
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1976

Evaluation of Numerical Methods for Elliptic Partial Differential Evaluation of Numerical Methods for Elliptic Partial Differential

Equations Equations

Elias N. Houstis
Purdue University, enh@cs.purdue.edu

Robert E. Lynch
Purdue University, rel@cs.purdue.edu

T. S. Papatheodorou

J. R. Rice
Purdue University, jrr@cs.purdue.edu

Report Number:
76-204

Houstis, Elias N.; Lynch, Robert E.; Papatheodorou, T. S.; and Rice, J. R., "Evaluation of Numerical Methods
for Elliptic Partial Differential Equations" (1976). Department of Computer Science Technical Reports.
Paper 145.
https://docs.lib.purdue.edu/cstech/145

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

EVALUATION OF NUMERICAL METHODS FOR ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS

E.N. Houstis, R.E. Lynch, T.S. Papatheodorou and J.R. Rice
Computer Science Department

Purdue University
West Lafayette, Indiana 47907

CSD TR 204
October, 1976

EVALUATION OF NUMERICAL METHODS FOR ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS

E.N. Houstis, R.E. Lynch, T.S. Papatheodorou and J.R, Rice
Computer Science Department

Purdue University

CSD TR 204
October, 1976

CONTENTS

I. Statement of the Problem and Procedures, Conclusions.
II. Comparison of Standard Finite Differences and Collocation with Hermite Cubics.

1. The Numerical Methods and Problem Set
2. Results of the Comparisons
3. Conclusions

III. Comparison of Collocation, Galerkin and Least Squares
1. The Methods
2. Results of the Comparisons
3. Conclusions

IV. Three Observations
1. Unequal Mesh Spacing for Collocation
2. Additional Accuracy at the Mesh Nodes for Collocation
3. Accuracy Depends on the Operators as well as the Solution

V. Comparison with Previous Work
References

17 Graphs of the Comparison Data for 17 Problems
Synopsis of the Numerical Methods
The Interpolation of Boundary Conditions for Collocation
The solution of Problem 17.

Appendix 1:
Appendix 2:
Appendix 3:
Appendix 4:

ABSTRACT

We systematically evaluate four methods for solving two-dimensional,
linear elliptic partial differential equations on general domains. The four
methods are: standard finite differences; collocation, Galerkin and least-
squares using Hermite cubic piecewise polynomials. Our test set of 17 problems
ranges from simple to moderately complex. The principal conclusion is that
collocation is the most efficient method for general use. Standard finite
differences is sometimes more efficient for very crude accuracy (where
efficiency is not important anyway) but it is also sometimes enormously less
efficient even for very modest accuracy. The accuracy of the Galerkin and
least-squares methods is sometimes better than collocation, but the extra
cost always negates this advantage for our problems.

EVALUATION OF NUMERICAL METHODS FOR
ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS

I. STATEMENT OF THE PROBLEM AND PROCEDURES, CONCLUSIONS.

Our approach to evaluating numerical methods for partial differential

equations has already been outlined in Houstis, et al [1975]. This approach

is a specific instance of the general framework presented by Rice [1976a].

Briefly this approach is to first choose a sample set of problems from the

domain of interest. The domain here is linear, second order elliptic

partial differential equations which are somewhat "general". That is, they

have various complications (variable coefficients, curved domains, reentrant

corners, etc.) that are typical in applications and which prevent the

straightforward use of specialized methods or theories. One next selects

some solution methods [four in this paper) and criteria of performance

(accuracy achieved, execution time and memory used) and finally one applies

the methods to the sample set of problems while measuring the performance

criteria.

The cost of solving partial differential equations forces a small

sample set (17 problems here) and thus the reliability of the evaluations is

not as high as we would like. Nevertheless, most of the phenomena observed

here are quite consistent over the problem set which suggests that the

probability of this being the result of chance is quite low.

One key to validity of an evaluation such as this is the precise definition

of the problems, methods and measures of performance. The sample problem set

is presented in the next section. The numerical methods are briefly discussed

in Sections II and III and a more detailed synopsis of them is given in

Appendix 2.

1

• . \

A common weakness of previous efforts of this type is the lack of

precision and information about the numerical methods. It is well known

that it is insufficient to simply state "Method X was used". Variations

in the implementation of Method X affect the performance measures by factors

of 2, 10 or 1000. We believe that we have implemented all the numerical

methods used in a way that gives close to maximum performance. We have

particularly striven to be "fair" to each method and have not used special

techniques (e.g. assembly language code) for one in order to enhance its

performance relative to the others.

We summarize our procedure and conclusions as follows:

Problem Class: Second order linear elliptic partial differential

equations of general nature i.e. some complication present in

coefficients, domain or solution.

Solution Requirements: Moderate accuracy (1 to 3 digits correct)

achievable "in core" (60,000 words or less of memory needed).

4 Numerical Methods: Standard Finite Differences; Collocation,

Galerkin and Least Squares using piecewise cubic polynomials

(Hermite cubics).

Criteria of performance (efficiency): Execution time for a given

accuracy. Accuracy is the maximum error divided by the size of

the solution and is usually measured in decimal digits.

Conclusions;

1. There is normally a "cross-over point" at low accuracy beyond which

Collocation is more efficient than Standard Finite Differences. Even

when finite differences is more efficient, it is by a small amount while

Collocation is sometimes dramatically more efficient than finite differences.

2

2. There is practically no difference at all between Galerkin and Least

Squares in performance. They tend to be slightly more accurate than

Collocation but are very much less efficient because of the increased

work to compute the coefficients in the matrix problem to be solved.

II. COMPARISON OF STANDARD FINITE DIFFERENCES AND COLLOCATION WITH HERMITE CUBICS.

II.1 The Numerical Methods and Problem Set. The first comparison made in

this paper is between the standard finite difference method (5-point star)

and collocation with Hermite cubics. See Appendix 2, Fix and Strang [1973]

and Collatz [1966] for detailed information on these methods. Simply stated,

in collocation the coefficients of the approximate solution are chosen to

satisfy exactly the partial differential equation and boundary conditions

at selected points.

In simple situations with a uniform mesh length of h , the finite

2
difference method is second order, 0 (h) and collocation is fourth order,

4

0(h). Thus, asymptotically in these situations, as the accuracy increases,

collocation becomes more efficient than standard finite differences. This

suggests the existence of a cross-over point in the performance where

collocation becomes more efficient. One of our objectives is to ascertain

whether simple collocation applies to more general problems and to determine

the expected location of the cross-over point. The operators, domains,

boundary conditions and true solutions for the 17 problems we used are given

in Table 1. The first 8 were previously considered by us in Houstis et al,

[1975]. We give additional information about some of them:

Prob. 2/3. Torsion in a bimetal shaft, Ely and Zienkiewicz [I960].

The shear modulus G is a step function with G^/G,, = 3 (see Figure la).

We have replaced the step by a short interval (length = 0.001) where a

cubic polynomial blends the two values of G smoothly. We measure accuracy

3

2 geometry and boundary conditions for problems 2, 3, 14 and 17.
jblem 16 uses the geometry of (c) with the boundary condition u
jrywhere.

u = 0

= g

u = o

u = y

(b)

u = 0

u = 2

U = y

u = 0

u = 0

u = g

(C)

u = 0

u = 0

u = g

Table 1. The 17 problem space sample used in this paper. The letters f and g denote functions whose
values are determined to make the problem have the specified true solution. The references are
to papers where the problem or a closely related one has been considered.

Problem
Partial Differential Equation Operator

True Solution
Size of

Solution Domain
Boundary

Conditions References

1 Ce
x y

u)
 +

 (e"
x y

u) -
 u

 = f L

 x'x
 v

 y'y 1+x+y

u = e
X

^ sin(iTx) sin(uy) ,

1.3 Unit Square u=0 [9]

2/3 [i u) + Cf u) = f with f = -26 or 0 ^G x'x '•G y y

u is unknown ,

0.87 or 0.8 See Fig. la See Fig. la [7] [9]

4 u + u = f
xx yy

u = (e
X

+e
y

)/(l+xy) >

7.6 Ellipse u=g [9]

n

 5 u + u = 0
xx yy

u = tan"*(y/x) ,

2.6 Circle
v « [9]

6 U

xx
 +

 ^ ^ y y " \ ' (
1 +

^
U

y
 = f

u = e
x + y

 + (x
2

- x)
2

log(l+y
2

) ,

7.4 Unit Square u

- v °
[9]

7
u

xx
 + u

yy
 =

 "
 6 x

^
e X e /

 (xy
 +

 x + y - 3)

. x y, 2
W
 2.

u = 3e e' (x - x) (y - y) ,

0.58 Unit Square u=0 19] [14]

8 u + u = f
xx yy

5/2 5/2 5/2 5/2
u = x y ' - x y ' - x ' y + x y ,

0.1 Unit Square u=0 [9]

Table 1 Continued

'roblem
Partial Differential Equation Operator

True Solution
Size of
Solution Domain

Boundary
Conditions References

9 4u + u - 64 u = f
xx yy

2
u = 4(x -x) (cos (2iry) - 1),

2.0 Unit Square u=0

10 u + u - [100 + cos(3TTx) + sin(2Try)]u = f
xx yy

2
u = [5.4-cos (4nx)] sin(irx) (y -y) [5 .4-cos (4fry)]

*[l/(l+iJ>Vl/2]

4(x-.5)
2

 + 4(y-.5)
2

 ,

3.2 Unit Square u=0 [10]

1/12
2

u

xx
 +

 "yy ~
 1 0 0 u =

 ^ ~
1 0 0

)
c o s h

 y /
c o s h

 v with M=10 or 20

u = cosh lOx/coshlO + cosh yy/cosh ij ,

2.0 Unit Square u=g

13 u + u = f XX yy

u = 4»(x) * 4>(y) , see text ,

1.0 Unit Square u=g
•

14 u + u = f
xx yy

u = y[(x-2)V-l]e"-
0 6 2 5 x C x

-
4 K

>
r

-
2)

/[C3
+
Cx-2)

2

)C3
+
y

2

)],

2.0 See Fig. lb See Fig. lb [6]

15 u + u = f
xx yy

2
u = 10 *(x)**Cy) , • W = e "

1 0 0 (x

" -
5)

 (x
2

-x) ,

0.6 Unit Square u=0

16 u + u = 2 e
x + y

xx yy

x+y
u = e '

4.9 See Fig. lc u=g [17]

17 u + u = f xx yy

see text and Appendix 4

100.0 See Fig. lc See Fig. lc [17]

here by comparing with a numerical solution we have computed which we

believe is much more accurate than the ones considered in this paper.

Prob. 4. The ellipse is centered at (0,0) with major and minor

axes of 2 and 1, By symmetry only a quarter of the elliptical region

was used in the computation.

Prob. 5. The circle has radius 0.5 and center at (0.5,0.5). The

solution is uniquely determined by imposing the additional condition

u(0,0.5)=0.

Prob. 8. The true solution has a discontinuity in the "2.5"

derivative.

Prob. 10. This is a version of a problem from stratospheric physics,

see McDonald et al [1974].

Prob. 11/12. These problems are of boundary layer type; the square

is centered at the origin and has side 2. Symmetry was not used.

Prob. 13. The product solution I{P(X) T K Y) has a steep slope (or wave

front) along a right angle at the center of the domain. We have

where p(x) is a quintic polynomial determined so that 4> (x) has two continuous

derivatives.

Prob. 14. This problem is similar to that of steady flow past a sphere,

Desai and Abel [1972]. The true solution satisfies the same boundary

conditions and has the same shape as the solution of the physical problem.

Prob. 15. The solution has a sharp peak at the center of the square

2

and it is very small for (x-.5) +(y-.5) > .01.

Prob. 16/17. This problem is derived from that of heat flow in the

concrete shield of a nuclear reactor, see Zienkiewicz and Cheung [1965].

7

* (x) = (x)

x < .35

.35 < x < .65

.65 < x

Problem 16 only has the geometry and operator of the real problem. The

true solution of Problem 17 (see Appendix 4) is a complicated function

which exhibits the same shape (including small singularities at the three

reentrant corners) and satisfies the same boundary conditions (except along

x=0 and y=0) as the solution of the physical problem.

Problems 1, 7, 8, 9, 13 and 15 are separable and all the operators

except for Prob. 6 are formally self-adjoint.

II.2 Results of the Comparisons. The data obtained are presented in two

forms. In Appendix 1 we give a set of 17 graphs of the accuracy achieved

versus computer time used. For both methods the error is measured only at

the nodes of the grid used. For most problems we have also measured the

error at many more points in the domain and this sometimes gives a considerably

different result. This is discussed in more detail in Section IV. We used

a CDC 6500 whose long word length gives ample insulation from round-off

errors in these calculations.

In Table 2 we tabulate the cross-over points for all 17 problems. This

is expressed both in terms of accuracy measured in digits as log(max error/

solution size) and the number N of subdivisions in each variable. FOT the

non-rectangular regions we give an approximate "equivalent" value of N

which would give about the same number of unknowns, if the region were

rectangular.

We see from Table 2 that the cross-over points range from 0 to 4 digits

with 2 as a median value. One of the high cross-over points comes from

Problem 16 where high accuracy is obtained by very coarse meshes. Let Np

and N„ denote the values of N at the cross over point for finite differ-

ences and collocation, respectively. There is a fairly consistent pattern

in the relationship of the values of N
p
 and N

c
 , namely is about

1. The value of N
c
 is small (from 1 to 6 with 3 as median) for all cases.

8

Table 2. Tabulation of the cross-over points for 17 problems. The accuracy
(in digits) and numbers Np and N,, of grid lines is given for the comparison
of Standard Finite Difference and Collocation with Hermite Cubics.

Digits = N
p

N

c > c
Problem log(max error/solution size) Finite Difference Collocation

r

^c

1 1.8 5 2 1.12

2 3.0 13 4 0.90

3 1.5 12 3 1.1S

4 3.0 12 4 0.87

' 5 1.9 6 2 1.22

6 0 1 1 1.00

7 1.8 5 1 2.23

8 4.0 5 2 1.12

9 3.0 9 4 0.75

10 1.1 8 3 0.94

11 2.2 13 6 0.60

12 1.3 9 4 0.75

13 1.3 15 5 0.77

14 3.6 17 5 0.82

IS 1.2 15 4 0.97

16 4.1 16 4 1.00

17 1.8 20 6 0.75

Our results here differ in some cases from those published earlier,

Houstis et al [1975]. The efficiency of both programs has been improved

but their relative efficiency has not changed much. In our earlier paper

we measured the error at many points over the entire domain (bilinear

interpolation was used to extend the finite difference solutions). The

few noticeable differences from the earlier data are due to this change in

error measurement. We also previously gave data on memory usage as well

as execution time. We have omitted memory data here as the cross-over points

for memory are somewhat the same as for execution time (this is true also for

the new problems introduced in this paper).

We timed separately the formation and the solution of the linear

equations. Both finite differences and collocation are very similar in

the breakdown of execution time as seen in Table 3.

Table 3. Sample data on the breakdown of execution time between
formation and solution of the linear equations.

Time for linear system
Formation Solution

Ratio of
F ormat i on/Tot a1

Prob. 1. Collocation, N-4 0.25 sec 0.46 sec .54
.50
.22
.20

Finite Differences, N=10
Collocation, N=8
Finite Differences, N=17

0.25
1.0
0.9

0.56
4.5
3.6

Prob. 10 Collocation, N=8
Finite Differences, N=17

1.4
1.2

4.4
3.4

.24

.26

The solution of the matrix equation was always by Gauss elimination

(frontal or profile version) and it is possible that iterative methods

or nested dissection would be significantly more efficient. Indeed, this

is known to be true for certain simple problems and finite differences.

However, we are concerned with problems with some complexity (even though

we included some simple examples in our sample) and there the theoretical

relationship between iterative methods and Gauss elimination is unknown.

Iterative methods also normally involve choosing one or more parameters

and that could be very delicate for complex problems. Thus we must leave

the question of the impact of using iterative methods on these problems as

an open question for future research. The few comparisons that we are aware

of have various defects that leaves the situation inconclusive in our minds.

II.3 Conclusions. A study of Table 2 and the graphs in Appendix 1 shows

that collocation becomes more efficient than standard finite differences

at rather low accuracies and/or small values for N. Furthermore, when finite

differences are more efficient, it is by a small margin whereas collocation

10

is often dramatically more efficient than finite differences. These results

cover a reasonably broad range of two-dimensional linear elliptic problems

and show that there is no reason from the point of view of efficiency to

use the standard finite difference methods for this class of problems.

It is also relevant to note that in practical problems one must almost

always compute solutions to higher accuracy than actually required. That

is to say, the only reliable ways to be certain that one has an error of,

say, 5% (or less) involve computing a solution accurate to 1% or better.

This is especially the case for low accuracy requirements (e.g. 1-10% error).

III. COMPARISON OF COLLOCATION, GALERKIN AND LEAST SQUARES.

III.l The Methods. In all three of these methods we use Hermite cubic

polynomials as approximations. More specific details are given in Appendix

2 but there are two facts worth noting here. First, both the Galerkin and

Least Squares methods involve the evaluation of integrals and these have been

estimated by using 9 point quadrature in each grid rectangle based on the

tensor product of the 3 point Gauss rule. All the information from the

equation must be evaluated at 9 points, this compares with 4 points needed

for collocation in each element (grid rectangle).

Second, the Galerkin and Least Squares methods were implemented only for

the case where the boundary conditions can be exactly satisfied by chosing

the Hermite cubic basis appropriately. This restriction makes them intrinsic-

ally less flexible and should give them an advantage over collocation whenever

they are applicable. To offset this advantage we used the same Hermite

cubic basis for collocation on those problems where all three methods are

compared. In complex problems it can be very difficult (and tedious) to

modify the original problem into one where the boundary conditions can be

satisfied exactly by piecewise cubic polynomials.

11

There are only six problems 7, 8, 9, 10, and 15) where Galerkin

and Least squares could be applied, but the results are so consistent

that this number seems sufficient to draw general conclusions.

111.2 Results of the Comparisons. The graphs given in Appendix 1 for these

six problems show the data for all three methods. An examination of these

graphs shows that there is rarely a significant difference between the

Galerkin and Least- Squares method. Table 4 gives a sample of some additional

typical data for comparing the collocation and Galerkin methods.

One sees from Table 4 that collocation is always faster for equal

accuracy. The advantage decreases as N increases and an operations count

shows that eventually the Galerkin method is faster. This is because

eventually most of the time is spent in solving the linear system and the

Galerkin system is symmetric and hence can be solved twice as fast as the

nonsymmetric collocation system. The timing data given in Table 4 is

compatible with an operations count analysis for these two methods. One

also sees for a fixed set of elements (grid) that collocation is sometimes

much less accurate than Galerkin and never more accurate. However, the

graphs show that the accuracy advantage of Galerkin never compensates for

its speed disadvantage in these cases. One may compare accuracy from the

graphs by noting that the last point plotted for each method has the same

number of elements.

Note that Problem 10 involves fairly complicated functions in the

differential operator and that this has a large negative effect for the

Galerkin and Least Squares methods.

111.3 Conclusions. We see that collocation is a more general method and

that it is also more efficient than Galerkin or Least Squares. Collocation

is more delicate to apply because the boundary collocation points must be

selected carefully for complicated regions. See Appendix 3. Thus collocation

12

is the method of choice among these three for the class of problems

represented here.

Table 4. Selected data comparing collocation and Galerkin for six
problems. Times are given in seconds.

Factors of
Time Break Down

Speed
Advant age
for Coll.

Accuracy
Advant age
for Galer.

Collocation Galerkin

Prob No

Speed
Advant age
for Coll.

Accuracy
Advant age
for Galer. N

Matrix
Formation

Matrix
- Sol. Error

Matrix
FormRt.ifn

Matrix
Sol, Error

1 4 to 12 2 to 3 3
7

.137

.792
.203

2.961
5.6*10"^
1.8*10

2.15
10.57

.218
3.67

2.4*10?
1.0*10

7 3 to 6 2 4
8

.159

.645
.477

4.45
2. 8*10~f
1.7*10

2.01
8.1

.538
5.85

2.6*10
-

p
1.7*10

8 2.5 to 8 2.5 to 4 3
8

.081

.633
.213

4.33
1.6*10~j
4. 8*10

1.12
7.89

.21
5.95

6*10~5
2*10

9 3 to 7 1 to 4 2
7

.034

.489
.053

2.88
5*10~

2

1.6*10
.566

6.88
.055

3.71
1.5*10~

2

8.6*10

10 6 to 15 1 to 2 2
9

.052
1.71

.055
6.66

8. 5*10~1
7*10

1.98
40.0

.059
9.15

8.6*10~i
4*10

15 5 to 10 1 to 7 4
8
->-

.239

.95
.482

4.39
3.4*10"^

8*10
4.81

18.8
.54

5.82
8*10~

2

1.1*10

IV. THREE OBSERVATIONS.

IV.1 Unequal Mesh Spacing for Collocation. There are two disadvantages

to collocation compared to standard finite differences: (1) It is not

well known, (2) Its implementation is more complicated. The extra complexity

(which is not great) of collocation partially stems from its greater

flexibility. One manifestation of this is that unequal mesh spacings can

be used with no extra difficulty, no loss in accuracy and a negligible

increase in computation. By no loss of accuracy we mean that collocation

remains a fourth order method as contrasted to standard finitie differences

where unequal mesh spacing reduces the order from second to first.

In fact, unequal mesh spacing can dramatically increase the accuracy

of collocation solutions and often one can see (with little trouble) a

reasonable mesh to use. Several examples of this occur among the 17 problems

considered here, including Prob. 13 (wave front on a right angle) and

Prob. 15 (sharp peak at center). We solved both of these problems with

unequally spaced meshes and the resulting improvements are tabulated

in Table 5. The unequally spaced meshes for these examples were chosen

in what seemed a plausible way, but no systematic attempt was made to

optimize the mesh.

Table 5. Illustration of the possible improvement in accuracy of the collocation
method by using an unequally spaced mesh.

Case Equally Spaced
ERROR

Mesh Unequally Spaced Mesh

Prob 13 , N=6 1.5*10"
2

1.8*10

N-8 7*10"
2

4.1*10

Prob 15 N=3 .57 .29

N=6 .16 .06

N=8 .08 .026

IV.2 Additional Accuracy at the Mesh Nodes for Collocation. For general

collocation there is a phenomenon called super convergence, see deBoor and

Swartz [1974] where the order of accuracy at the mesh nodes is higher than

elsewhere. However, in theory this phenomenon does not occur when using

cubic polynomials. Nevertheless, we observed substantially improved accuracy

at the nodes for some problems while there was none for some others. For

two ptbblems there was a constant increase in the accuracy at the nodes:

a factor of 4 for Prob 7 and 15 for Prob 4. In some other problems (e.g. 8,

10, 11, and 13) there was a more erratic factor of increase, but it exceeded

4 in some case of each of these problems. No such phenomenon occured for

14

the Least Squares or Galerkin methods.

There is a plausible explanation of this as follows: The nature of the

theoretical error term for collocation is different at the mesh nodes than

that at other points, but the use of cubic polynomials results in the same

order of accuracy for both cases. However, for some problems the coefficient

of the principal error term at the nodes might be significantly smaller than

that of the general error term. This could account for the phenomenon that

we observe.

IV.3 Dependence of Accuracy on the Nature of the Operator as well as the

Solution. It is obvious that the difficulty of obtaining a numerical solution

of a partial differential equation depends on the nature of the differential

operator as well as the nature of its solution. This fact may be overlooked

as the theory plans heavy emphasis on the nature of the solution. The effect

of the operator, however, can be quite significant. For example, compare

the widely varying results that are obtained for Problems 6, 7 and 16 whose

solutions are nearly the same. On the other hand, Problems 1, 7 and 9 have

very similar results as one would guess from the fact ^that the differential

operators and boundary conditions are similar in nature and all three have

very well-behaved solutions. We have considered several sets of different

problems which all have the same solution and have seen a very wide range

of difficulty in obtaining the same function from problems with different

operators.

IS

V. COMPARISON WITH PREVIOUS WORK.

There has been little effort on systematic comparisons of different

methods for solving partial differential equations; our previous paper

[Houstis et al, 1975] was one of the first. There have been a number of

abstract comparisons based on asymptotic rates of convergence and asymptotic

operation counts for the solution of linear systems of equations. See

[Rice, 1976] and [Birkhoff
;
 and Fix,1971] for a large number of examples

of this analysis and references to earlier work. Experience has shown that

operation counts are reliable for estimating the efficiency of solving

linear systems of equations. For iterative methods one must take extreme

care to terminate the iteration at a level compatible with the discretization

error of the method. This point is commonly overlooked and invalidates some

otherwise interesting comparison studies.

The usefulness of asymptotic rates of convergence as guides to the

efficiency of numerical methods for elliptic problems is still open to

question. Specifically, it is not known how reliable these rates are as

guides for the moderate accuracy requirements of typical applications.

Discussions of this question is given in the last section of Strang and Fix

[1973] (there asymptotic rates are reliable guides for 3 example problems),

in Birkhoff and Fix [1974] and in Swartz [1974] where several different

order methods are compared.

Roache [1972] has a section entitled "Remarks on Evaluating Methods"

(pp. 109-112) and he strongly favors simple, low order methods and describes

the performance of higher order methods as "disappointing". He supports

the conclusions with citations of 12 papers, half of which have no relevant

material on the question of the performance or comparison of methods.

Most of those papers which involve shock wave and turbulence computations

suggest that low order methods are the best of the methods used. However,

16

we (and some of the authors) interpret these papers' results on smoother

problems differently than Roache. One paper explicitly states that first

order methods compare poorly and a third order method gives "striking"

improvement in accuracy with no more computation for some shock wave

problems [Burstein and Mirin, 1970]. A comparison of methods for weather

prediction by [Grammeltvedt, 1969] suggests to us that fourth order methods

may be superior, but Roache states the opposite. None of these papers

attempts a controlled comparison of methods and thus no definitive con-

clusions can be reached from them.

Eason [1976] has a bibliography of 241 items relevant to the least

squares method for partial differential equations. He tabulates the

references in various ways including Table III. Comparisons where least-

squares methods are superior in accuracy, convenience or computing speed

and Table IV. Comparisons where least-squares methods produce equivalent

or comparable results. Eason is a strong advocate of the least squares

method which may explain why a table where least squares does worse is not

included. For example, Table III has 26 entries for collocation and 14

for Galerkin. We have examined most of these references and they are, in

general, one of two types. First, someone attempts to solve a problem, say,

with collocation using 12 polynomial terms and with least squares using 8

trigonometric polynomial terms. The problem has an unknown solution so the

actual accuracy is unknown. The author reports his subjective evaluation of

the quality of the results obtained. Usually there is insufficient data

about the calculation to attempt to reproduce the results. Note that the

differences observed are primarily due to using polynomials versus trigo-

nometric polynomials rather than using collocation versus least squares.

The second type of paper is more systematic, but involves trivial problems

in one way or another (i.e. either the problem is trivial or the method used

17

is trivial). For example, one sees solutions of three fairly simple

problems by five methods which compute a quadratic polynomial approximation.

Then general conclusions are stated. We did not locate any systematic

and realistic evaluation of methods among these 40 references. Most

papers do not even give conclusive evidence in the particular context of

the problem they consider.

If there is any consistent pattern in the results, it would be that

authors find that the 'collocation of boundary conditions is delicate.

Many find that least squares approximations to the boundary conditions give

better results, primarily because they do not use good boundary collocation

points. This does suggest that collocation of the differential equation

combined with least squares for the boundary conditions would give a more

robust numerical method with little or no penalty in efficiency.

Leissa et al [1969] present a systematic study of the value of 9

methods for two plate bending problems: a simply supported elliptic plate

and a square plate supported a 4 "random" points. In both cases the

"exact" solution is a series expansion truncated at 48 terms, but the authors

do not view this as just another numerical method which might give worse

results than some of the other methods they apply. The nine methods are

compared on the basis of 11 criteria e.g. "suitability for programming",

"applicability to general regions", "ease in learning". Efficiency and

accuracy were not included directly as criteria and apparently were not

systematically measured. It is important to note that all of the 9 methods

considered were of limited flexibility and none could be applied to all

17 problems included in this study.

18

REFERENCES

1. Birkhoff, G. [1971], The Numerical Solution of Elliptic Equations, SIAM,
Regional Conf. Ser. Appl. Math., 1_, Philadelphia.

2. Birkhoff, G. and Fix, G. [1974], Higher Order Finite Element Methods,
AEC and ONR Report, 33 pages.

3. de Boor, C. W. and Swartz, B. K. [1973], Collocation at Gaussian Points,
SIAM J. Numer. Anal., 10, pp. 582-606.

4. Burstein, S. Z. and Mirin, A. A. [1970], Third Order Difference Methods
for Hyperbolic Equations, J. Comp. Physics, _5, pp. 547-571.

5. Collatz, L. [1966], The Numerical Treatment of Differential Equations,
3rd Edition, Springer Verlag, New York.

6. Desai, C. S. and Abel, J. F. [1972], Introduction to the Finite Element
Methods, Van Nostrand, New York, pp. 423-426.

7. Eason, E. D. [1976], A review of least-squares methods for solving
partial differential equations. Int. J. Numer. Meth. Engin. 10_pp. 1021-1046.

8. Eisenstat, S. C. and M. H. Schultz [1973], Complexity of partial differential
equations, in "Complexity of Sequential and Parallel Numerical Algorithms"
(J. F. Traub, ed.) Academic Press, pp. 271-282.

9. Ely, J. F. and Zienkiewicz, 0. C. [I960], Torsion of Compound Bars -
a Relaxation Solution, Int. J. Mech. Sci., 1̂ , pp. 356-365.

10. Grammeltvedt, A. [1969], A Survey of Finite-Difference Schemes for the
Primitive Equations for a Barotropic Fluid, Monthly Weather Review, 97^
pp. 384-403.

11. Houstis, E. N., Lynch, R. E., Papatheodorou, T. S. and Rice, J. R. [1975],
Development, Evaluation and Selection of Methods for Elliptic Partial
Differential Equations, Ann. Assoc. Inter. Calcul Analog., pp. 98-103.

12. Leissa, A. W., Clausen, W. E., Hulbert, L. E. and Hopper, A. T. [1969],
A comparison of approximate methods for the solution of plate bending
problems. AIAA Journal, 1_ pp. 920-928.

13. McDonald, B. E., Coffey, T. P., Ossakow, S. and Sudan, R. N. [1974],
Preliminary Report of Numerical Simulation of Type 2 Irregularities in
the Equatorial Electrojet, J. Geophysical Res., 79̂ , pp. 2551-2554.

14. Rice, J. R. [1976], Algorithmic Progress in Solving Partial Differential
Equations, SIGNUM Newsletter.

15. Rice, J. R. [1976a], The Algorithm Selection Problem, in Advances in
Computers, Vol. 15 (Rubicoff and Yovits, eds0» Academic Press, New York.

19

16. Roache, P. J. [1972], Computational Fluid Dynamics, Hermosa Publishers,
Albuquerque, N. Mexico.

17. Strang, G. and Fix, G. J. [1973], An Analysis of the Finite Element
Methods, Prentice Hall, New York.

18. Swartz, B. K, [1974], The Construction and Comparison of Finite Difference
Analogs of Some Finite Element Schemes, in Mathematical Aspects of Finite
Elements in Partial Differential Equations (C. de Boor, ed.) Academic
Press, New York, pp. 279-312.

19. Zienkiewicz, 0. C. and Cheung, Y. K. [1965], Finite Elements in the
Solution of Field Problems, The Engineer, pp. 507-510.

20

APPENDIX ONE

GRAPHS OF THE COMPARISON DATA FOR 17 PROBLEMS

The data for the comparison of methods is plotted on log-log paper with

accuracy achieved versus execution time. The accuracy is plotted as the actual

error at the location of the maximum error. The execution time is in seconds

on a CDC 6500. A consistent scheme of plotting is used for the four methods:

solid for collocation, dots for finite differences, dashes for Galerkin and dot-

dash for Least Squares. Occasionally, some extra curves are plotted which are

identified by a special label.

One may crudely estimate the "time order" a of these methods by measuring

the slopes of the curves of error vs. time when plotted on log-log paper. The

order a estimated is for the relationship

Error = 0(Time

If one assumes that most of the computer time is spent in solving the linear

systems, then one would have

Error = 0(N
_ 4 a

)

This assumption is clearly not satisfied here. In Table A1 we present our

estimates of a and 4ct. We see that there is some correlation with the simple

model which gives 4a = 2 for finite differences and 4a = 4 for the Hermite

cubic method. There are also some very wide deviations from this.

Table Al. Measured slopes a to estimate the order of the methods from their

actual performance.

Problem
Finite Diff. Collocation Galerkin

Prob1em
Finite Diff. Collocation Galerkin

Problem a 4a a 4a a 4a Prob1em a 4a a 4a a 4a

1
2
3
4
5
6
7
8

0.65 2.6
1.13 4.5
0.94 3.8
0.59 2.4
0.47 1.9
0.55 2.2
0.61 2.4

. 0.58 2.3

1.44 5.8
2.4 9.6
1.7 6.8
1.37 5.5
4.0 16.0
1.46 5.8
1.39 5.6
0.67 2.7

1.9 7.6

2.0 6.2
1.5 6.1

9
10
11
12
13
14
15
16
17

??

0.58 2.3
0.53 2.1
0.54 2.2
0.38 1.5
0.67 2.7
0.73 2.9
0.85 3.4
1.44 5.8
1.05 4.2

1.5 6.0
1.15 4.6
1.06 4.2
0.68 2.7 ?

1.5 6.0
1.19 4.8
2.34 9.4
1.05 4.2

1.4 5.7
9

1.2 4.8

Figure Al. The data for Problems 1 to 4. Galerkin and Least Squares data is
given for Problem 1. For Problem 4 we also plot the maximum error over the
whole region to compare with that at the nodes.

Figure A2. The data for Problems 5 to 8. The solution to Problem 8 has a mild
singularity, which seems to affect the collocation solution more than Galerkin
or Least Squares.

Figure A3. The data for Problems 9 to 12. Galerkin and Least Squares show
erratic behavior for Problem 10. The "boundary layer" of Problem 12 adversely
affects both methods of solution.

Figure A4. The data for Problems 13 to 15. The effect of collocation with a
non-uniform mesh for the wave front on a right angle (Problem 13) and for an
isolated sharp peak (Problem 15) is seen. The erratic behavior of collocation
with a uniform mesh for Problem 13 seems to be due to the chance relationship
between the mesh and the wave front.

Figure A5. The data for Problems 16 and 17 with the complicated geometry of
Figure 1(c). The complex geometry does not adversely affect Problem 16 where
surprising accuracy is obtained. The singularities and complex geometry also do
not seem to adversely affect Problem 17 (recall that the true solution is of
size 100.) where the geometry forced non-uniform meshes for both collocation and
finite differences.

22

23

TO"
1

 pERROR

FINITE DIFFERENCE

— COLLOCATION

TIME
• • 1

O.J 1.0 10. ion.

24

- ERROR

PROBLEM 14

SOLUTION SIZE = 2.0

FINITE DIFFERENCE

COLLOCATION

TIME

—' 1 J
1.0 iO. 100.

25

0.1 1.0 10. 100.

26

1(T r ERROR

PROBLEM 5

SOLUTION SIZE = 2.6

X .

FINITE DIFFERENCE

COLLOCATION

10'

TIME

0.1 1.0 10. 100.

27

ERROR

X . . PROBLEM 6

SOLUTION SIZE = 7.4

FINITE DIFFERENCE

COLLOCATION

I

TIME

0.1 1.0 10. 100.

28

ERROR

PROBLEM 7

SOLUTION SIZE = 0.58

•n.

\ W
V

v * • •

V . FINITE DIFFERENCE \\
\\
\\

LEAST SQUARES

\
\
\
\ G A L E R K I N

\
\

\

COLLOCATION

0.1 1.0 10.

TIME

100.

29

30

31

r ERROR

PROBLEM 16

SOLUTION SIZE = 4.9

\

GALERKIN

TIME
' * - — - *

0.1 1.0 10. 100.

32

TO
1

 r
 ERROR

PROBLEM 11

SOLUTION SIZE = 2.0

33

10° f ERROR

PROBLEM 11

SOLUTION SIZE = 2.0

34

35

- ERROR

PROBLEM 14

SOLUTION SIZE = 2.0

TIME

1 1 I

0.1 1.0 10. 100.

36

r ERROR

0.1 1.0 10. 100.

37

r ERROR

PROBLEM 16

SOLUTION SIZE = 4.9 \ 1
FINITE DIFFERENCE

.COLLOCATION

TIME

0.1 1.0 10. 100.

r

38

10
2

 W ERROR

PROBLEM 17

SOLUTION SIZE = 100.0

10 -1

10
-2

TIME

0.1 1.0 10. 100.

39

1
APPENDIX TWO

SYNOPSIS OF THE NUMERICAL METHODS

1. Standard Finite Differences. This method has the following components.

(a) Grid: A rectangular grid is placed over the domain and all points in

the domain or on its boundary are used. The grid is uniformly spaced

except for Problems 16, 17 where the geometry made that undesirable.

(b) Approximation to the operator: The derivatives in differential equation

are replaced by simple central, 3-point finite difference approximations

involving the grid points.

(c) Approximation to the boundary conditions: Derivatives in Neumann or

mixed boundary conditions are approximated as indicated by the diagram

taking into account the zeros in the system (profile or frontal method).

2. Collocation. This method has the following components.

(a) Elements: A rectangular grid is placed over the domain. Rectangular

elements whose center is not inside the domain are discarded. The grid is

uniform unless noted except for Problems 16, 17.

(b) Approximation space: the Hermite bicubics defined at the end of this appendix.

(c) Approximation to the operator: The approximate solution satisfies the

differential equation exactly at the four Gauss point of a rectangular element.

For non-rectangular elements near the boundary the four Gauss points are

40

projected inside the element as indicated by the diagram.

x A

X X

x = differential equation
collocation points

(d) Approximation to the boundary conditions: The boundary conditions are

interpolated at a selected set of boundary points for either Dirichlet,

Neumann or Mixed boundary conditions. If the domain is a rectangle and the

problem has Dirichlet conditions = 0 (Problems 1, 7, 8, 9, 10 and 15) then

the Hermite bicubics are selected so as to automatically satisfy the boundary

conditions and no boundary approximation equations are used. This is the same

procedure as for the Galerkin and Least Squares methods. See Appendix 3 for

details on how the boundary collocation points are selected.

(e) Equation Solution: Same as for standard finite differences.

Ritz-Galerkin and Least Squares. The components of these methods are:

(a) Elements: same as for collocation.

(b) Approximation space: same as for collocation.

(c) Approximation to the operator: In each element E of the partition we have

the Galerkin equations

16
Z a. ff {p D B. D B. + q D B. D B. + r B. B.Jdxdy = // f B. dxdy

i = 1
i

E

F

x i x j
4

y i y
3
 I J p J

where the operator L and the true solution U* are defined by

• LU* = CP u*)
x

 +

 (q
 +

 rU
y y

f

and

41

D ,D = differentiation operators x y

B ^ x ^) , Bj (
x

>y) = the i and j elements of the Hermite bicubic basis

ou = coefficient of B
i
 in the approximate solution (the index i

refers to one element only)

The Least Squares equation in each element is

< 16
Z a. IS L(B.) • L(B.)dxdy = // f L(B.)dxdy

i=l
 1

 E
 1 J

 F
 J

The integrals in these equations are approximated by the 9-point Gauss

quadrature rule for rectangles (only rectangular domains were used with

these methods).

(d) Approximation to the boundary conditions: the boundary condition were

exactly satisfied by the Hermite cubic basis for all problems (1, 7, 8, 9, 10

and 15) attempted with these methods.

(e) Equation solution: The local equations are assembled (by the direct

stiffness method) to form the global matrix. This equation is solved by

Gauss elimination for positive definite matrices.

The Rectangular Bicubic Hermite Element. The situation is shown in the diagram

y

(0,b) ® <D ' (a,b)

© <3 v ..

s = x/a and 0 < s <_ 1

t = y/b and 0 <_ t £ 1

The numerical labels on the corners

(0,0) (a,0)

42

We use 8 one dimensional functions to construct the 16 basis functions

for the rectangle:

B
x l
 = l-3s

2

+2s
3

 h = l-3t
2

+2t
3

B
x 2
 = s

2

C3-2s) ^ B
y 2
 = t

2

(3-2t)

B

x3
 =

 ^ C
5

"
1

)
2

 B
y 3
 = bt(t-l)

2

B
x 4
 = as

2

(s-l)
 B ? r 4

 = bt
2

(t-l)

*

Then u (x,y) is approximated in each rectangle by

u(x,y) = B
x l
 B

y I
 U

2
 • B

x 2
 B

y l
 U

2
 • B

x 2
 B

y 2
 U

3 +
 B

x l
 B

y 2
 U

4

+ B

X3
 B

yl 'xl
 + B

x4
 B

yl *X2
 + B

x 4

 B

y2
 CT

x3
 + B

x3
 B

y2
 CT

x4
+ B , B _ a

n
 + B „ B , < J „ + B _ B . a „ + B , B , c t ,

xl y3 yl x2 y3 y2 x2 y4 y3 xl y4 y4

+ B - B , T -i + B . B _ T _ + B . B . T , + B , B . T .
x3 y3 xyl x4 y3 xy2 x4 y4 xy3 x3 y4 xy4

where u^ = value at the point i

a ., a . = x and y derivatives at the point i
xi yi '

 r

T ^ = xy (cross) derivative at the point i.

The 16 functions in the above equation are the ones denoted by B^(x,y)

earlier in the Galerkin and Least Squares equations, e.g. B
1
(x,y) = B ^ B ^ .

43

APPENDIX THREE

THE INTERPOLATION OF BOUNDARY CONDITIONS FOR COLLOCATION

The most sensitive aspect of collocation is the placement of the

boundary collocation points for non-rectangular domains. First, one must

take care that these points are reasonably separated from the points in

the interior where one collocates with the differential operator. This

is not difficult to do even in an automatic way, but the penalty for

overlooking this point is an ill-conditioned computation with large errors.

One first overlays the region with a rectangular grid and discards

the elements which intersect the domain slightly or not at all. Let S^

be the number of boundary sides of the resulting rectangular partition.

Then the number of boundary collocation points required is + 4 . We use

two basic schemes for distributing the boundary collocation points as

illustrated by the diagrams below for a simple rectangle:

O » •

n. * — o

-* n 6

* O *

* o Jt

2-Point Scheme Midpoint Scheme

Figure A6. Two schemes for distributing boundary collocation points. The

x's are the systematic collocation points and the O's are the four extra ones.

44

A theoretical analysis shows that the 2-point scheme is superior

for "rectangular regions provided the two points are taken to be the

Gauss points for each boundary segment. We compared using the Gauss

points with equally spaced points and found the equally spaced points

give slightly better accuracy and they are slightly easier to use.

We made numerous numerical experiments which confirmed that the 2-point

scheme is superior for rectangular regions.

The extension of these two schemes to curved domains is illustrated

in Figure A7.

how the collocation points are placed on the edge of the rectangular partition

and then mapped onto the portions of the boundary intersecting each rectangular

element.

The theoretical advantage of the 2-point scheme no longer holds for curved

boundaries and our experiments confirm that it has no advantage over the

midpoint scheme in this case. In fact it is, on the average, slightly less

accurate. Furthermore, the midpoint scheme automatically gives collocation

45

of the boundary conditions at any extremities of the domain (for example,

for a piecewise rectangular boundary such as in Problems 16 and 17, see

Figure 1). It is often essential that collocation of the boundary conditions

be made at all exterior corners of the domain.

Our procedure is to use the 2-point scheme for boundaries which are

straight (or nearly so) and parallel to a coordinate axis and to use the

midpoint scheme otherwise. The two schemes -may be used together for a domain

such as shown above and we do this as shown in Figure A8.

Figure A8. The combination of the two schemes for a partially rectangular

region. The mapping from the point on the rectangular edges to the curved

boundary is indicated.

There seems to be no particularly advantageous method to distribute the

4 extra collocation points beyond putting them in elements with exterior

corners and spreading them somewhat evenly around the boundary. We always

map the midpoint type collocation points to segments of the curved boundary

which are interior to the rectangular partition. The points are placed

uniformly on each such segment. At times this may leave rather large segments

of a curved boundary "unused", but we have not found a reliable method to

place collocation points on the intermediate segments. We do place collocation

46

outside the rectangular partition for the 2-point scheme. An example

is shown in Figure A9 which illustrates these procedures.

Figure A9. Example which illustrates boundary collocation points for

the 2-point scheme which are outside the rectangular partition and

collocation for the midpoint scheme are inside. Collocation is not

done on two large boundary segments.

47

APPENDIX FOUR

THE SOLUTION OF PROBLEM 17 AND FUNCTIONS INVOLVED IN THE OTHER PROBLEMS

We describe the exact solution u of Problem 17 for the reactor

2

heat shields V u = f.

We set
u(x,y) = 100 g(x,y,e,0,0)/ g(x,y,a,b,c)

where, by construction, the numerator on the right is zero on the stair-step

outer boundary of the domain (see Figure 1). The numerator is the product

2/3

of (x-1), (y-1), and three factor of the form r^ ' s i n f S ^ + it/2)/2)

where r^ is the distance between (x,y) and the reentrant corner

i = 1,2,3. The denominator is a modification of the numerator which is

positive in a region containing the boundary of the heat shield and which

is equal to the numerator along the circular part of the boundary. Note

that this function has the correct singularities at the reentrant corners.

Specifically:

g(x,y,a,b,c) = [(x-l)(y-l) + a C(x,y)] n?
= 1
 T(x,y,x

i
,y

i
,b,c)

C(x,y) = (x
2

 +
 y

2

 - .64)
2

T(x,y, x., y
i
, b, c) = R(x,y, x., y^

3
 b) S(x,y, x

±
, y

±
, c)

R(x,y, x
i
, y

t >
 b) = [(x-s^

2

 + (y-y^
2

 + b C(x,y)]
1 / 3

S(x,y, X
i
, y

±3
 c) = sin(2 [arc tanQy-y^/Cx-x^) + tt/2]/3) + c C(x,y)

with branch cut along y-y^ = x-x^, x^ < x

After some experimentation, we found that a = - .5, b = .1 , c = 7.

gives a solution u which is similar to that one expects for the temperature

in the heat shield.

48

Remark about the evaluation of u and f = V u:

In our first attempt at the construction of a suitable u, we used a

somewhat simplier function [which later proved to be unsuitable because

it had zeros in the interior of the region]. A Fortran program was

written for the evaluation of u and it was processed by a symbolic

differentiator to obtain function subroutines to evaluate u and u
xx yy

The resulting programs for u, u , u were more complicated and much
xx yy

longer than the one we eventually wrote for our more complicated function.

We note that u, u , u can each be evaluated by successive calls to
xx yy '

a number of very simple subroutines. Each of these evaluates V, V ^ , V ^

where V is a product V = WZ. Schematically the program is:

W

wx =

wxx =

z

zx =

zxx =

V

vx =

vxx =

w*z

wx*z + w*zx

wxx*z + 2.*wx*zx + w*zxx

and similarly for the y-derivatives.

The values of V, VX, VXX, VY, VYY are stored in a common block for use by

subsequent routines. In most cases, statements like the first six above:

W = ..., ... ZXX = ... , do not appear since the values are already computed

by previously called subroutines. The program is quickly written and debugged

49

xkkkw PROBLEM ' i DATA •«*•«
FUNCTION CaEF<X,YjJ>
Z = EXP<X*Y>
RZ = 1. •Z
GD TO 0 01>1Q£J103»104J105>»J

101 CDEF = Z
RETURN

102 CDEF = RZ
RETURN

103 CHIEF = V » Z
RETURN

104 CDEF = -X * RZ
RETURN

105 CDEF = -l.'Cl. + X + Y>
RETURN
END
FUNCTION F(X»Y.J>
GQ TD <101j10£) j J

101 PI = 3.14159265358979
Z = EXP(X*Y>
RZ = 1. ' Z
PIX = PI*X
PIY = P1*Y
PIZ = PI*Z
SINX = SIN<PIX>
SINY ~ SIN<PIY>
TRUE = Z*SINX*SINY
TEMP = PI*PI*TRUE
XTRUE = X«TRUE

. YTRUE = Y*TRUE
FX = PIZ*CQS<PIX>*SINY
FY = PIZ*COS<PIY>*SINX
DXTR = YTRUE + FX

DYTR = XTRUE + FY
BLXTR = Y*YTRUE - TEMP + S.*Y*FX
DDYTR = X*XTRUE - TEMP + 2.»X*FY
F =• Z*DDXTR+RZ*DDYTR+Y*Z*DXTR-X*RZ*DYTR-TRUE/<1.+X+Y)
RETURN

102 F = 0.
RETURN
END
FUNCTION TRUECXiY>
PI = 3.14159265358979
TRUE = EXP<X*Y>*SIN<PI*X)»SIN<PI*Y>
RETURN
END
FUNCTION BCDEFCXjYJJ>
GO TD < 101j102*103>>J

101 BCOEF = 1.
RETURN

102 BCOEF = 0.
RETURN

103 BCDEF = 0.
RETURN
END

50

wkhx PROBLEM 2 DATA *»**•
FUNCTIDN F(X>Y>J)
GO TO <101>102>»J

101 F = 0.
RETURN

102 IFtX.EQ.0..OR.X.EQ.1.> GD TD 1
IF(Y.EQ.0..DR.Y.EQ..5) GO TO 1
F = 1.
RETURN

1 F = 0.
RETURN
END
FUNCTION COEF<X.Y,J>
GD TO <1»2> 3? 4f 5)»J

X COEF = GCXjY)
RETURN

8 CDEF = G<X>Y>
RETURN

3 CDEF 0.
RETURN

4 CDEF = 0.
RETURN

5 CDEF 0.
RETURN
END
FUNCTION G<X>Y>
E = .00001
XI = .5-E
X£ = .5 + E
DX = X2 - XI
IF< X .LE. XI) GD TD 1
IF< X .GE. X£ > GD TD £
POL = 3.-6.*<X-X1>*™2ADX*DX>+4.K<X-X1)*«3/'<DX**3>
G = 1./-PDL
RETURN

1 G = 1.^3.
RETURN

£ G = 1.
RETURN
END
FUNCTION BCDEF(XjY>J>
GD TD aoi>ioe>io3>.j

101 IF<X .GT. 0. .AND. X .LT. .25> GO TO 1
IFciX .GT. .75 .AND. X .LT. l.> GO TO 1
BCDEF = 1.
RETURN

I IF<Y .EQ. 0.) GO TD 2
BCDEF = 1.
RETURN

£ ECDEF = 0.
RETURN

102 ECDEF = 0.
RETURN

103 IF(X.GT.0. .AND. X.LT..25>GD TD 11
IFCX.GT..75 .AND. X.LT.l.) GO TD 11
BCDEF = 0.
RETURN

II IFCY .EQ. 0. > GO TO 22
BCDEF = 0.
RETURN

22 BCOEF = 1.
RETURN
END

51

mmmmm PROBLEM 3 DATA
FUNCTION F<X»Y>J)
GD TO

-

 <ioi»ioe>>j
101 F = -20.

RETURN
10S F = 0.

RETURN
END
FUNCTIDN CDEF<X.Y»J>
GD TO Cl»2»3>4»5>,J

1 CDEF = G(X> Y)
RETURN

2 COEF = G<X»Y>
RETURN

3 CDEF = 0.
RETURN

4 COEF = 0.
RETURN

5 CDEF = 0.
RETURN
END
FUNCTIDN G(X> Y)
E = .00001
XI = .5-E
X£ = .5 + E
DX = X£ - XI
IF< X .LE. XI > GO TD 1
IFC X .GE. X£ > GO TO 2
FDL = 3.-6.*<X-Xn**2/-<DX*DX>+4.*(X-Xl)">"3/<DX*«3)
G = l./PDL
RETURN

1 G = 1./-3.
RETURN

2 G = 1.
RETURN
END
FUNCTIDN BCDEF<X»Y.J>
GO TD <101»10£»103>»J

101 IFCX .GT. 0. .AND. X -LT< .£55 GO TD 1
IFCX .GT. .75 .AND. X .LT. GD TD 1
BCOEFI= 1.
RETURN

I IF<Y .EQ. 0.> GD TO 2
BCOEF•= 1.
RETURN

£ BCDEF = 0.
RETURN

102 BCDEF = 0.
RETURN i

103 IFCX.DT.0. .AND. X.LT..255G0 TD 11
IF<X.GT..75 .AND. X.LT.1.> GO TO 11
BCDEF = 0.
RETURN

II IFCY .EQ. 0. > GD TD ££
BCDEF = 0.
RETURN ,

22 BCDEF = 1 .
 1

RETURN
END

52

M H M M PROBLEM 4 DATA •*•«•
FUNCTION TRUE<X»Y)
TRUE s <EXP<X> + E X P < Y) V < 1 . + X«Y)
RETURN
END
FUNCTIDN DXTRUE<X»Y)
Z = 1.'<1.+X*Y>
DXTRUE = EXPCX>

w

Z-TRUE<XfY?»Y*Z
RETURN
END
FUNCTIDN DYTRUE<X»Y>
Z = 1.'<1.+X*Y>
DYTRUE = EXP<Y>*Z -TRUE<X> Y)*X«"Z
RETURN
END
FUNCTION DXYTR<X)Y>
z = l.z-a.+xKY)
DXYTR = - < EXP < X > *X+EXP < Y > *YJ *Z*Z

$ -TRUE C X»Y >*Z+2.*TRUE< X r Y >*X*Y*Z»*2
RETURN
END

FUNCTION FCX»Y»J>
EX = EXP<X>
EY = EXP<Y)
Z = t.s<l. + X"Y>
GD TD <1»2> » J
F = CEX + EY - 2.*Z*<Y*EX+i<*EY-Z*<EX+EY>*<X*X+Y»Y:0>»Z
RETURN
F = (EX+EYi*Z
RETURN
END
FUNCTIDN COEF(X»Y,J>
GD TD <1»2> 3p 4» 5J J J

1 CDEF = 1,
RETURN

2 COEF = 1
RETURN

3 COEF = 0
RETURN

4 COEF = 0
RETURN

5 CDEF = 0
RETURN
END
FUNCTIDN BCOEF<X.Y,J>
GD TD <1»2> 3>iJ
BCDEF = 1.
RETURN
BCDEF = 0.
RETURN
BCDEF = 0.
RETURN
END '

53

PROBLEM 5 DATA « « «
FUNCTIDN TRUE<X»Y>
TRUE = ATAN<Y/X> + 1.
RETURN
END
FUNCTIDN F<X>Y>J)
GD TQ <101»102) > J

101 F = 0.
RETURN

102 IF<X.EQ..5 .AND. Y.EQ.0,> GD TO 1
p = _ <Y - X>/<X + Y - .25>
RETURN

1 F = -1.
RETURN
END
FUNCTION COEF<X»Y.J>
GD TD <101J10£J103»104»105>»J

f 01 CDEF = 1.
RETURN

102 CDEF = 1.
RETURN

103 CQEF = 0.
RETURN

104 CDEF = 0.
RETURN

105 CDEF = 0.
RETURN
END
FUNCTIDN BCDEF<X»YPJ>
GD TD <1>2>3> >J

1 IFCX.EQ..5 .AND. Y.EQ.O.) GDTD 11
BCDEF = 0.
RETURN

11 BCDEF = -1.
RETURN

2 IF(X.EQ..5 .AND. Y.EQ.O.) GO TD 22
BCDEF = Y^.5 - 1.
RETURN

3 IF< X.EQ. .5 .AND. Y.EQ.O.) GD TD 33
BCDEF = X/.5 -1.
RETURN

33 BCDEF = 0.
RETURN
END

wxw*x PROBLEM & DATA *****
FUNCTION COEF<X>Y,J>
60 T.O < 101»102P103>104>105> J J

101 CDEF; = 1.
RETURN

102 CDEK = 1.+Y*Y
RETURN

103 CDEF = -1.
RETURN

104 CDEF = -C1.+Y*Y>
RETURN ,

105 CDEF = 0.
RETURN
END
FUNCTION F(X» Y> J>
GO TO <101>102> j J

101 F = <-4.*X*X*X+18.*X*X-14.*X+2.>*AL0G<l.+Y*Y)-
$ 2.* < < X*X-X > **2 > * < Y*Y+Y*"3+Y-1.>•C1.+Y*Y>

RETURN
102 IFtX.EG.O. .DR. Y.EQ.0.> GO TD 1

F = < A L 0 G < 2 .) * (X * X - X > * * 2
RETURN

1 F = 2.*EXP<X+Y>
RETURN
END
FUNCTION TRUE<X»Y>
TRUE = EXP<X+Y>+<<X*X-X)**£>*ALOGa.+Y*Y)
RETURN
END
FUNCTIDN BCDEF(XjYJJ)
GO TO a01>10£jl03>jJ

101 BCOEF = 1.
RETURN

102 IFCX.EQ.O.) GO TD 1
IFCX.EQ.1.5 GO TD 2
BCDEF = 0.
RETURN

1 BCOEF = 1.
RETURN

2 BCDEF = -1.
RETURN

103 IF<Y.EQ.O.> GO TD 11
IFCY.EQ.1. > GD TO IS

BCOEF = 0.
RETURN

11 BCDEF = 1.
RETURN

1£ BCDEF = -1.
RETURN
END"

55

M**M* PROBLEM 7 DATA *****
FUNCTIDN Ct]EF<X,Y»J>
GD TD <101»102>103i104?10S>>J

101 COEF = 1.
RETURN

102 CDEF = 1.
RETURN

103 CDEF = 0.
RETURN

104 COEF = 0.
RETURN

105 COEF = 0.
RETURN
END

 :

FUNCTIDN F(X»YP J)
GD TO (101,102? , J

101 F = 6.*X*Y*EXPCX)*EXP<:Y)*<X*Y+X+Y-3.)
RETURN

102 F = 0.
RETURN
END
FUNCTIDN TRUE<X» Y)
TRUE = 3.*EXP(X>*EXP(Y>*CX-1.>*X*(Y-1.>*Y
RETURN
END
FUNCTION BCOEF<XpY,J>
GD TD <101,102,103>,J

101 BCDEF = 1.
RETURN

10E BCDEF = 0.
RETURN

103 BCDEF = 0.
RETURN
END

56

***** PROBLEM 8 DATA
FUNCTION C0EF<X,YPJ>
GO TD (101,10eplCi3>104»105>»J

101 CDEF = 1.
RETURN

102 COEF = 1.
RETURN

103 COEF = 0.
RETURN

104 COEF = 0.
RETURN

105 CDEF = 0.
RETURN
END
FUNCTIDN F<X» Yp J>
GD TO <101,102) » J

101 XR = SQRT<X>
YR = SQRT<Y>
F = 3.75 * <XR * YR * <X*X + Y*Y> - XR * Y - X « Y R)
RETURN

102 F = 0.
RETURN
END
FUNCTIDN TRUE(X»Y>
XR = SQRTCX)
YR = SQRT<Y)
TRUE = XR*X*X*YR*Y*Y - X*YR*Y*Y -XR»X*X*Y + X«Y
RETURN
END
FUNCTION BCDEF<X»YjJ>
GO TO <101>102>103>»J

101 BCOEF = 1.
RETURN

102 BCOEF = 0.
RETURN

103 BCDEF = 0.
RETURN
END

57

k w x v PROBLEM 9 DATA *****
FUNCTIDN TRUE<XPY>
PI - 3.14159265353979
TRUE - 4.*<X*X-X>*<C0S<£.*PI*Y>-1.>
RETURN
END
FUNCTION F<XPYPJ>
GO TO <101>102>>J

101 PI - 3.14159265358979
F = <32. + <256.+16.*PI*PI>*<X-X*X:0"

$ C0S<2.*PI*Y>+£56.*<X*X-X> - 3 2 .
RETURN

102 F = 0.
RETURN
END
FUNCTION CDEF(X,YPJ>
GO TD ClOlp 102P 103> 104J 105J>>J

101 COEF = 4.
RETURN

102 CDEF = 1.
RETURN

103 CDEF = 0.
RETURN

104 CDEF = 0.
RETURN

105 CDEF = -64.
RETURN
END
FUNCTIDN BCOEF<XPY»J>
GD TD <101p102P103>iJ

101 BCDEF = 1.
RETURN

102 BCOEF = 0.
RETURN

103 BCDEF = 0.
RETURN
END

WMKMK PROBLEM 10 DATA
FUNCTIDN TRUE<X,Y>
PI"3.141592653589793
FDURP=4.*PI
FPX=FOURP*X
FPY=FDURP*Y
CX=CDSCFPX)
CY=CQS(FPY>
F1=-CX+5.4
F£=-CY+5.4

F3= <X-.5>*<X-.5)+CY-.5>*<Y-.5>
F3£=16.*F3*F3
F34=F32*^32
Z=1 ./<.\, +F34>
F4=Z-.5
SPX=SINCPI*X>
GDFY=Y*Y-Y
TRUE=F1*SPX*GDFY*F2*F4
RETURN
END
FUNCTION FCX»Y.J>
GD TD (101,102)jJ

101 PI=3.141592653539793
FDURP=4.*PI
FPX=FDURP*X
FPY=FDURP*Y
SXTPSQ=FDURP«FDURP
SX=SIN(FPX>
SY=SIN<FPY>
CX=CDS<FPX>
CY=CdS<FPY>
F l — C X + 5 . 4
F£=-CY+5.4
DXF1=F0URP*SX
DYF2=FDURP*SY
DDXF1=SXTPSQ*CX
DDYF£=SXTPSQ*CY

F3= <X-.5>*<X-.5>+(Y-.5>*<Y-.5)
F3£=16.*F3*F3
F33= F32*4.*F3
F34=F32*F32
Z=1./<1.+F34>
F4=Z-.5
DXF3= £.*<X-.5>
DYF3= £.*<Y-.5>
DDF3=2.
zz=z*z
U=F3£*ZZ
W32=F33"ZZ
U6=W3£*F33*Z
DF4=-16.*kl3£
DXF4=DF4*DXF3
BYF4=DF4*DYF3
A1=-192.*U
A£=-1&.*U32*DDF3
A3=51£.*U6
DXF3S=DXF3*DXF3
DYF3S=DYF3*DYF3
DDXF4=<A1+A3>*DXF3S+A£
DDYF4=< A1+A3 > »DYF3S+AS
SPX=SIN<PI*X>
PICPX=PI*COS<PI*X>
GOFY=Y*Y-Y
DGDFY=S.*Y-1.
UXX=DDXF1*SPX*GQFY«FS»F4

*+DXF1*PICPX*GDFY*F£*F4
*+DXFl*SPX«GDFY«DXF4»F£
*+DXFl*PICPX*GDFY*F2*F4
* -F1*PI*PI»SPX*G0FY*F2*F4
* +F1*PICPX

B

GDFY*F2*DXF4
•+DXF1«SPX*GOFY"F2"DXF4
•+F1»PICPX*GDFY»F£«"DXF4

•+F1*SPX*GQF Y*F2*DDXF 4
UYY=F1*SPX»DGDFY"DYFS*F4

«+Fl*SPX*2.*F2*F4
*+Fl*SPX*DGDFY*F2*DYF4
*+F 1*SPX*DGDFY*DYF£*F4
*+Fl*SPX*GDFY*DDYF£*F4
*+Fl*SPX*GDFY*DYF2*DYF4
*+Fl*SPX*DGDFY*F2*DYF4
*+F 1*SPX*GDFY*DYF2*DYF4
*+F 1*SPX*GDFY*F2*DDYF4
A=100.+CDS<2.*PI*X)+SIN<3.*PI*Y>
ft = - ft
U=TRU£<X» Y>
F=UXX+UYY+A«U
RETURN

102 F=0.

RETURN
END

FUNCTION CDEF<XiY,J>
GD TD <101»10£»103.104»105>jJ

101 CDEF-l.
RETURN

102 CDEF=1.
RETURN

103 CDEF=0.
RETURN

104 CDEF=0.
RETURN

105 PI=3.141592653589793
CDEF=100.+CDS<2.*PI"X>+SIN<3.*PI*Y>
CDEF = -CDEF
RETURN
END
FUNCTIDN BCDEFCXpY.J)
GD TD (1> 2» 3? p J

1 BCDEF=1.
RETURN

2 BCDEF=0.
RETURN

3 BCDEF=0.
RETURN
END

I

KNKVV PROBLEM 11 DATA *****
FUNCTIDN COEF<XpY»J> '
GD TD (101»102p103P104»105)JJ

101 CDEF = 1.
RETURN

102 CDEF = 1.
RETURN

103 CDEF = 0.
RETURN

104 COEF = 0.
RETURN

105 COEF = -100. •
RETURN
END
FUNCTIDN F<XPYPJ>
GD TO <101> 102> j J

101 F = 0.
RETURN

102 F = TRUE<XpY)
RETURN
END
FUNCTIDN TRUE<X»Y>
TRUE = <CDSH(10.*X>+CDSHa0.*Y)VCDSH<10.>
RETURN
END
FUNCTION CDSH<X>
COSH = <EXP<X>+EXP<-X>V2.
RETURN
END
FUNCTION BCDEF<XPY»J>
GO TD <101p102p103)J J

101 BCDEF = 1.
RETURN

102 BCDEF = 0.
RETURN

103 BCDEF = 0.
RETURN
END

61

***** PROBLEM 12 DATA
FUNCTION CDEF<X»YpJ>
GD TD <101»102P103>104j105>JJ

101 COEF = 1.
RETURN

102 CDEF = 1.
RETURN

103 CDEF = 0.
RETURN

104 COEF = 0. \
RETURN

105 COEF = -100.
RETURN
END
FUNCTIDN F<X»Y»J>
GD TD a 0 1 » 1 0 £ > p J

101 F = 300.*CDSH<20.«YVCDSH<20.>
RETURN

102 F = TRUECXPY>
RETURN
END
FUNCTION TRUE<XPY>
TRUE = CDSH<10.*X>^aSH<10.>+CDSH<20.*Y)^CDSH<20.)
RETURN
END
FUNCTION CDSH(X>
CDSH = <EXP<X)+EXP<-X> >^2.
RETURN
END
FUNCTION BCDEFCXjY.J)
GD TD (101)102i103)?J

101 BCDEF = 1 . ,
RETURN

102 BCOEF « 0.
RETURN

103 BCOEF = 0.
RETURN
END

i

62

k h m i PROBLEM 13 DATA
FUNCTION COEF<X» Y> J>
GQ TQ (101.102,103,104,105>jJ

101 COEF = 1.
RETURN

102 COEF = 1 .
RETURN

103 CDEF = 0.
RETURN

104 CDEF = 0.
RETURN

105 COEF = 0.
RETURN
END
FUNCTION F<X»Y»J)
GD TD ClOlt102) » J

101 F = DBP<X)*P<Y) + P<X)"D2P<Y)
RETURN

102 F = TRUE<X»Y>
RETURN
END
FUNCTION TRUE<X»Y)
TRUE => P<X>*P<Y>
RETURN
END
FUNCTIDN BCOEF<X»Y»J)
GD TO <101>102»103)>J

101 BCOEF = 1 .
RETURN

102 BCOEF = 0.
RETURN

103 BCDEF = 0.
RETURN
END
FUNCTION PCX)
A = 1.
B = 0.
E = .15
XI = .5 - E
X£ = .5 + E
IF<X .LT. XI) GO TD 1
IF<X .GT. X2> GO TO £
DPHI = B - A
DX = X£ — XI
P = A + DPHI*<X-Xi>»«3/<DX**3>-3.>«I)PHI»0<-Xt)»3"<X-X2>

$ /-BX*«4 + 6.*BPHI»CX-X1>W*3*<X-X2)**£^DX»*5
RETURN

1 P = A
RETURN

2 P = B
RETURN
END
FUNCTIDN D2PCX)
A = 1.
B = 0.
E = .15
XI = .5 - E
X2 = .5 + E
IFCX .LT. XI) GO TO 1
IFCX .GT. X2) GO TD 1
DPHI = B - A
DX = X£ - XI
C3 = DPHI-'DX**3
C4 = -3.«DPHI-'DX"M
C5 = 6. *DPHI<

/

DX**5
DSP = 6.*C3*<X-X1)+6.*C4»<X-X1)«<X-X2>+

$ 6.*C4* < X-X1> **2+6.»C5*(X-Xl)* <X-X2> ««£+
$ 12.*C5*(X-X1)**2* < X-X2)
$ + £.*C5*<X-X1)**3

RETURN
1 D2P = 0.

RETURN

63
END

xttuxx PROBLEM 14 DATA • * « «
FUNCTION TRUECTfS)
E = .0625
X = 4.*T

Y 4.*S
T1 = 7.*Y*<<X-£.>**£+Y*Y-l.)
T2 - EXP<-E*i:Y-£. >*X"<X-4. >>
T3 = <<X-2.>**£+3.>*<Y*Y+3.>
TRUE = T1WT2/'T3
RETURN
END

FUNCTIDN FCT.S.J)
E = .0625
GD TD(1 01 p 102)»J

101 X = 4.*T
Y - 4."S
F1=?.*Y
F2=(X-£.>**£+Y*Y-l.
F3=EXP<-E*<Y-£.>*X*<X—4. >>
F4=l.^<(:X-2. >*"2+3. >
F5-l./'CY*Y+3.)
DXF1=0.
DXF2=2.*<X-£.>
DXF3=<Y-2.)*<X-4.>»F3+<Y-2.>«X"F3
DXF3 = -E* DXF3
DXF4=-2. "<X-£. >'< CX-2. >""2+3. >«*2
DXF5=0.
DX2F1=0»
DX2F2=2.
DX2F3=<Y-2.>*F3+<Y-2.)«<X-4.>«DXF3+<Y-£.>"F3+(Y-2.)«X"DXF3
DX2F3 = -E* DX2F3
DX2F4=6. *< <X-£. >**2-l. <X-2. >""£+3. > « 3
DX2F5=0.
DYF1 = 7.
DYF2=2.*Y
DYF3=-E*X*<X-4.>*F3
DYF4-0.
DYF5=-2. *Y/"<Y*Y+3. >**2
DY2F1=0.
DY2F2=2.
DY2F3=E*E"X*X*(X-4.>"*2«F3 '
DY2F4-0.
DY2F5=6.* <Y*Y-1.>•(Y"Y+3.>**3
T1=F1"DX2F2*F3"F4*F5+F1"DXF2*DXF3"F4"F5+

$ F1*DXF£*DXF3"F4*F5+F1*F2"DX2F3*F4«F5+
$ F1*DXF£*F3*DXF4*F5+F1»F2*DXF3*DXF4*F5
% +F1*DXF2*F3"DXF4*F5+F1»F£"DXF3"DXF4"F5+
$ F i *F£*F3*DX£F4*F5

T2=DYF1*BYF£*F3*F4*F5+DYF1*F£*DYF3*F4*F5+
$ DYF1*F£*F3*DYF4*F5+DYF1"F£*F3*F4*DYF5

T3=DYF1*DYF£*F3*F4*F5+F1*DY£F£"F3*F4"F5+
$ F1»DYF2«DYF3"F4*F5+F1*DYF£*F3*F4"DYF5

T4=DYF1*F£«DYF3"F4*F5+F1*DYF2«LYF3"F4"FS+
$ F1*F£*DY2F3*F4*F5+F1"F£"DYF3«F4»DYF5

T5=DYF1*F£"F3"F4*DYF5+F1*DYF2*F3*F4*DYF3+
$ F1*F£*DYF3*F4*DYF5+F1"F£*F3"F4"DY£F5

F=<T1+T£+T3+T4+T5>"16.
RETURN

102 F=TRUE(T»S>
RETURN
END
FUNCTION CDEF<XPY>J>
GD TD <lj£p3,4t5>,J

1 CDEF=1.
RETURN

2 COEF=l.
RETURN

3 CDEF=0.
RETURN

4 CDEF=0.
RETURN

5 CDEF-0. 64

RETURN
END
FUNCTIDN BCDEF<XjYPJ>
GD TD <1j 2» 3> > J

1 BCDEF=1.
RETURN

2 BCDEF=0.
RETURN

3 BCDEF=0.
RETURN
END

i

1

***** PROBLEM 15 DATA *****
FUNCTION COEF(X»Y>J)
GO TO (101>102,103,104j105)FJ

101 COEF = 1.
RETURN

10£ CDEF = 1.
RETURN

103 CDEF = 0.
RETURN

104 CDEF = 0.
RETURN

105 CDEF = 0.
RETURN
END
FUNCTIDN F(X»Y»J>
P = .1
GO TD (101,102) f J

101 TEMP = -((X-.5>**2+(Y-.5)**2VP**2
F1 = EXP(TEMP)
DXU = -2.*<X-.5>*TRUE<X>YVP**2 +

$ F1*(£.*X-1.>*(Y-1.)"Y'P
DX2U = -2.*<TRUE<X»Y)+<X-.5>*DXUVP«i"2

$-2.*CX-.5)*F1*(2.*X-1.)*<Y—1.)*Y/P**3 +
$ 2.*F1*<Y-1. >*Y/-p

DYU = -2.*<Y-.5)*TRUE(X» W P * * 2 +
$ F1*<2.*Y-1.)*(X-1.)*X/P

DY2U = -£.*<TRUE(X,Y)+<Y-.5)*DYUVP**2
$-2.*<Y-.5)*Fl*C2.*Y-l.>*<X-1.)*X/P**3 +
$ 2.*F1*(X-1.)*X^P

F = (DX2U+DY2U)
RETURN

102 F = 0.
RETURN
END
FUNCTION TRUECXiY>
P = .1
TEMP = -((X-.5)**£+<Y-.5)**2>^P**£
TRUE = EXP<TEMP>*(X-1.)*X*(Y-1.>*Y^P
RETURN
END
FUNCTION BCDEF<XpY)J>
GD TD (101,102>103)>J

101 BCDEF = 1.
RETURN

102 BCOEF = 0.
RETURN

103 BCDEF = 0.
RETURN
END

66

WWKMK PROBLEM 16 DATA
FUNCTION COEF<X»Y>J>
GQ TD (101»102,103»104»105)»J

101 CDEF = 1.
RETURN

102 CDEF = 1.
RETURN

103 COEF = 0.
RETURN

104 CDEF = 0.
RETURN

105 COEF = 0.
RETURN
END
FUNCTIDN FCX.YJJ)
GD T0<101j102)jJ

101 F - 2.»TRUE<X>Y)
RETURN

102 F = TRUE<X,Y)
RETURN
END
FUNCTION TRUE<X»Y)
TRUE = EXPCX+Y)
RETURN
END
FUNCTION BCDEFCX* Y» J)
GO TD (101»102»103>jJ

101 BCOEF = 1.
RETURN

102 BCOEF = 0.
RETURN

103 BCOEF - 0.
RETURN
END

67

F U N C T I D N F < X > Y > J >

F C O M P U T E S E I T H E R T H E T R U E S O L U T I O N O F P R D E L E M 1 7 O R
T H E L A P L A C I R N U X X + U Y Y .
L C U J I C A L I S U D E R V

I F J . £ « . I.' T H E N E V A L U A T E T H E L A P L A C I A N

E L S E E V A L U A T E T H E T R U E S D L U T I D N

N D D E R V = . T R U E .

I F (J - E Q . 1) N O D E R V = . F A L S E .

C A L L E V L A T E < X > Y F N D B E R V I
A Q , Q X > G Y , G X X > Q Y Y

F
 I F L A G 5

F = 1 7 7 7 0 C - O O O O O O O O O O O O O O B

I F C N D D E R V) F = Q

I F < . N O T . N O D E R V . A N D . I F L A G . E Q . 0 > F = G!XX + Q Y Y

R E T U R N
E N D

S U B R O U T I N E E V ; _ A 7 E < X X J Y Y J N D D I ^ J
A Q V J W X » Q V Y S Q V X X » Q V Y Y » I F L A G)

I N P U T X X > Y Y > N O D I N J D N L Y N M J B U G A L L J B U G G V A L

L D C A L V A R I A B L E S X > Y » N O D E R V F O R X X ? Y Y » N Q D I N
O U T P U T C.-V - U V X , Q V Y > Q V X X , GIVYY»I F L A G

I F L A G S E T T O 0 I F S U C C E S S F U L > S E T T O 1 I F N O T
U H E N U N S U C C E S S F U L * Q V S E T T O Z E R O A N D Q V X > Q V Y > Q V X X J Q V Y Y
A R E S E T T O I N D E F I N I T E . T H I S Q C C U R S A T R E E N T R A N T B O U N D A R Y
C O R N E R S

E V A L U A T E S G V I Q V Y J Q V X X J Q V Y Y

OV = SIZE*QVAL
S I Z E I S C O N S T A N T S E T I N D A T A
U V A L = G V A L < 0 > CJ O V G V A L < A J E , C)

A J E , C . A R E C O N S T A N T S E T I N D A T A
I V A I . = B V ^ L * F V A L < 3) " * F V A L < 5)

S T S

F V A L < 7)
B V A L = < X - 1) * < Y - 1) + A * C I R 2

C l R £ = X * * £ + \
J

* * £ - R H D S Q R
R H D S Q R I S C O N S T A N T S E T I N D A T A

F V A L (I) = R B V A L A ; * T H V A L < I >

R D V A L C I > = < < X - X P T < I)) * * £ + < Y - Y P T C I)
+ B » C 1 R £

X P T (I > I X P T < I > I S I — T H R E E N T R A N T C O R N E R P D I N T
T H Y A L = S N V A L + C * C I R 2

S N V A L < I > = S I N C £ * A N V A L A > ^ 3 >
H.-IVAL(I) = A R C T A N C < Y - Y P T < I> V (X - X P T (I) >) - P I ' 2

Y - A X I S

I
I
T

I
I
I

5 i
INTERIOR I

T

i
7 I 1

V
i

68

COMMON /SUBCOtV
A PI, PII'2, PID4, TWDPIi THPIB£, £ TUTrt< TU!TKSG!» •NETHR, FRTH, NDDERV,
r; TO. VD, XDSvRj YDSQR» RDSQR,
i X Y XSQR ! YSQR , ANGLE
D SIZE A B > C
L RHD RHOSQR XPr<3> > YPT<3> , JUNKC£0>
E ANVAL ANVflLX ANVALY , flNVALXX , ANVALYY
G BVAL<&> B'v'ALX<2> BVALYC£) , BVALXXC2) , BVALYY<2>
H CTR CIRX CIRY j CIRXX , CIRYY
m CIR£ CIR2X CIR£Y j CIR2XX . CIR£YY
J CT<£> CT*<£> CTY<£> , CTXXC2) , CTYY<£> j
K FVALX<£,3> FVrtLYC2,3> , FVALXX<£>3> 9 FVALYY<£,3?
L GVAL 5. > GVALYC2) > 'GVALXXC2) , GVALYYC2)
n RDVALC2) RDVALY(2> , RDVALXX<£> , RDVALYYC2)
M SNVAL : IiSNVAL DDSNVAL
F THVALtS) THVALX<2> THVALY<£> > THVALXXC2> j THVALYY<2)

DIMENSION CTALL<2? 5), CREALLCS)

EQUIVALENCE <CTALL<1) 1), C T a) > > <CR£ALL<1>> CIR2>

LATA STALL s 10*0. 0 s

LDGICAL NQDERV, NDBIN: DNLYNM? BUGRLLf BUGGVL

REAL INBEF
DATA INBEF • 1777COOOOOOOOOOOOOOOB

DATA PIj PID£> PID4, TWDPI>THPID2>THTH) TWTHSQt DNETHRt FRTH •
A 3.14159265353979, 1.57079632679490. .78539816339745>
B S.c&316530717959J 4.71£33898038468, .66666666666667s
C .•44444444444444, .33333333333333, 1.33333333333333 •

DATA SIZE.' Ap B» CJ RHD> RHCISQR f 100.) ~.5> .1, 7., .8, .64 /-

BliTA XPT ^ .65 j .85 , .95 •
IftTA YPT ' .7 , .5 p .3 /"

MAKE XXjYYJNDDIN LOCAL IN •SUBCDM' '

X = XX
Y = YY
HDDERV = NDDIN

XSGR = X*X
YSCJR = Y*Y
CfiLL CIRCLE
CALL BVALS

BQ SO I = 1 > 3
XD = X - X P T U)
VB = Y - YPTCI)
XBSPR = XD*XD
YDSQR = YD* YD
R'DSQR = XBSCR + YDSQR
1F< RD2QR -GT. l.E-3 > GD TD 10

THEN TDD CLOSE TO I-TH BOUNDARY CORNER
IfLAG = 1
QV = 0 .
GSVX = INErEF
QVY = INBEF
QUXX = INDEF
flVYY = ItfDEF

EXIT
GD TD 30

0 CONTINUE
ELSE CAN EVALUATE

CALL ANVALS
CALL SNVALS
CALL RDVALS

69

CALL THVALS
J = I

 1

CALL FVPLS<FVAL< 1 jJ>'FVALX<1,J>>FVALY<1»J>»
A FVALXXC1:J>» FVALYY<1> J> '

IFC BUGflLL > CALL DEBUGS1>
£0 CONTINUE

CALL GVALS

CPLL QVALSCGV, QVX, QVY, QVXXj QVYY>

QV = S'I2E*GV

IFLAG = 0

30 CONTINUE
RETURN
END

SUBROUTINE CIRCLE

FORM CIR = X**"£ + Y**£ - RHOSGR
CIR£' = CIR**£
AND DERIVATIVES

CDtfMON /SUBCDM/ REPEAT VARIABLES HERE ***

D I M E N S I O N C T A L L C £ » 5) J C R £ A L L < 5 >

EQUIVALENCE < C T A L L a , l > , CT<1))> (CR£ALL<1)» CIR£>

LOGICAL hODERV

CIR = XSGR + YSQR -.RHPSCR
CIR£ = CIR**£
IF< NODERV > GD TO 10

CIRX = £.*X
CIRY = £.
CIRXX = £.
CIRYY = £.

CIRSX = £.*CIR*CIRX
Clft£Y = £.*CIR*CIRY
CIRfiXX = 4.*t3.*XSQR + YSQR - RHDSQR >
CIR£YY = XSQR + 3.*YSGR - RHDSQR)

10 CONTINUE
RETURN
END

SUBROUTINE BVALS

FCRM BVAL = CX-l + A*CIR£>»<Y-1 + rt»CIR£>
AND DERIVATIVES

COMMON /-SUBCOM/ REPEAT VARIABLES HERE ***

D I M E N S I O N C T A L L (£ J 5 > > C R £ A L L < 5 >
EC.'UIVALENCE (CTALLC1,1>, CT<1>>» CCR£ALL(1)j CIR£)

LOGICAL NODERV

XMi = X - 1.
YM1 = Y - 1.
AC1R2 = A*CIR£
XFACT = XM1 + fiCIR£
YFACT = YM1 + ACIR£
BVAL C D = XM1-*YM1
BVAL<£> = XFACT*YFACT

IF(NOEERV > GO TO 10

BVALX<1) = YM1
EVALY <1> = XMI
BVALXXC1> = 0.
BVALYYCl) = 0.

70

XFACTX =
yfacty =
XFAC'TY =
YFACTX =
XFACT^X =
YFACTYY =
X^r.CTYV =
YFriCTXX =

EV.HLXte;
B'vVL •,'<£>
2v!=LXX<£i
EVALYY^E)
CONTINUE

1. + A*C1R£X
1. + A*CIR2Y

A*CIR2Y
A*CIR£X
A*CIR£XX
A*CIREYY

YFACTYY
XFACTXX

= XFACTX"*YFAC'T + XFACT*YFACTX
= XFACTY^YFACT•+ XFACT*YFACTY
= XFACTXX*YFACT + 2.*XFACTX*YFACTX
= XFACTYY^YF ACT + 2.*XFfiCTY*YFACTY

XFflCT«YFACTXX
X FACT* YF A CTY Y

SUBROUTINE ANVALS

FDF'M RHVPL = ARCTANC YD/XL > - PI^E ANB DERIVATIVES

DCARCTAN<;>V>VIiU = W < V * V + U*U>

ANGLE MEASURED CHUNTER-CLOCKWISE FROM XD-AXIS
AUVHL MEASURES CDUNTER-CLQCKHISE FROM YD-flXIS
ERft^CH PL.INT AT XD = YD = 0.
&RANCH C'JT ALONG AhGLE = PI/4j ANVAL = -PI

RETURN
END

I Y-A^IS
A N V A L = 0
YD-AXIS
A N G L E =

ANGLE = 0
XD-AXIS
ANGLE = EPI
ANVAL = 3PI'£

. CX,Y)
(XBj YD)

X - A X I S

COMMON /-SUBCOM^ *** REPEAT VARIABLES HERE ***

DIrlEKSION CTALL(£j5>, CR2ALLC5)

E O U I V A L E N C E CCTAI.L< 1 > 1) J C T < 1) > » (C R S A L L C D J C I R 2)

L O G I C A L N O D E R V

IF< hGIiERV > GO TO 10
CDI^UTE DERIVATIVES

A W A L X = -YD/RDSQR
ANVALY = XD-'RDSQR
HNVALXX= -2. *"D

>:

AliVALX^RDSQR
ANVALYY= -2. »:YD*rtMVALY^RDSQR

CONTINUE

IFC ABSC YD > .GT. AES(XD)) GO TO 20
THEN ANGLE BETWEEN U AND PI'4 OR 3PI/4 AND 5PI/4

•R 7PIS4 AND £PI
ANGLE = ATAIK YD-'XD)
IF< XD .LT. 0.) ANGLE = PI + ANGLE

71

IF< ANGLE .LT. 0. > ANGLE = TUOPI + ANGLE

20 CONTINUE
ELSE ANGLE BETWEEN PI/4 AND 3PI'4 CK

ANGLE = PID2 - ATANC XD'YD >
IF< VD .LT. 0. > ANGLE = PI + ANGLE

30 CONTINUE

GO TO 30

5PI^4 AND 7PI/4

SUBTRACT PI^£ TO MAKE ANVAL BETWEEN O AND 3PIs2

ANVAL = ANGLE - PID2

ADJUST FDS BRANCH CUT

IF"(ANVAL .LT, -PID4 > ANVAL = TUOPI + ANVAL

SUBROUTINE SNVALS

FORM SNVAL SIN< £*ANVAL'3 >> DSNVALf DDSNVAL

COMMON 'SUBCOM/' *** REPEAT VARIABLES HERE ***

DIMENSION CTALL<2J5>» CR£ALL<5> EQUIVALENCE <CTALL<1>1>> CT<1)>f <CR£ALL<1)F CIR2)

LOGICAL NDDERV

ARG = TWTH*ANVAL
SNVAL •= SINc ARG >
IFf NDDERV >

CCKf'UTE DERIVATIVES
DSNVAI. = TUTH*COS<ARG>
DDSNVAL = -Tk!THSG*SNVAL "

10 COhT I N'JE

SUBROUTINE THVALS

FORM THvAL = SNVAL + C*CIR£ AND DERIVATIVES

C = FOR NUMERATOR

COMNCiN -"SUBCOM^ *** REPEAT VARIABLES HERE ***

DIMENSION CTALL<£ j 5) > CR£ALL<5>
K'UIVRLENCE (CTALLC1•1>S CT<1))J <CR£ALL(1)J CIR2)

L D G I C H L N D D E R V

THVAL a > = SNVAL
THVAL'£> = THVAL<1') + C*CIR£
IF< rwDERV >

1HVrv_X a > = DSNVAL*ANVALX
THv.-LY <1> = DSNVAL*ANVALY
TK'/Hl.XX(!> = DDSNVAL*CANVALX**E) + DSNVAL*ANVALXX
":KVf;LVVa> = DDSNVAL* C AN VALY«*2> + DSNVAL*ANVALYY

THVAL.X <2-' = THVALX <i>'+ C*CIR£X
TK'.'hI.Y = THVALY a > + C*CIR£Y

= THVALXX(1i •> C*CIR£XX
TH';K,.VY'C; = TKVAL'i'Va> + C*CIR£YY

10 CGN'i I«:.:E

SUBRJUTINC RDVALS

RETURN
END

GD TD 10

RETURN
END

GD TO 10

RETURN
END

FORM RUVAL CkDSQR + B ^ C I R £ > ^ < 1 ^ 3 >
2 = 0. FOR NUMERATOR

AND DERIVATIVES

COMMON •SU5CDM/' REPEAT VARIABLES HERE

72

DIMENSION CTALL<2,5>, CR£ALL(5>

E Q U I V A L E N C E <CTflLLCljl>j CTC1))P (CR£ALL<1)» C I R 2)

LOGICAL NDDERV

SET CIRCLE-TEMP FUR DENOMINATOR (NUMERATOR SET TD ZERD IN DATA?

DO 10 IBERV = 1> 5
CTALL<2,IDERV> = B*CR£ALL(IDERV}

0 CONTINUE

EVALUATE FDR NUMERATOR AND DENOMINATOR <NUM = If DEN = 2>

DO 30 NMDN = 1J 2
RVALUE = RDSRR + CT(NMDN)
RDVAL(NMDN> = RVALUE**ONETHR
IF< NDDERV > GD TD 20

COMPUTE DERIVATIVES
11 = DNETHR*RDVAL < NMDN > /"RVALUE
T£ = -TWTH*T1/RVALUE
XBERV = 2. *XD + CTX(NMDN)
YBERV = 2.*YD + CTY(NMDN)
RDVALX (NMDN) = T1*XBERV
RBVALY <NMDN> = T1*YBERV
RE'VALXXCNMDN) = T£*XDERV*XDERV + Tl*<£. + CTXX<NM1)N>>
RDVPLYY<NMDN> = T2*YDERV*YDERV + Tl*<£. + CTYYCNMDN>)

0 COhTiriUE
0 C O R I T I H U E

RETURN
END

SUBROUTINE FVALS(FV> FVX. FVY» FVXXj FVYY>

FDRMS FV = (RSQ'**< 1/3) >*SIN< 2*ANVAL/'3)

CQMMDH /SUBCDM-' *•** REPEAT VARIABLES HERE ***

DIMENSION CTALL(£»5)j CR£ALL(5> EQUIVALENCE <CTALL(1J1)» CT(1)> I <CR£ALL(1)» CIR£>

LOGICAL NDDERV

DIMENSION FV(£>«FVX(£>rFVY<£>>FVXX<£)»FVYY<£)

FCR NUMERATOR (1> AND DENOMINATOR <2>

BD 20 N = 1> 2
FV<N> = RBVAL<N>*THVAL(N>
IF< NDDERV > GD TD 10

C01PUTE DERIVATIVES
FVX<N) = RIPVALX<N>*THVAL(N> + RDVAL<N)»THVALX<N)
f"VY(N) = RBVALY(N>*THVAL(N> + RDVAL < N) *THVALY < N)
FVXX(N> = RDVALXX<N>*THVAL(N> + £.*RDVALXCN)*THVflLX<N)

A +RDVAL(N)*THVALXX(N)
FVYY(N> = RDVALYY<N>*THVAL<N> + 2.*RDVALY(N)*THVALYCN) "

{• +RDVAL(N)*-THVALYY(N>
CONTINUE

0 OQNUNUE
RETURN
END

SUBROUTINE GVALS

FORM GVAL'= BVAL*F3«F5*F7 AND DERIVATIVES

COMMON /SUBCDiV *** REPEAT VARIABLES HERE ***

DIMENSION CTALL<£«5)> CR£ALL<5j

EQUIVALENCE CCTALLC1>1>j CTC1>>» (CR2ALL(l>p CIR2)

LOGICAL NDDERV
DIMENSION F357(£>>F35?X(£)jF357XX(£)rF357YC2)iF357YY<2)>

A F57(£>> F57X<2)> F57XX<P)> F57Y<2)» F57YY<2)

73

COMPUTE NUMERATORS <1> AND,DENOMINATORS <2>

DO £0 N = 1> 8
FS7<RO = F 5 < N) * F 7 < N >
F357CN? = F3CN)»F57<N)
GVALCN) = BVAL<N>*F357CN>
IF< NDDERV)

COMPUTE DERIVATIVES
F57X<N> = F5X<N>*F7<rO
FS?Y<N> = F5Y<N>*F7<N:>

F357X<N> = F3X<N)*F57<N)
F357Y<N> = F3YCN?*F57<N)

• GO TO 10

+ F5<N>*F?X<N>
+ F5CN>*F7YCN)

+ F3CN)*F57X<N>
+ F3<N>*F57Y<N>

GVPiLXCN) = BVALX<N>*F357<N> + BVAL<N>»F357X<N>
GVALYCN) = BVALY<N>*F357<N> + BVALCN)*F357Y<N)

F57XX<N> = F5XX(N)*F7(N? + Z.•F5X<N>*F7X(N)
A +F5<N>*F7XX<N>

F37YY(N> = F5YYCN)*F7<N> + £.*F5YCN>*F7YCN>
A +F5<N)*F?YY<N>

F357XX(N> = F3XX(N>*F37(N> + £..«F3X<N)«F57X(N)
A +F3(N>*F57XX<N>

F357YYCN) = F3YY<N)*F57(N) + 2.*F3Y<N)*F57YCN)
A +F3<N)*F57YY<N)

GVALXX<N> = BVALXX < N > *F357 < N > + 2.*BVALX<N>*F357X<N>
A .+BVAL(N>*F357XX<N>

GVALYYCN) - BVALYY<N>"F357CN> + £.*BVALY<N)»IF357Y<N>
A +BVAL < N)*F357YY < N >

10 CONTINUE
20 CONTINUE

RETURN
END

SUBROUTINE QVALS < QV >QVX,QVY> QVXX. QVYY >

FORM QV = SIZE*GVALC1VGVAL<2>
AND DERIVATIVES

C W M D N •SUBCOM/' *** REPEAT VARIABLES HERE

DIMENSION CTALL<£»5)> C R 2 A L L O)
EQUIVALENCE CCTALLC1>1>> CT<1))J

LOGICAL NDDERV i

QV = GVAL<1>^GVAL<£>
IF(NDDERV >

<CR£ALL<1)» CIR2)

GO TO 10

COMPUTE DERIVATIVES.

FACT = l./GVAL<£>
FACTSQ = FACT*FACT
FACTX = -GVALX(£>*FACTSQ
FsCTY = -GVALY(£)*FACTSQ
TACTXX = C£.*(GVALX<£>»»£>*FACT - GVALXX<2>>*FACTSQ
"ACTYY = <2.*CGVALYC£>**2>KFACT - GVALYYC£>>*FACTSQ
QVX =• GVALXC1 >*FACT + GVAL<0*FACTX
aVY = GVALY C1>*FACT + GVAL <I>*FACTY
QVXX = GVALXXC1>*FACT + £.»GVALX<1>*FACTX + GVAL<1)*FACTXX
CVYY = GVALYY<1>*FACT + £. *GVALY<1 J*FACTY + GVAL< 1)*FACTYY

10 CONTINUE
RETURN 74
END

	Evaluation of Numerical Methods for Elliptic Partial Differential Equations
	Report Number:
	

	tmp.1307986960.pdf.2GOdx

