVALYY(2Y
M RDVALCEY s RIVRLKGE) 3 RDVALYC2Y » RDVALXXCZY » RIVALYYL(2)
N OSKWYAL - > DSNVYAL + DDSHYAL )

F TEYALCEY » THYALK(EY » THVALYCE) 3 THYALXXC2) s THVALYYC2)

DIMENSION CTRLLCE»S>y CR2ZALL (5D
EGUIVALENCE (CTALLC1s1), CTC1)Ds (CR2ALLC1D>» CIRRY

AaTa CTALL ~ 10%0.0 -~
LOEICoL NODERY, NODIN: ONLYHM»> BUGALL» BUGGYL

REAL INDEF
IATS INDEF - t(77700000000000000008 ~

DATA PIHPIDZyPID4s; THOPI>THPID2s THTHs TWTHS@ ONETHR:FRTH ~

®  3.14153265352979) 1.57075632679490» « 785398163397435>
B £.28218530717%59; 4,2123638980384608, + 66BEEH6E6E66E7
o . 34344354444444, . 33333333333533» 1.33333333333333 ~

DaThe SIZ2Zx A EBr C» RHOy RHOSER ~ 100.3 =.53 .{s 7.5 .85 .64 ~

DRTA XPT » .65 5 .85 5 .95 ~
IRvA YPY 7 .7 5 .Sy .3 7

MAKE  KK:«YVeNODPIN LOCAL IS ~SUBCOM-

P zX

N

¥ =YY
NBDERY = NODINM
KSR = KK
YSKR = Y#y

CALL CIRCLE
CALL BYALS

gz =1y 3
XD = K « KPTCID
gy =% — YPTCID
HDSOR = RD®EXD
YUSUR = YD*YD
KDSPR = XDSQR -+ YDSGR
IF¢ RODEGR .GT. L.E-8 ) GO0 10 190
THEW TOO CLOSE TQ@ I-TH BOUNDARY CORMNER
IFLAG = 1
av = 4.
GV¥ = INDEF
QvY = INDEF
PVRE = INDEF
2 = INDEF
EXIT i
GO TO 3¢
0 CONTINUE

ELSE CAN EYALUATE
CALL &NVALS
CALL SRYALS
CALL RDVALS
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CALL THVALS ﬁ
J=1 . .
CALL FYALSCFVAL (15> FYRLKCT s 03 s FYALYCTrdYy

A FYALXRC(1: DI FYALYY (L D) f

2o

3o

10

iF¢ BUGALL > CALL DEBUGC1)>
CONTIMUE

CelL GVRLY :
Cell QYALS (Vs BVXs BYY 2 RYRK QYYD

av = SI1ZE*QY
IFLAG = O
CONTINUE

SIJBRBUTINE CIRCLE
FORM CIR = k¥&c + Yasp _ RHOSER
CIRE = CIR**%2
RMD DERIVATIVES
COMMON ~3LIECDM, ##%2% REFEAT VARIABLES HERE =

DIMEHSIOM CTRLL(Z2:S>s CR2ALL(S)
ERQUIVALERCE (CTRL-C1:1>s CTC1))s (CR2ALLC1)>s CIR2)

LOGICAL NDDERY

CIK = 4SGR + YSOR - RHOSGR
CIRZ = CIR®%2 o
IFC NODERY )
CIRX = 2,%X
CIRY = 2.%Y
CIERR = 2.
CIRYY = 2.
CIREX = 2.%CIR*CIRX
CIREY = 2.%CIR®CIRY
CIREXM = 4,%(3.#XSOR +  YSGR ~ RHOSGR )
CIREYY = 4,%¢ XSGR + 3.%YSRR ~ RHOSOR >
CONTINUE

SUBRDUTINE BYALS

FOCRM  BYAL = (X-1 + AWCIR2)YM(Y-1 + ANCIR2)
AND DERIVATIVES

COMMON ~SUECOR~ W% REFEAT VARTABLES HERE *Me

DIMENZION CTALLCE2S)s CRERLL(S)
ERLHYRLENCE (CTRLLCIs10s CTCIX>> (CREALLC1Ds CIR2D

LOGICAL NOLDERY

Ea{u b =X -1
Yl =Y - 1.
ACIRE = Q¥CIRE
WFRCT = WMl + ACIR2
YFalT = YM + ACIRE
BVALCLY = XMINYHI
BVYALCEY = KFACT®EYFACT
IF¢ MNOZERY 2
BVALXCTY = ¥YML
EVALY(1> = KMl
BVALXK(1> = 0,
EVALYYCL) = .
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RETURN
END

GO TJ 10

RETURN
END

GO TO 10



10

19

KFACTX = f. + A%CIREX
YFALTY = 1. + PAECIRRY
¥FRITY = R¥CIRSY
YFACTX = A¥CIR2K
BFASTZY = APCIREKX
YFACTYY = A®CIREYY
XFAITYY = YFACTYY
YFACTXK = RFACTXX
EVALX(Z) = RKFACTXEYFALT + XFACT*YrARCTX
BYPLYIE) = XFACTYAYERCT:+ XFACTEYFACTY
e XH(2) = XFACTXXAYFECT + 2. #XFACTXMYFACTX + XFACTMYFACTXX
EVELYYLED = XFACTYYSYFACT + 2.%XFPCTY®YFACTY + XFACT=EYFACTYY
CONTINLE !
' RETURN
END
SUERDUTINE ANVALS
FGEM plYPL = ARCTENC YD/XD » — PIv2 AND DERIVATIVES
DCARLTANCL /Y)Y 2/7DU = Y/ (YEY + U¥D
ANSLE  MEASURED COUMTER-CLBCKWISE FROM - XD-AXIS
ANVAL MERSUREDS COUNTER-CLOCKUISE FROM YD=-AXIS
EFANCH SLINT AT XD = ¥D = (.
ERANCR AT ALGNG  ANGLE = FIZ4. AMYAL = -Pl~s4
I I ANVAL = 0
1 Y-A%IS I YD-AKIS
1 I ANGLE = PIrs2
3 I
M I
] I
S I ANGLE = 0
T [————————— ¥XD-AXIS
1 ANGLE = ZPI
I ANVAL = 3PI’/2
b
i
i . (Ka'YD
1 (XDs¥YD>
T
I
I
I
I
1 .
1 _— X-ARIS
COMMON 7SUBRCOM- N&#l REPERT VARIABLES HERE Mk
DIMERSION CTALLLE2»S>s CTREALL(S)
EQUIVARLENCE (CTALLCLs1)s CTC1)>y (CR2ALLC1Ys CIR2Y
LOGICAL NOGDERV
IF< NQDERY > GO 74 10
COrFAUTE DERIVATIVES
ANVALY = YL /RISGR
ANYALY = RKD/7RISOR
ANYALRR= -2, %3 [¥AINYALX/RDSER
ANVALYYY= —E, ®YD¥ANYALY 7RDSGR
CONT INUE
TF¢ ABSC ¥D ) .GT. ABSC XD D ) . GO 70 20
THEN PNGLE BETWEEN U AND PI-4 OR 3PIsz4 AND SPI/4

OR PPIs4 AND 2PI

ANGLE = ATANS ¥YD-xN )
IF¢ XD .LT. 6. > ANGLE = PI + ANGLE
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20

30

1o

IF¢ ANGLE .LT. 0. > ANGLE = TWOPI + ANGLE

CONTINUE

ELSE ANGLE BETWEEN PI~4 AND 3PIv4 OR SPI/4 AND 7PI/4
RMGLE = PID2 - ATANC XDs/YD >
IF ¢ ¥D .LT. 0. > ANGLE = PI + ANGLE

CONTINUE

SUETRACT PI/2 Ta MAKE ANVAL BETMEEN © AND ‘3PI-2
ANYAL = ANGLE - PID2 ‘ ' ’ ’ -

GO TO 30

AUSUST FDR BRANCH CUT

IFC AMVAL .LT. -PID4 > ANVAL = THOPI + ANVAL
RETURN
END
SUSROUTINE SNvALS 3

FODRM SHVAL = STNC 2#ANVAL/3 )>s DSNVAL, DPSHVRL
COMMON ~SUBCOM- %™ REFEAT VARTABLES HERE MW

DIMENSION CTALLC2>5>s CREALLKLS) ’
EQUIVALENCE <CTALL<{1,1>s CTC1>2>s (CR2ALLCI1D>» CIRE)

LOGICAL NUDERY

ARG = TUTH*ANYAL
SNvYAL = SINC ARG ?
I€¢ NDODERY ) GO 7O 10
CDMPUTE DERIVATIVES
DShval. = THTH*COS(ARG>
DDSNYAL = -THTHSQASNVAL -
CONTENUE .
RETURN
END
SUBRDUTINE THYALS

FORM  THYAL = SNWAL + CECIR2 ANDI DERIVATIVES
C = 9. FOR NUMERATOR
COMMCN ~SUBCOM-, ¢ REFEAT VARIABLES HERE ™

DIMENSION CTALLC2»S)>s CREBALLKS)
EJIvRLENCE (CTRLLC1s12s C7(13)s (CR2ALLK1>; CIR2)

LOGICRL NGDERV

THVYARL 1) SNvAL
THYAL 2D THYALCE> + C¥CIRE
IF< NODERY 3 GD 1D 10
THUOLR (1 DShVAL*ANYARLK
TRy LY 12 RSNVAL*ANVARLY
TR AR R LS DDSHYARLECANVALX¥MD) + DSNVALMANVALXX
TEMELYY (13 DDSNVAL¥ (ANVAL Y*N2) + DSNVALMANVALYY

nn

THYALK 1) '+ CMCIRZX
THYALY (1) + C#CIR2Y
THYALRK (1) -+ CHRCIREKXK
TaVALYY(L) + THCIRYY

THvalLY (2
Twaly (2)
THULLBE )
THYE e’
CONY LHLE

RETURN
END
SUBRLITIND RDVALS .

FURM RIVAL = ¢RDSAR + BSCIRZ)*4(1-3) AND DERIVATIVES
Z = 0. FOR NUMERATOR

ComMmaN ~SURCDM- #e#® REFEAT YARIABLES HERE WA
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DIMENSION CTALLL2s5)y CR2ALLCS)Y
ESUIVALENCE (CTALLC1:1>> CTC1))s (CR2ALLC1)y CIR2)

LDGICAL NI2DERY
SET CIRCLE-TEMP FUR DENOMINATOR (NUMERATOR SET TO ZERO IN DATA)

DO 1) IDERV = 1y $
CTALL<2s IDERV) = B*CREHLL(IDERV)

10 CONT INUE

EVALUATE FOR NUMERATOR AND DENOMINATOR C(NUM = 1, DEN = 2)
IO 30 NMIN = 1, &

REYALMXCNMIM > T2¥XDERV*XDERY + T1®<2. + CTAXCNMUND)>

RYALUE = RDSAR + CTC<NMDMD
RUVALCNMDNY = RVALUE*®ONETHR
I ¢ NUDERY O GD 70 20
COMPUTE DERIYATIVES
LR = ONETHR%RDVAL CNMDN>/RYALUE
Te = -TUTH&T1/RYALUE
®IERY = 2.%XD + CTX(NMDND>
YDERY = 2.%(D + CTY(NMDND
RDVPLX (NMDN> = T4¥XDERY
RDVALY (NMDH> = Ti*YDERV
ROVELYYIAMONY =  T2*YDERVMYDERY + TIXC(2. + CTYYCNMDNI)
=4\ CUMT [MUE
20 CONTIRUE
RETURN
END

SUBRALTINE FVYALSCFYs FUXA VY FYXXs FYYY)
FDRMS £V = ¢ REQ##(1-3D I¥SINC 2%ANVARL/S )
COMMON ~SUBCOM- ##4 REPEAT VARIABLES HERE wwWe

DIMEASION CTALL(2sS)s CREALL(D)
COUIYALENCE <CTALLC(1s1d>s CTC12)y (CR2ALLCLD» CIR2D

LOSICAL NODERV
DIMENSION FYCEY s FYX(RY»FVY(RY s FYRN(R) s FYYY(R)
FOR NUMERATOR (1> AND DENOMINATOR <23

C 2y N=1, 2
FVY<(ND = RDEVAL(N>*THVALCND
TF< NODERVY ) : GO 710 18
ZOAPUTE DERIVATIVES
FY¥X(N) = RDVALXCND®ETHVALCN) + RDVALCNIATHVALXC(ND
YIRS = RDYALYC(N>®THVARL (N> + RDVALCND®XTHVALY(ND
FURK(NY = RDVALKXCNI®THYALCNY + 2. ¥RDVYALXCNI®THVALXCND

A +RDYARL (O XETHYAL XX CND
TYYY (N> = RDYALYYCNI¥THVALCN) + 2.¥RDVALY(NI®THYALYIN) ~
] +RDYAL CND % THYALYYCN)
CONTINUE

LONY INUE
i RETURN
END
SUERCUTINE GVALS

FORM  GYAL = BVAL®FIWNFS®F? AND DERIVATIVES
COMMON ~SUBCOM, %% REPEAT VARIABLES HERE w#»

DIiMENSTON CTALLC2sS52» CR2ALLLS)

EDLIVARLENCE (CTALLCI»1>s CTC1))>s (CR2ALLC1)Y» CIR2)
LOGICAL NODERY

DIMENSIAN F357<2)s FISPKCE) s FISTRR(2I o FISPY (209 F357YY (20
R FSP(2>s FSPRL2)s FSPRX(2Ds FS7Y(2)s FI7YY(2)
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COMPUTE NUMERATORS (1> AND, DENOMINATORS 2>

Do 20 N = 1y 2

1
FSP(NY = FSCKMNIMFPCND

F257<ND

E3CNORFSZCND

GvAL (MY = BVALC(NIMF3IS7CND

1F¢ NODERY )

* GO T4 10

COMPUTE DERIYATIVES

FSZRINY = FSY(NYRFZCHD + FSCNIMFZXCND
FSZYCHY = FSYCD#FZCND + FSCNIRFPYIND
F3S7TR(NY = F3XCNIMFS7CND + F3CNIRFS7RCND
F3577<H) = F3YCNIMFSZCND + FICNY¥SPYCND
GVALKXCNY = BYALXCHINF3S7Z(NY + BVAL (NIMF3I5PXCND
GVALYCN) = BVALYCHIAF3S7CN) + BVALCNIWFIS7YCN)
FSPRYCNY = FSKXCHIRF?(ND + e.-r5x<n>~F?X(N)
A _+FSCNNFZRMCD
FIPYYCHY = FSYYCRORFP(RD + 2.%FSYCNIME7YCND
a TSN AFTYYCND
FE5PHXCNY = FIXXCRFS7CNY + 2. MFIX(NIMFSPRND
+FSCNIPFSPRRCN)
F3S7YYCND = FRYYCNIRFSZCNY + 2, MFSYCNYMF5YCND
CAFA(ND*FSPYYCND
GYALKXCNY = BVALXXC(NI#F357¢NY + 2. MBYALXCNI®FISPXCND
A ABVALCNIXF357KX (8D
GVALYYCND = BYALYYCNIMFISZCN) + 2XBYALYCHIMFISTYN)
A +BYALCNIRFISPYYCH D
10 CONTINUE
20 CONTINUE
RETURN
END
SUBROUTINE QVALSCQYs QYXs QVYs QYXXs QVYY>
FORM @Y = SIZEMGVALCE)-GYALLR)
AND DERIVATIVES .
COMMON ~SUBCOM/ *#% REPEAT WARIABLES HERE wmm
DIMENSIGN CTALLCE>5), CREALLCSY
EQUIYALENCE CCTALLC1s1)y CTC1>ds (CREALLC13y CIRZ)
LOGICAL NOLERY T
OV = GVALCEY/GYALC)
IF¢ NDDERY > GO Ta 10

10

COMPUTE DERIVATIVES.

FACT = 1./GVALL2>

FACTSA = FACT*FACT

FACT® = -GYRLK(2)¥FACTSAR

FACTY = —-GVALY(2>)¥FACTSA

FACTR = (2.M(GYALX(R)MRIMFACT — GYALXKC(2Y)¥FACTSA

FARCTYY = (2.%(GYALYC(RIW2)¥FACT - GYALYY(2) XMFACTSR

AY'x = GYALXC1)¥FACT + GVYALC1D™FACTX

Y = GVALYCIDMFACT + GYALCIIMFACTY

QURK = GYRLXXC1DI®FACT + 2.MGYALXCLI¥FACTX + GVYALC1)YMFRCTXX

QUYY = GYALYYCLD*FACT + 2.MGYALYCLINFACTY + GVALCLDMFACTYY
RE?UETINUE

URN
END 7’
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