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ABSTRACT 

We systematically evaluate four methods for solving two-dimensional, 
linear elliptic partial differential equations on general domains. The four 
methods are: standard finite differences; collocation, Galerkin and least-
squares using Hermite cubic piecewise polynomials. Our test set of 17 problems 
ranges from simple to moderately complex. The principal conclusion is that 
collocation is the most efficient method for general use. Standard finite 
differences is sometimes more efficient for very crude accuracy (where 
efficiency is not important anyway) but it is also sometimes enormously less 
efficient even for very modest accuracy. The accuracy of the Galerkin and 
least-squares methods is sometimes better than collocation, but the extra 
cost always negates this advantage for our problems. 



EVALUATION OF NUMERICAL METHODS FOR 
ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS 

I. STATEMENT OF THE PROBLEM AND PROCEDURES, CONCLUSIONS. 

Our approach to evaluating numerical methods for partial differential 

equations has already been outlined in Houstis, et al [1975]. This approach 

is a specific instance of the general framework presented by Rice [1976a]. 

Briefly this approach is to first choose a sample set of problems from the 

domain of interest. The domain here is linear, second order elliptic 

partial differential equations which are somewhat "general". That is, they 

have various complications (variable coefficients, curved domains, reentrant 

corners, etc.) that are typical in applications and which prevent the 

straightforward use of specialized methods or theories. One next selects 

some solution methods [four in this paper) and criteria of performance 

(accuracy achieved, execution time and memory used) and finally one applies 

the methods to the sample set of problems while measuring the performance 

criteria. 

The cost of solving partial differential equations forces a small 

sample set (17 problems here) and thus the reliability of the evaluations is 

not as high as we would like. Nevertheless, most of the phenomena observed 

here are quite consistent over the problem set which suggests that the 

probability of this being the result of chance is quite low. 

One key to validity of an evaluation such as this is the precise definition 

of the problems, methods and measures of performance. The sample problem set 

is presented in the next section. The numerical methods are briefly discussed 

in Sections II and III and a more detailed synopsis of them is given in 

Appendix 2. 
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A common weakness of previous efforts of this type is the lack of 

precision and information about the numerical methods. It is well known 

that it is insufficient to simply state "Method X was used". Variations 

in the implementation of Method X affect the performance measures by factors 

of 2, 10 or 1000. We believe that we have implemented all the numerical 

methods used in a way that gives close to maximum performance. We have 

particularly striven to be "fair" to each method and have not used special 

techniques (e.g. assembly language code) for one in order to enhance its 

performance relative to the others. 

We summarize our procedure and conclusions as follows: 

Problem Class: Second order linear elliptic partial differential 

equations of general nature i.e. some complication present in 

coefficients, domain or solution. 

Solution Requirements: Moderate accuracy (1 to 3 digits correct) 

achievable "in core" (60,000 words or less of memory needed). 

4 Numerical Methods: Standard Finite Differences; Collocation, 

Galerkin and Least Squares using piecewise cubic polynomials 

(Hermite cubics). 

Criteria of performance (efficiency): Execution time for a given 

accuracy. Accuracy is the maximum error divided by the size of 

the solution and is usually measured in decimal digits. 

Conclusions; 

1. There is normally a "cross-over point" at low accuracy beyond which 

Collocation is more efficient than Standard Finite Differences. Even 

when finite differences is more efficient, it is by a small amount while 

Collocation is sometimes dramatically more efficient than finite differences. 
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2. There is practically no difference at all between Galerkin and Least 

Squares in performance. They tend to be slightly more accurate than 

Collocation but are very much less efficient because of the increased 

work to compute the coefficients in the matrix problem to be solved. 

II. COMPARISON OF STANDARD FINITE DIFFERENCES AND COLLOCATION WITH HERMITE CUBICS. 

II.1 The Numerical Methods and Problem Set. The first comparison made in 

this paper is between the standard finite difference method (5-point star) 

and collocation with Hermite cubics. See Appendix 2, Fix and Strang [1973] 

and Collatz [1966] for detailed information on these methods. Simply stated, 

in collocation the coefficients of the approximate solution are chosen to 

satisfy exactly the partial differential equation and boundary conditions 

at selected points. 

In simple situations with a uniform mesh length of h , the finite 

2 
difference method is second order, 0 ( h ) and collocation is fourth order, 

4 

0(h ). Thus, asymptotically in these situations, as the accuracy increases, 

collocation becomes more efficient than standard finite differences. This 

suggests the existence of a cross-over point in the performance where 

collocation becomes more efficient. One of our objectives is to ascertain 

whether simple collocation applies to more general problems and to determine 

the expected location of the cross-over point. The operators, domains, 

boundary conditions and true solutions for the 17 problems we used are given 

in Table 1. The first 8 were previously considered by us in Houstis et al, 

[1975]. We give additional information about some of them: 

Prob. 2/3. Torsion in a bimetal shaft, Ely and Zienkiewicz [I960]. 

The shear modulus G is a step function with G^/G,, = 3 (see Figure la). 

We have replaced the step by a short interval (length = 0.001) where a 

cubic polynomial blends the two values of G smoothly. We measure accuracy 
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2 geometry and boundary conditions for problems 2, 3, 14 and 17. 
jblem 16 uses the geometry of (c) with the boundary condition u 
jrywhere. 

u = 0 

= g 

u = o 

u = y 

(b) 

u = 0 

u = 2 

U = y 

u = 0 

u = 0 

u = g 

( C ) 

u = 0 

u = 0 

u = g 



Table 1. The 17 problem space sample used in this paper. The letters f and g denote functions whose 
values are determined to make the problem have the specified true solution. The references are 
to papers where the problem or a closely related one has been considered. 

Problem 
Partial Differential Equation Operator 

True Solution 
Size of 

Solution Domain 
Boundary 

Conditions References 

1 Ce
x y

u )
 +

 (e"
x y

u ) -
 u

 = f L

 x'x
 v

 y'y 1+x+y 

u = e
X

^ sin(iTx) sin(uy) , 

1.3 Unit Square u=0 [9] 

2/3 [i u ) + Cf u ) = f with f = -26 or 0 ^G x'x '•G y y 

u is unknown , 

0.87 or 0.8 See Fig. la See Fig. la [7] [9] 

4 u + u = f 
xx yy 

u = (e
X

+e
y

)/(l+xy) > 

7.6 Ellipse u=g [9] 

n

 5 u + u = 0 
xx yy 

u = tan"*(y/x) , 

2.6 Circle 
v « [9] 

6 U

xx
 +

 ^ ^ y y " \ ' (
1 +

^
U

y
 = f 

u = e
x + y

 + (x
2

- x)
2

log(l+y
2

) , 

7.4 Unit Square u

- v ° 
[9] 

7 
u

xx
 + u

yy
 =

 "
 6 x

^
e X e /

 (xy
 +

 x + y - 3) 

. x y, 2
W
 2. 

u = 3e e' (x - x ) (y - y ) , 

0.58 Unit Square u=0 19] [14] 

8 u + u = f 
xx yy 

5/2 5/2 5/2 5/2 
u = x y ' - x y ' - x ' y + x y , 

0.1 Unit Square u=0 [9] 



Table 1 Continued 

'roblem 
Partial Differential Equation Operator 

True Solution 
Size of 
Solution Domain 

Boundary 
Conditions References 

9 4u + u - 64 u = f 
xx yy 

2 
u = 4(x -x) (cos (2iry) - 1), 

2.0 Unit Square u=0 

10 u + u - [100 + cos(3TTx) + sin(2Try)]u = f 
xx yy 

2 
u = [5.4-cos (4nx) ] sin(irx) (y -y) [5 .4-cos (4fry)] 

*[l/(l+iJ>Vl/2] 

4(x-.5)
2

 + 4(y-.5)
2

 , 

3.2 Unit Square u=0 [10] 

1/12 
2 

u

xx
 +

 "yy ~
 1 0 0 u =

 ^ ~
1 0 0

)
c o s h

 y /
c o s h

 v with M=10 or 20 

u = cosh lOx/coshlO + cosh yy/cosh ij , 

2.0 Unit Square u=g 

13 u + u = f XX yy 

u = 4»(x) * 4>(y) , see text , 

1.0 Unit Square u=g 
• 

14 u + u = f 
xx yy 

u = y[(x-2)V-l]e"-
0 6 2 5 x C x

-
4 K

>
r

-
2 )

/[C3
+
Cx-2)

2

)C3
+
y

2

)], 

2.0 See Fig. lb See Fig. lb [6] 

15 u + u = f 
xx yy 

2 
u = 10 *(x)**Cy) , • W = e "

1 0 0 ( x

" -
5 )

 (x
2

-x) , 

0.6 Unit Square u=0 

16 u + u = 2 e
x + y 

xx yy 

x+y 
u = e ' 

4.9 See Fig. lc u=g [17] 

17 u + u = f xx yy 

see text and Appendix 4 

100.0 See Fig. lc See Fig. lc [17] 



here by comparing with a numerical solution we have computed which we 

believe is much more accurate than the ones considered in this paper. 

Prob. 4. The ellipse is centered at (0,0) with major and minor 

axes of 2 and 1, By symmetry only a quarter of the elliptical region 

was used in the computation. 

Prob. 5. The circle has radius 0.5 and center at (0.5,0.5). The 

solution is uniquely determined by imposing the additional condition 

u(0,0.5)=0. 

Prob. 8. The true solution has a discontinuity in the "2.5" 

derivative. 

Prob. 10. This is a version of a problem from stratospheric physics, 

see McDonald et al [1974]. 

Prob. 11/12. These problems are of boundary layer type; the square 

is centered at the origin and has side 2. Symmetry was not used. 

Prob. 13. The product solution I{P(X) T K Y ) has a steep slope (or wave 

front) along a right angle at the center of the domain. We have 

where p(x) is a quintic polynomial determined so that 4> (x) has two continuous 

derivatives. 

Prob. 14. This problem is similar to that of steady flow past a sphere, 

Desai and Abel [1972]. The true solution satisfies the same boundary 

conditions and has the same shape as the solution of the physical problem. 

Prob. 15. The solution has a sharp peak at the center of the square 

2 

and it is very small for (x-.5) +(y-.5) > .01. 

Prob. 16/17. This problem is derived from that of heat flow in the 

concrete shield of a nuclear reactor, see Zienkiewicz and Cheung [1965]. 

7 
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Problem 16 only has the geometry and operator of the real problem. The 

true solution of Problem 17 (see Appendix 4) is a complicated function 

which exhibits the same shape (including small singularities at the three 

reentrant corners) and satisfies the same boundary conditions (except along 

x=0 and y=0) as the solution of the physical problem. 

Problems 1, 7, 8, 9, 13 and 15 are separable and all the operators 

except for Prob. 6 are formally self-adjoint. 

II.2 Results of the Comparisons. The data obtained are presented in two 

forms. In Appendix 1 we give a set of 17 graphs of the accuracy achieved 

versus computer time used. For both methods the error is measured only at 

the nodes of the grid used. For most problems we have also measured the 

error at many more points in the domain and this sometimes gives a considerably 

different result. This is discussed in more detail in Section IV. We used 

a CDC 6500 whose long word length gives ample insulation from round-off 

errors in these calculations. 

In Table 2 we tabulate the cross-over points for all 17 problems. This 

is expressed both in terms of accuracy measured in digits as log(max error/ 

solution size) and the number N of subdivisions in each variable. FOT the 

non-rectangular regions we give an approximate "equivalent" value of N 

which would give about the same number of unknowns, if the region were 

rectangular. 

We see from Table 2 that the cross-over points range from 0 to 4 digits 

with 2 as a median value. One of the high cross-over points comes from 

Problem 16 where high accuracy is obtained by very coarse meshes. Let Np 

and N„ denote the values of N at the cross over point for finite differ-

ences and collocation, respectively. There is a fairly consistent pattern 

in the relationship of the values of N
p
 and N

c
 , namely is about 

1. The value of N
c
 is small (from 1 to 6 with 3 as median) for all cases. 
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Table 2. Tabulation of the cross-over points for 17 problems. The accuracy 
(in digits) and numbers Np and N,, of grid lines is given for the comparison 
of Standard Finite Difference and Collocation with Hermite Cubics. 

Digits = N
p 

N

c > c 
Problem log(max error/solution size) Finite Difference Collocation 

r 

^c 

1 1.8 5 2 1.12 

2 3.0 13 4 0.90 

3 1.5 12 3 1.1S 

4 3.0 12 4 0.87 

' 5 1.9 6 2 1.22 

6 0 1 1 1.00 

7 1.8 5 1 2.23 

8 4.0 5 2 1.12 

9 3.0 9 4 0.75 

10 1.1 8 3 0.94 

11 2.2 13 6 0.60 

12 1.3 9 4 0.75 

13 1.3 15 5 0.77 

14 3.6 17 5 0.82 

IS 1.2 15 4 0.97 

16 4.1 16 4 1.00 

17 1.8 20 6 0.75 

Our results here differ in some cases from those published earlier, 

Houstis et al [1975]. The efficiency of both programs has been improved 

but their relative efficiency has not changed much. In our earlier paper 

we measured the error at many points over the entire domain (bilinear 

interpolation was used to extend the finite difference solutions). The 

few noticeable differences from the earlier data are due to this change in 

error measurement. We also previously gave data on memory usage as well 

as execution time. We have omitted memory data here as the cross-over points 

for memory are somewhat the same as for execution time (this is true also for 

the new problems introduced in this paper). 



We timed separately the formation and the solution of the linear 

equations. Both finite differences and collocation are very similar in 

the breakdown of execution time as seen in Table 3. 

Table 3. Sample data on the breakdown of execution time between 
formation and solution of the linear equations. 

Time for linear system 
Formation Solution 

Ratio of 
F ormat i on/Tot a1 

Prob. 1. Collocation, N-4 0.25 sec 0.46 sec .54 
.50 
.22 
.20 

Finite Differences, N=10 
Collocation, N=8 
Finite Differences, N=17 

0.25 
1.0 
0.9 

0.56 
4.5 
3.6 

Prob. 10 Collocation, N=8 
Finite Differences, N=17 

1.4 
1.2 

4.4 
3.4 

.24 

.26 

The solution of the matrix equation was always by Gauss elimination 

(frontal or profile version) and it is possible that iterative methods 

or nested dissection would be significantly more efficient. Indeed, this 

is known to be true for certain simple problems and finite differences. 

However, we are concerned with problems with some complexity (even though 

we included some simple examples in our sample) and there the theoretical 

relationship between iterative methods and Gauss elimination is unknown. 

Iterative methods also normally involve choosing one or more parameters 

and that could be very delicate for complex problems. Thus we must leave 

the question of the impact of using iterative methods on these problems as 

an open question for future research. The few comparisons that we are aware 

of have various defects that leaves the situation inconclusive in our minds. 

II.3 Conclusions. A study of Table 2 and the graphs in Appendix 1 shows 

that collocation becomes more efficient than standard finite differences 

at rather low accuracies and/or small values for N. Furthermore, when finite 

differences are more efficient, it is by a small margin whereas collocation 
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is often dramatically more efficient than finite differences. These results 

cover a reasonably broad range of two-dimensional linear elliptic problems 

and show that there is no reason from the point of view of efficiency to 

use the standard finite difference methods for this class of problems. 

It is also relevant to note that in practical problems one must almost 

always compute solutions to higher accuracy than actually required. That 

is to say, the only reliable ways to be certain that one has an error of, 

say, 5% (or less) involve computing a solution accurate to 1% or better. 

This is especially the case for low accuracy requirements (e.g. 1-10% error). 

III. COMPARISON OF COLLOCATION, GALERKIN AND LEAST SQUARES. 

III.l The Methods. In all three of these methods we use Hermite cubic 

polynomials as approximations. More specific details are given in Appendix 

2 but there are two facts worth noting here. First, both the Galerkin and 

Least Squares methods involve the evaluation of integrals and these have been 

estimated by using 9 point quadrature in each grid rectangle based on the 

tensor product of the 3 point Gauss rule. All the information from the 

equation must be evaluated at 9 points, this compares with 4 points needed 

for collocation in each element (grid rectangle). 

Second, the Galerkin and Least Squares methods were implemented only for 

the case where the boundary conditions can be exactly satisfied by chosing 

the Hermite cubic basis appropriately. This restriction makes them intrinsic-

ally less flexible and should give them an advantage over collocation whenever 

they are applicable. To offset this advantage we used the same Hermite 

cubic basis for collocation on those problems where all three methods are 

compared. In complex problems it can be very difficult (and tedious) to 

modify the original problem into one where the boundary conditions can be 

satisfied exactly by piecewise cubic polynomials. 

11 



There are only six problems 7, 8, 9, 10, and 15) where Galerkin 

and Least squares could be applied, but the results are so consistent 

that this number seems sufficient to draw general conclusions. 

111.2 Results of the Comparisons. The graphs given in Appendix 1 for these 

six problems show the data for all three methods. An examination of these 

graphs shows that there is rarely a significant difference between the 

Galerkin and Least- Squares method. Table 4 gives a sample of some additional 

typical data for comparing the collocation and Galerkin methods. 

One sees from Table 4 that collocation is always faster for equal 

accuracy. The advantage decreases as N increases and an operations count 

shows that eventually the Galerkin method is faster. This is because 

eventually most of the time is spent in solving the linear system and the 

Galerkin system is symmetric and hence can be solved twice as fast as the 

nonsymmetric collocation system. The timing data given in Table 4 is 

compatible with an operations count analysis for these two methods. One 

also sees for a fixed set of elements (grid) that collocation is sometimes 

much less accurate than Galerkin and never more accurate. However, the 

graphs show that the accuracy advantage of Galerkin never compensates for 

its speed disadvantage in these cases. One may compare accuracy from the 

graphs by noting that the last point plotted for each method has the same 

number of elements. 

Note that Problem 10 involves fairly complicated functions in the 

differential operator and that this has a large negative effect for the 

Galerkin and Least Squares methods. 

111.3 Conclusions. We see that collocation is a more general method and 

that it is also more efficient than Galerkin or Least Squares. Collocation 

is more delicate to apply because the boundary collocation points must be 

selected carefully for complicated regions. See Appendix 3. Thus collocation 

12 



is the method of choice among these three for the class of problems 

represented here. 

Table 4. Selected data comparing collocation and Galerkin for six 
problems. Times are given in seconds. 

Factors of 
Time Break Down 

Speed 
Advant age 
for Coll. 

Accuracy 
Advant age 
for Galer. 

Collocation Galerkin 

Prob No 

Speed 
Advant age 
for Coll. 

Accuracy 
Advant age 
for Galer. N 

Matrix 
Formation 

Matrix 
- Sol. Error 

Matrix 
FormRt.ifn 

Matrix 
Sol, Error 

1 4 to 12 2 to 3 3 
7 

.137 

.792 
.203 

2.961 
5.6*10"^ 
1.8*10 

2.15 
10.57 

.218 
3.67 

2.4*10? 
1.0*10 

7 3 to 6 2 4 
8 

.159 

.645 
.477 

4.45 
2. 8*10~f 
1.7*10 

2.01 
8.1 

.538 
5.85 

2.6*10
-

p 
1.7*10 

8 2.5 to 8 2.5 to 4 3 
8 

.081 

.633 
.213 

4.33 
1.6*10~j 
4. 8*10 

1.12 
7.89 

.21 
5.95 

6*10~5 
2*10 

9 3 to 7 1 to 4 2 
7 

.034 

.489 
.053 

2.88 
5*10~

2 

1.6*10 
.566 

6.88 
.055 

3.71 
1.5*10~

2 

8.6*10 

10 6 to 15 1 to 2 2 
9 

.052 
1.71 

.055 
6.66 

8. 5*10~1 
7*10 

1.98 
40.0 

.059 
9.15 

8.6*10~i 
4*10 

15 5 to 10 1 to 7 4 
8 
->-

.239 

.95 
.482 

4.39 
3.4*10"^ 

8*10 
4.81 

18.8 
.54 

5.82 
8*10~

2 

1.1*10 

IV. THREE OBSERVATIONS. 

IV.1 Unequal Mesh Spacing for Collocation. There are two disadvantages 

to collocation compared to standard finite differences: (1) It is not 

well known, (2) Its implementation is more complicated. The extra complexity 

(which is not great) of collocation partially stems from its greater 

flexibility. One manifestation of this is that unequal mesh spacings can 

be used with no extra difficulty, no loss in accuracy and a negligible 

increase in computation. By no loss of accuracy we mean that collocation 

remains a fourth order method as contrasted to standard finitie differences 

where unequal mesh spacing reduces the order from second to first. 

In fact, unequal mesh spacing can dramatically increase the accuracy 

of collocation solutions and often one can see (with little trouble) a 

reasonable mesh to use. Several examples of this occur among the 17 problems 



considered here, including Prob. 13 (wave front on a right angle) and 

Prob. 15 (sharp peak at center). We solved both of these problems with 

unequally spaced meshes and the resulting improvements are tabulated 

in Table 5. The unequally spaced meshes for these examples were chosen 

in what seemed a plausible way, but no systematic attempt was made to 

optimize the mesh. 

Table 5. Illustration of the possible improvement in accuracy of the collocation 
method by using an unequally spaced mesh. 

Case Equally Spaced 
ERROR 

Mesh Unequally Spaced Mesh 

Prob 13 , N=6 1.5*10"
2 

1.8*10 

N-8 7*10"
2 

4.1*10 

Prob 15 N=3 .57 .29 

N=6 .16 .06 

N=8 .08 .026 

IV.2 Additional Accuracy at the Mesh Nodes for Collocation. For general 

collocation there is a phenomenon called super convergence, see deBoor and 

Swartz [1974] where the order of accuracy at the mesh nodes is higher than 

elsewhere. However, in theory this phenomenon does not occur when using 

cubic polynomials. Nevertheless, we observed substantially improved accuracy 

at the nodes for some problems while there was none for some others. For 

two ptbblems there was a constant increase in the accuracy at the nodes: 

a factor of 4 for Prob 7 and 15 for Prob 4. In some other problems (e.g. 8, 

10, 11, and 13) there was a more erratic factor of increase, but it exceeded 

4 in some case of each of these problems. No such phenomenon occured for 

14 



the Least Squares or Galerkin methods. 

There is a plausible explanation of this as follows: The nature of the 

theoretical error term for collocation is different at the mesh nodes than 

that at other points, but the use of cubic polynomials results in the same 

order of accuracy for both cases. However, for some problems the coefficient 

of the principal error term at the nodes might be significantly smaller than 

that of the general error term. This could account for the phenomenon that 

we observe. 

IV.3 Dependence of Accuracy on the Nature of the Operator as well as the 

Solution. It is obvious that the difficulty of obtaining a numerical solution 

of a partial differential equation depends on the nature of the differential 

operator as well as the nature of its solution. This fact may be overlooked 

as the theory plans heavy emphasis on the nature of the solution. The effect 

of the operator, however, can be quite significant. For example, compare 

the widely varying results that are obtained for Problems 6, 7 and 16 whose 

solutions are nearly the same. On the other hand, Problems 1, 7 and 9 have 

very similar results as one would guess from the fact ^that the differential 

operators and boundary conditions are similar in nature and all three have 

very well-behaved solutions. We have considered several sets of different 

problems which all have the same solution and have seen a very wide range 

of difficulty in obtaining the same function from problems with different 

operators. 
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V. COMPARISON WITH PREVIOUS WORK. 

There has been little effort on systematic comparisons of different 

methods for solving partial differential equations; our previous paper 

[Houstis et al, 1975] was one of the first. There have been a number of 

abstract comparisons based on asymptotic rates of convergence and asymptotic 

operation counts for the solution of linear systems of equations. See 

[Rice, 1976] and [Birkhoff
;
 and Fix,1971] for a large number of examples 

of this analysis and references to earlier work. Experience has shown that 

operation counts are reliable for estimating the efficiency of solving 

linear systems of equations. For iterative methods one must take extreme 

care to terminate the iteration at a level compatible with the discretization 

error of the method. This point is commonly overlooked and invalidates some 

otherwise interesting comparison studies. 

The usefulness of asymptotic rates of convergence as guides to the 

efficiency of numerical methods for elliptic problems is still open to 

question. Specifically, it is not known how reliable these rates are as 

guides for the moderate accuracy requirements of typical applications. 

Discussions of this question is given in the last section of Strang and Fix 

[1973] (there asymptotic rates are reliable guides for 3 example problems), 

in Birkhoff and Fix [1974] and in Swartz [1974] where several different 

order methods are compared. 

Roache [1972] has a section entitled "Remarks on Evaluating Methods" 

(pp. 109-112) and he strongly favors simple, low order methods and describes 

the performance of higher order methods as "disappointing". He supports 

the conclusions with citations of 12 papers, half of which have no relevant 

material on the question of the performance or comparison of methods. 

Most of those papers which involve shock wave and turbulence computations 

suggest that low order methods are the best of the methods used. However, 
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we (and some of the authors) interpret these papers' results on smoother 

problems differently than Roache. One paper explicitly states that first 

order methods compare poorly and a third order method gives "striking" 

improvement in accuracy with no more computation for some shock wave 

problems [Burstein and Mirin, 1970]. A comparison of methods for weather 

prediction by [Grammeltvedt, 1969] suggests to us that fourth order methods 

may be superior, but Roache states the opposite. None of these papers 

attempts a controlled comparison of methods and thus no definitive con-

clusions can be reached from them. 

Eason [1976] has a bibliography of 241 items relevant to the least 

squares method for partial differential equations. He tabulates the 

references in various ways including Table III. Comparisons where least-

squares methods are superior in accuracy, convenience or computing speed 

and Table IV. Comparisons where least-squares methods produce equivalent 

or comparable results. Eason is a strong advocate of the least squares 

method which may explain why a table where least squares does worse is not 

included. For example, Table III has 26 entries for collocation and 14 

for Galerkin. We have examined most of these references and they are, in 

general, one of two types. First, someone attempts to solve a problem, say, 

with collocation using 12 polynomial terms and with least squares using 8 

trigonometric polynomial terms. The problem has an unknown solution so the 

actual accuracy is unknown. The author reports his subjective evaluation of 

the quality of the results obtained. Usually there is insufficient data 

about the calculation to attempt to reproduce the results. Note that the 

differences observed are primarily due to using polynomials versus trigo-

nometric polynomials rather than using collocation versus least squares. 

The second type of paper is more systematic, but involves trivial problems 

in one way or another (i.e. either the problem is trivial or the method used 
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is trivial). For example, one sees solutions of three fairly simple 

problems by five methods which compute a quadratic polynomial approximation. 

Then general conclusions are stated. We did not locate any systematic 

and realistic evaluation of methods among these 40 references. Most 

papers do not even give conclusive evidence in the particular context of 

the problem they consider. 

If there is any consistent pattern in the results, it would be that 

authors find that the 'collocation of boundary conditions is delicate. 

Many find that least squares approximations to the boundary conditions give 

better results, primarily because they do not use good boundary collocation 

points. This does suggest that collocation of the differential equation 

combined with least squares for the boundary conditions would give a more 

robust numerical method with little or no penalty in efficiency. 

Leissa et al [1969] present a systematic study of the value of 9 

methods for two plate bending problems: a simply supported elliptic plate 

and a square plate supported a 4 "random" points. In both cases the 

"exact" solution is a series expansion truncated at 48 terms, but the authors 

do not view this as just another numerical method which might give worse 

results than some of the other methods they apply. The nine methods are 

compared on the basis of 11 criteria e.g. "suitability for programming", 

"applicability to general regions", "ease in learning". Efficiency and 

accuracy were not included directly as criteria and apparently were not 

systematically measured. It is important to note that all of the 9 methods 

considered were of limited flexibility and none could be applied to all 

17 problems included in this study. 
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APPENDIX ONE 

GRAPHS OF THE COMPARISON DATA FOR 17 PROBLEMS 

The data for the comparison of methods is plotted on log-log paper with 

accuracy achieved versus execution time. The accuracy is plotted as the actual 

error at the location of the maximum error. The execution time is in seconds 

on a CDC 6500. A consistent scheme of plotting is used for the four methods: 

solid for collocation, dots for finite differences, dashes for Galerkin and dot-

dash for Least Squares. Occasionally, some extra curves are plotted which are 

identified by a special label. 

One may crudely estimate the "time order" a of these methods by measuring 

the slopes of the curves of error vs. time when plotted on log-log paper. The 

order a estimated is for the relationship 

Error = 0(Time 

If one assumes that most of the computer time is spent in solving the linear 

systems, then one would have 

Error = 0(N
_ 4 a

) 

This assumption is clearly not satisfied here. In Table A1 we present our 

estimates of a and 4ct. We see that there is some correlation with the simple 

model which gives 4a = 2 for finite differences and 4a = 4 for the Hermite 

cubic method. There are also some very wide deviations from this. 

Table Al. Measured slopes a to estimate the order of the methods from their 

actual performance. 

Problem 
Finite Diff. Collocation Galerkin 

Prob1em 
Finite Diff. Collocation Galerkin 

Problem a 4a a 4a a 4a Prob1em a 4a a 4a a 4a 

1 
2 
3 
4 
5 
6 
7 
8 

0.65 2.6 
1.13 4.5 
0.94 3.8 
0.59 2.4 
0.47 1.9 
0.55 2.2 
0.61 2.4 

. 0.58 2.3 

1.44 5.8 
2.4 9.6 
1.7 6.8 
1.37 5.5 
4.0 16.0 
1.46 5.8 
1.39 5.6 
0.67 2.7 

1.9 7.6 

2.0 6.2 
1.5 6.1 

9 
10 
11 
12 
13 
14 
15 
16 
17 

?? 

0.58 2.3 
0.53 2.1 
0.54 2.2 
0.38 1.5 
0.67 2.7 
0.73 2.9 
0.85 3.4 
1.44 5.8 
1.05 4.2 

1.5 6.0 
1.15 4.6 
1.06 4.2 
0.68 2.7 ? 

1.5 6.0 
1.19 4.8 
2.34 9.4 
1.05 4.2 

1.4 5.7 
9 

1.2 4.8 



Figure Al. The data for Problems 1 to 4. Galerkin and Least Squares data is 
given for Problem 1. For Problem 4 we also plot the maximum error over the 
whole region to compare with that at the nodes. 

Figure A2. The data for Problems 5 to 8. The solution to Problem 8 has a mild 
singularity, which seems to affect the collocation solution more than Galerkin 
or Least Squares. 

Figure A3. The data for Problems 9 to 12. Galerkin and Least Squares show 
erratic behavior for Problem 10. The "boundary layer" of Problem 12 adversely 
affects both methods of solution. 

Figure A4. The data for Problems 13 to 15. The effect of collocation with a 
non-uniform mesh for the wave front on a right angle (Problem 13) and for an 
isolated sharp peak (Problem 15) is seen. The erratic behavior of collocation 
with a uniform mesh for Problem 13 seems to be due to the chance relationship 
between the mesh and the wave front. 

Figure A5. The data for Problems 16 and 17 with the complicated geometry of 
Figure 1(c). The complex geometry does not adversely affect Problem 16 where 
surprising accuracy is obtained. The singularities and complex geometry also do 
not seem to adversely affect Problem 17 (recall that the true solution is of 
size 100.) where the geometry forced non-uniform meshes for both collocation and 
finite differences. 
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APPENDIX TWO 

SYNOPSIS OF THE NUMERICAL METHODS 

1. Standard Finite Differences. This method has the following components. 

(a) Grid: A rectangular grid is placed over the domain and all points in 

the domain or on its boundary are used. The grid is uniformly spaced 

except for Problems 16, 17 where the geometry made that undesirable. 

(b) Approximation to the operator: The derivatives in differential equation 

are replaced by simple central, 3-point finite difference approximations 

involving the grid points. 

(c) Approximation to the boundary conditions: Derivatives in Neumann or 

mixed boundary conditions are approximated as indicated by the diagram 

taking into account the zeros in the system (profile or frontal method). 

2. Collocation. This method has the following components. 

(a) Elements: A rectangular grid is placed over the domain. Rectangular 

elements whose center is not inside the domain are discarded. The grid is 

uniform unless noted except for Problems 16, 17. 

(b) Approximation space: the Hermite bicubics defined at the end of this appendix. 

(c) Approximation to the operator: The approximate solution satisfies the 

differential equation exactly at the four Gauss point of a rectangular element. 

For non-rectangular elements near the boundary the four Gauss points are 
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projected inside the element as indicated by the diagram. 

x A 

X X 

x = differential equation 
collocation points 

(d) Approximation to the boundary conditions: The boundary conditions are 

interpolated at a selected set of boundary points for either Dirichlet, 

Neumann or Mixed boundary conditions. If the domain is a rectangle and the 

problem has Dirichlet conditions = 0 (Problems 1, 7, 8, 9, 10 and 15) then 

the Hermite bicubics are selected so as to automatically satisfy the boundary 

conditions and no boundary approximation equations are used. This is the same 

procedure as for the Galerkin and Least Squares methods. See Appendix 3 for 

details on how the boundary collocation points are selected. 

(e) Equation Solution: Same as for standard finite differences. 

Ritz-Galerkin and Least Squares. The components of these methods are: 

(a) Elements: same as for collocation. 

(b) Approximation space: same as for collocation. 

(c) Approximation to the operator: In each element E of the partition we have 

the Galerkin equations 

16 
Z a. ff {p D B. D B. + q D B. D B. + r B. B.Jdxdy = // f B. dxdy 

i = 1
i

E

F

x i x j
4

y i y
3
 I J p J 

where the operator L and the true solution U* are defined by 

• LU* = CP u*)
x

 +

 (q
 +

 rU 
y y 

f 

and 
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D ,D = differentiation operators x y 

B ^ x ^ ) , Bj (
x

>y) = the i and j elements of the Hermite bicubic basis 

ou = coefficient of B
i
 in the approximate solution (the index i 

refers to one element only) 

The Least Squares equation in each element is 

< 16 
Z a. IS L(B.) • L(B.)dxdy = // f L(B.)dxdy 

i=l
 1

 E
 1 J

 F
 J 

The integrals in these equations are approximated by the 9-point Gauss 

quadrature rule for rectangles (only rectangular domains were used with 

these methods). 

(d) Approximation to the boundary conditions: the boundary condition were 

exactly satisfied by the Hermite cubic basis for all problems (1, 7, 8, 9, 10 

and 15) attempted with these methods. 

(e) Equation solution: The local equations are assembled (by the direct 

stiffness method) to form the global matrix. This equation is solved by 

Gauss elimination for positive definite matrices. 

The Rectangular Bicubic Hermite Element. The situation is shown in the diagram 

y 

(0,b) ® <D ' (a,b) 

© <3 v .. 

s = x/a and 0 < s <_ 1 

t = y/b and 0 <_ t £ 1 

The numerical labels on the corners 

(0,0) (a,0) 
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We use 8 one dimensional functions to construct the 16 basis functions 

for the rectangle: 

B
x l
 = l-3s

2

+2s
3

 h = l-3t
2

+2t
3 

B
x 2
 = s

2

C3-2s) ^ B
y 2
 = t

2

(3-2t) 

B

x3
 =

 ^ C
5

"
1

)
2

 B
y 3
 = bt(t-l)

2 

B
x 4
 = as

2

(s-l)
 B ? r 4

 = bt
2

(t-l) 

* 

Then u (x,y) is approximated in each rectangle by 

u(x,y) = B
x l
 B

y I
 U

2
 • B

x 2
 B

y l
 U

2
 • B

x 2
 B

y 2
 U

3 +
 B

x l
 B

y 2
 U

4 

+ B

X3
 B

yl 'xl
 + B

x4
 B

yl *X2
 + B

x 4

 B

y2
 CT

x3
 + B

x3
 B

y2
 CT

x4 
+ B , B _ a

n
 + B „ B , < J „ + B _ B . a „ + B , B , c t , 

xl y3 yl x2 y3 y2 x2 y4 y3 xl y4 y4 

+ B - B , T -i + B . B _ T _ + B . B . T , + B , B . T . 
x3 y3 xyl x4 y3 xy2 x4 y4 xy3 x3 y4 xy4 

where u^ = value at the point i 

a ., a . = x and y derivatives at the point i 
xi yi '

 r 

T ^ = xy (cross) derivative at the point i. 

The 16 functions in the above equation are the ones denoted by B^(x,y) 

earlier in the Galerkin and Least Squares equations, e.g. B
1
(x,y) = B ^ B ^ . 
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APPENDIX THREE 

THE INTERPOLATION OF BOUNDARY CONDITIONS FOR COLLOCATION 

The most sensitive aspect of collocation is the placement of the 

boundary collocation points for non-rectangular domains. First, one must 

take care that these points are reasonably separated from the points in 

the interior where one collocates with the differential operator. This 

is not difficult to do even in an automatic way, but the penalty for 

overlooking this point is an ill-conditioned computation with large errors. 

One first overlays the region with a rectangular grid and discards 

the elements which intersect the domain slightly or not at all. Let S^ 

be the number of boundary sides of the resulting rectangular partition. 

Then the number of boundary collocation points required is + 4 . We use 

two basic schemes for distributing the boundary collocation points as 

illustrated by the diagrams below for a simple rectangle: 

O » • 

n. * — o 

-* n 6 

* O * 

* o Jt 

2-Point Scheme Midpoint Scheme 

Figure A6. Two schemes for distributing boundary collocation points. The 

x's are the systematic collocation points and the O's are the four extra ones. 
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A theoretical analysis shows that the 2-point scheme is superior 

for "rectangular regions provided the two points are taken to be the 

Gauss points for each boundary segment. We compared using the Gauss 

points with equally spaced points and found the equally spaced points 

give slightly better accuracy and they are slightly easier to use. 

We made numerous numerical experiments which confirmed that the 2-point 

scheme is superior for rectangular regions. 

The extension of these two schemes to curved domains is illustrated 

in Figure A7. 

how the collocation points are placed on the edge of the rectangular partition 

and then mapped onto the portions of the boundary intersecting each rectangular 

element. 

The theoretical advantage of the 2-point scheme no longer holds for curved 

boundaries and our experiments confirm that it has no advantage over the 

midpoint scheme in this case. In fact it is, on the average, slightly less 

accurate. Furthermore, the midpoint scheme automatically gives collocation 
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of the boundary conditions at any extremities of the domain (for example, 

for a piecewise rectangular boundary such as in Problems 16 and 17, see 

Figure 1). It is often essential that collocation of the boundary conditions 

be made at all exterior corners of the domain. 

Our procedure is to use the 2-point scheme for boundaries which are 

straight (or nearly so) and parallel to a coordinate axis and to use the 

midpoint scheme otherwise. The two schemes -may be used together for a domain 

such as shown above and we do this as shown in Figure A8. 

Figure A8. The combination of the two schemes for a partially rectangular 

region. The mapping from the point on the rectangular edges to the curved 

boundary is indicated. 

There seems to be no particularly advantageous method to distribute the 

4 extra collocation points beyond putting them in elements with exterior 

corners and spreading them somewhat evenly around the boundary. We always 

map the midpoint type collocation points to segments of the curved boundary 

which are interior to the rectangular partition. The points are placed 

uniformly on each such segment. At times this may leave rather large segments 

of a curved boundary "unused", but we have not found a reliable method to 

place collocation points on the intermediate segments. We do place collocation 
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outside the rectangular partition for the 2-point scheme. An example 

is shown in Figure A9 which illustrates these procedures. 

Figure A9. Example which illustrates boundary collocation points for 

the 2-point scheme which are outside the rectangular partition and 

collocation for the midpoint scheme are inside. Collocation is not 

done on two large boundary segments. 
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APPENDIX FOUR 

THE SOLUTION OF PROBLEM 17 AND FUNCTIONS INVOLVED IN THE OTHER PROBLEMS 

We describe the exact solution u of Problem 17 for the reactor 

2 

heat shields V u = f. 

We set 
u(x,y) = 100 g(x,y,e,0,0)/ g(x,y,a,b,c) 

where, by construction, the numerator on the right is zero on the stair-step 

outer boundary of the domain (see Figure 1). The numerator is the product 

2/3 

of (x-1), (y-1), and three factor of the form r^ ' s i n f S ^ + it/2)/2) 

where r^ is the distance between (x,y) and the reentrant corner 

i = 1,2,3. The denominator is a modification of the numerator which is 

positive in a region containing the boundary of the heat shield and which 

is equal to the numerator along the circular part of the boundary. Note 

that this function has the correct singularities at the reentrant corners. 

Specifically: 

g(x,y,a,b,c) = [(x-l)(y-l) + a C(x,y)] n?
= 1
 T(x,y,x

i
,y

i
,b,c) 

C(x,y) = (x
2

 +
 y

2

 - .64)
2 

T(x,y, x., y
i
, b, c) = R(x,y, x., y^

3
 b) S(x,y, x

±
, y

±
, c) 

R(x,y, x
i
, y

t >
 b) = [(x-s^

2

 + (y-y^
2

 + b C(x,y)]
1 / 3 

S(x,y, X
i
, y

±3
 c) = sin(2 [arc tanQy-y^/Cx-x^) + tt/2]/3) + c C(x,y) 

with branch cut along y-y^ = x-x^, x^ < x 

After some experimentation, we found that a = - .5, b = .1 , c = 7. 

gives a solution u which is similar to that one expects for the temperature 

in the heat shield. 
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Remark about the evaluation of u and f = V u: 

In our first attempt at the construction of a suitable u, we used a 

somewhat simplier function [which later proved to be unsuitable because 

it had zeros in the interior of the region]. A Fortran program was 

written for the evaluation of u and it was processed by a symbolic 

differentiator to obtain function subroutines to evaluate u and u 
xx yy 

The resulting programs for u, u , u were more complicated and much 
xx yy 

longer than the one we eventually wrote for our more complicated function. 

We note that u, u , u can each be evaluated by successive calls to 
xx yy ' 

a number of very simple subroutines. Each of these evaluates V, V ^ , V ^ 

where V is a product V = WZ. Schematically the program is: 

W 

wx = 

wxx = 

z 

zx = 

zxx = 

V 

vx = 

vxx = 

w*z 

wx*z + w*zx 

wxx*z + 2.*wx*zx + w*zxx 

and similarly for the y-derivatives. 

The values of V, VX, VXX, VY, VYY are stored in a common block for use by 

subsequent routines. In most cases, statements like the first six above: 

W = ..., ... ZXX = ... , do not appear since the values are already computed 

by previously called subroutines. The program is quickly written and debugged 
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xkkkw PROBLEM ' i DATA •«*•« 
FUNCTION CaEF<X,YjJ> 
Z = EXP<X*Y> 
RZ = 1. •Z 
GD TO 0 01>1Q£J103»104J105>»J 

101 CDEF = Z 
RETURN 

102 CDEF = RZ 
RETURN 

103 CHIEF = V » Z 
RETURN 

104 CDEF = -X * RZ 
RETURN 

105 CDEF = -l.'Cl. + X + Y> 
RETURN 
END 
FUNCTION F(X»Y.J> 
GQ TD <101j10£) j J 

101 PI = 3.14159265358979 
Z = EXP(X*Y> 
RZ = 1. ' Z 
PIX = PI*X 
PIY = P1*Y 
PIZ = PI*Z 
SINX = SIN<PIX> 
SINY ~ SIN<PIY> 
TRUE = Z*SINX*SINY 
TEMP = PI*PI*TRUE 
XTRUE = X«TRUE 

. YTRUE = Y*TRUE 
FX = PIZ*CQS<PIX>*SINY 
FY = PIZ*COS<PIY>*SINX 
DXTR = YTRUE + FX 

DYTR = XTRUE + FY 
BLXTR = Y*YTRUE - TEMP + S.*Y*FX 
DDYTR = X*XTRUE - TEMP + 2.»X*FY 
F =• Z*DDXTR+RZ*DDYTR+Y*Z*DXTR-X*RZ*DYTR-TRUE/<1.+X+Y) 
RETURN 

102 F = 0. 
RETURN 
END 
FUNCTION TRUECXiY> 
PI = 3.14159265358979 
TRUE = EXP<X*Y>*SIN<PI*X)»SIN<PI*Y> 
RETURN 
END 
FUNCTION BCDEFCXjYJJ> 
GO TD < 101j102*103>>J 

101 BCOEF = 1. 
RETURN 

102 BCOEF = 0. 
RETURN 

103 BCDEF = 0. 
RETURN 
END 
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wkhx PROBLEM 2 DATA *»**• 
FUNCTIDN F(X>Y>J) 
GO TO <101>102>»J 

101 F = 0. 
RETURN 

102 IFtX.EQ.0..OR.X.EQ.1.> GD TD 1 
IF(Y.EQ.0..DR.Y.EQ..5) GO TO 1 
F = 1. 
RETURN 

1 F = 0. 
RETURN 
END 
FUNCTION COEF<X.Y,J> 
GD TO <1»2> 3? 4f 5)»J 

X COEF = GCXjY) 
RETURN 

8 CDEF = G<X>Y> 
RETURN 

3 CDEF 0. 
RETURN 

4 CDEF = 0. 
RETURN 

5 CDEF 0. 
RETURN 
END 
FUNCTION G<X>Y> 
E = .00001 
XI = .5-E 
X£ = .5 + E 
DX = X2 - XI 
IF< X .LE. XI ) GD TD 1 
IF< X .GE. X£ > GD TD £ 
POL = 3.-6.*<X-X1>*™2ADX*DX>+4.K<X-X1)*«3/'<DX**3> 
G = 1./-PDL 
RETURN 

1 G = 1.^3. 
RETURN 

£ G = 1. 
RETURN 
END 
FUNCTION BCDEF(XjY>J> 
GD TD aoi>ioe>io3>.j 

101 IF<X .GT. 0. .AND. X .LT. .25> GO TO 1 
IFciX .GT. .75 .AND. X .LT. l.> GO TO 1 
BCDEF = 1. 
RETURN 

I IF<Y .EQ. 0.) GO TD 2 
BCDEF = 1. 
RETURN 

£ ECDEF = 0. 
RETURN 

102 ECDEF = 0. 
RETURN 

103 IF(X.GT.0. .AND. X.LT..25>GD TD 11 
IFCX.GT..75 .AND. X.LT.l.) GO TD 11 
BCDEF = 0. 
RETURN 

II IFCY .EQ. 0. > GO TO 22 
BCDEF = 0. 
RETURN 

22 BCOEF = 1. 
RETURN 
END 
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mmmmm PROBLEM 3 DATA 
FUNCTION F<X»Y>J) 
GD TO

-

 <ioi»ioe>>j 
101 F = -20. 

RETURN 
10S F = 0. 

RETURN 
END 
FUNCTIDN CDEF<X.Y»J> 
GD TO Cl»2»3>4»5>,J 

1 CDEF = G(X> Y) 
RETURN 

2 COEF = G<X»Y> 
RETURN 

3 CDEF = 0. 
RETURN 

4 COEF = 0. 
RETURN 

5 CDEF = 0. 
RETURN 
END 
FUNCTIDN G(X> Y) 
E = .00001 
XI = .5-E 
X£ = .5 + E 
DX = X£ - XI 
IF< X .LE. XI > GO TD 1 
IFC X .GE. X£ > GO TO 2 
FDL = 3.-6.*<X-Xn**2/-<DX*DX>+4.*(X-Xl)">"3/<DX*«3) 
G = l./PDL 
RETURN 

1 G = 1./-3. 
RETURN 

2 G = 1. 
RETURN 
END 
FUNCTIDN BCDEF<X»Y.J> 
GO TD <101»10£»103>»J 

101 IFCX .GT. 0. .AND. X -LT< .£55 GO TD 1 
IFCX .GT. .75 .AND. X .LT. GD TD 1 
BCOEFI= 1. 
RETURN 

I IF<Y .EQ. 0.> GD TO 2 
BCOEF•= 1. 
RETURN 

£ BCDEF = 0. 
RETURN 

102 BCDEF = 0. 
RETURN i 

103 IFCX.DT.0. .AND. X.LT..255G0 TD 11 
IF<X.GT..75 .AND. X.LT.1.> GO TO 11 
BCDEF = 0. 
RETURN 

II IFCY .EQ. 0. > GD TD ££ 
BCDEF = 0. 
RETURN , 

22 BCDEF = 1 .
 1 

RETURN 
END 
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M H M M PROBLEM 4 DATA •*•«• 
FUNCTION TRUE<X»Y) 
TRUE s <EXP<X> + E X P < Y ) V < 1 . + X«Y) 
RETURN 
END 
FUNCTIDN DXTRUE<X»Y) 
Z = 1.'<1.+X*Y> 
DXTRUE = EXPCX>

w

Z-TRUE<XfY?»Y*Z 
RETURN 
END 
FUNCTIDN DYTRUE<X»Y> 
Z = 1.'<1.+X*Y> 
DYTRUE = EXP<Y>*Z -TRUE<X> Y)*X«"Z 
RETURN 
END 
FUNCTION DXYTR<X)Y> 
z = l.z-a.+xKY) 
DXYTR = - < EXP < X > *X+EXP < Y > *YJ *Z*Z 

$ -TRUE C X»Y >*Z+2.*TRUE< X r Y >*X*Y*Z»*2 
RETURN 
END 

FUNCTION FCX»Y»J> 
EX = EXP<X> 
EY = EXP<Y) 
Z = t.s<l. + X"Y> 
GD TD <1»2> » J 
F = CEX + EY - 2.*Z*<Y*EX+i<*EY-Z*<EX+EY>*<X*X+Y»Y:0>»Z 
RETURN 
F = (EX+EYi*Z 
RETURN 
END 
FUNCTIDN COEF(X»Y,J> 
GD TD <1»2> 3p 4» 5J J J 

1 CDEF = 1, 
RETURN 

2 COEF = 1 
RETURN 

3 COEF = 0 
RETURN 

4 COEF = 0 
RETURN 

5 CDEF = 0 
RETURN 
END 
FUNCTIDN BCOEF<X.Y,J> 
GD TD <1»2> 3>iJ 
BCDEF = 1. 
RETURN 
BCDEF = 0. 
RETURN 
BCDEF = 0. 
RETURN 
END ' 
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PROBLEM 5 DATA « « « 
FUNCTIDN TRUE<X»Y> 
TRUE = ATAN<Y/X> + 1. 
RETURN 
END 
FUNCTIDN F<X>Y>J) 
GD TQ <101»102) > J 

101 F = 0. 
RETURN 

102 IF<X.EQ..5 .AND. Y.EQ.0,> GD TO 1 
p = _ <Y - X>/<X + Y - .25> 
RETURN 

1 F = -1. 
RETURN 
END 
FUNCTION COEF<X»Y.J> 
GD TD <101J10£J103»104»105>»J 

f 01 CDEF = 1. 
RETURN 

102 CDEF = 1. 
RETURN 

103 CQEF = 0. 
RETURN 

104 CDEF = 0. 
RETURN 

105 CDEF = 0. 
RETURN 
END 
FUNCTIDN BCDEF<X»YPJ> 
GD TD <1>2>3> >J 

1 IFCX.EQ..5 .AND. Y.EQ.O.) GDTD 11 
BCDEF = 0. 
RETURN 

11 BCDEF = -1. 
RETURN 

2 IF(X.EQ..5 .AND. Y.EQ.O.) GO TD 22 
BCDEF = Y^.5 - 1. 
RETURN 

3 IF< X.EQ. .5 .AND. Y.EQ.O.) GD TD 33 
BCDEF = X/.5 -1. 
RETURN 

33 BCDEF = 0. 
RETURN 
END 



wxw*x PROBLEM & DATA ***** 
FUNCTION COEF<X>Y,J> 
60 T.O < 101»102P103>104>105> J J 

101 CDEF; = 1. 
RETURN 

102 CDEK = 1.+Y*Y 
RETURN 

103 CDEF = -1. 
RETURN 

104 CDEF = -C1.+Y*Y> 
RETURN , 

105 CDEF = 0. 
RETURN 
END 
FUNCTION F(X» Y> J> 
GO TO <101>102> j J 

101 F = <-4.*X*X*X+18.*X*X-14.*X+2.>*AL0G<l.+Y*Y)-
$ 2.* < < X*X-X > **2 > * < Y*Y+Y*"3+Y-1.>•C1.+Y*Y> 

RETURN 
102 IFtX.EG.O. .DR. Y.EQ.0.> GO TD 1 

F = < A L 0 G < 2 . ) * ( X * X - X > * * 2 
RETURN 

1 F = 2.*EXP<X+Y> 
RETURN 
END 
FUNCTION TRUE<X»Y> 
TRUE = EXP<X+Y>+<<X*X-X)**£>*ALOGa.+Y*Y) 
RETURN 
END 
FUNCTIDN BCDEF(XjYJJ) 
GO TO a01>10£jl03>jJ 

101 BCOEF = 1. 
RETURN 

102 IFCX.EQ.O.) GO TD 1 
IFCX.EQ.1.5 GO TD 2 
BCDEF = 0. 
RETURN 

1 BCOEF = 1. 
RETURN 

2 BCDEF = -1. 
RETURN 

103 IF<Y.EQ.O.> GO TD 11 
IFCY.EQ.1. > GD TO IS 

BCOEF = 0. 
RETURN 

11 BCDEF = 1. 
RETURN 

1£ BCDEF = -1. 
RETURN 
END" 
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M**M* PROBLEM 7 DATA ***** 
FUNCTIDN Ct]EF<X,Y»J> 
GD TD <101»102>103i104?10S>>J 

101 COEF = 1. 
RETURN 

102 CDEF = 1. 
RETURN 

103 CDEF = 0. 
RETURN 

104 COEF = 0. 
RETURN 

105 COEF = 0. 
RETURN 
END

 : 

FUNCTIDN F(X»YP J) 
GD TO (101,102? , J 

101 F = 6.*X*Y*EXPCX)*EXP<:Y)*<X*Y+X+Y-3. ) 
RETURN 

102 F = 0. 
RETURN 
END 
FUNCTIDN TRUE<X» Y) 
TRUE = 3.*EXP(X>*EXP(Y>*CX-1.>*X*(Y-1.>*Y 
RETURN 
END 
FUNCTION BCOEF<XpY,J> 
GD TD <101,102,103>,J 

101 BCDEF = 1. 
RETURN 

10E BCDEF = 0. 
RETURN 

103 BCDEF = 0. 
RETURN 
END 
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***** PROBLEM 8 DATA 
FUNCTION C0EF<X,YPJ> 
GO TD (101,10eplCi3>104»105>»J 

101 CDEF = 1. 
RETURN 

102 COEF = 1. 
RETURN 

103 COEF = 0. 
RETURN 

104 COEF = 0. 
RETURN 

105 CDEF = 0. 
RETURN 
END 
FUNCTIDN F<X» Yp J> 
GD TO <101,102) » J 

101 XR = SQRT<X> 
YR = SQRT<Y> 
F = 3.75 * <XR * YR * <X*X + Y*Y> - XR * Y - X « Y R ) 
RETURN 

102 F = 0. 
RETURN 
END 
FUNCTIDN TRUE(X»Y> 
XR = SQRTCX) 
YR = SQRT<Y) 
TRUE = XR*X*X*YR*Y*Y - X*YR*Y*Y -XR»X*X*Y + X«Y 
RETURN 
END 
FUNCTION BCDEF<X»YjJ> 
GO TO <101>102>103>»J 

101 BCOEF = 1. 
RETURN 

102 BCOEF = 0. 
RETURN 

103 BCDEF = 0. 
RETURN 
END 
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k w x v PROBLEM 9 DATA ***** 
FUNCTIDN TRUE<XPY> 
PI - 3.14159265353979 
TRUE - 4.*<X*X-X>*<C0S<£.*PI*Y>-1.> 
RETURN 
END 
FUNCTION F<XPYPJ> 
GO TO <101>102>>J 

101 PI - 3.14159265358979 
F = <32. + <256.+16.*PI*PI>*<X-X*X:0" 

$ C0S<2.*PI*Y>+£56.*<X*X-X> - 3 2 . 
RETURN 

102 F = 0. 
RETURN 
END 
FUNCTION CDEF(X,YPJ> 
GO TD ClOlp 102P 103> 104J 105J>>J 

101 COEF = 4. 
RETURN 

102 CDEF = 1. 
RETURN 

103 CDEF = 0. 
RETURN 

104 CDEF = 0. 
RETURN 

105 CDEF = -64. 
RETURN 
END 
FUNCTIDN BCOEF<XPY»J> 
GD TD <101p102P103>iJ 

101 BCDEF = 1. 
RETURN 

102 BCOEF = 0. 
RETURN 

103 BCDEF = 0. 
RETURN 
END 



WMKMK PROBLEM 10 DATA 
FUNCTIDN TRUE<X,Y> 
PI"3.141592653589793 
FDURP=4.*PI 
FPX=FOURP*X 
FPY=FDURP*Y 
CX=CDSCFPX) 
CY=CQS(FPY> 
F1=-CX+5.4 
F£=-CY+5.4 

F3= <X-.5>*<X-.5)+CY-.5>*<Y-.5> 
F3£=16.*F3*F3 
F34=F32*^32 
Z=1 ./<.\, +F34> 
F4=Z-.5 
SPX=SINCPI*X> 
GDFY=Y*Y-Y 
TRUE=F1*SPX*GDFY*F2*F4 
RETURN 
END 
FUNCTION FCX»Y.J> 
GD TD (101,102)jJ 

101 PI=3.141592653539793 
FDURP=4.*PI 
FPX=FDURP*X 
FPY=FDURP*Y 
SXTPSQ=FDURP«FDURP 
SX=SIN(FPX> 
SY=SIN<FPY> 
CX=CDS<FPX> 
CY=CdS<FPY> 
F l — C X + 5 . 4 
F£=-CY+5.4 
DXF1=F0URP*SX 
DYF2=FDURP*SY 
DDXF1=SXTPSQ*CX 
DDYF£=SXTPSQ*CY 

F3= <X-.5>*<X-.5>+(Y-.5>*<Y-.5) 
F3£=16.*F3*F3 
F33= F32*4.*F3 
F34=F32*F32 
Z=1./<1.+F34> 
F4=Z-.5 
DXF3= £.*<X-.5> 
DYF3= £.*<Y-.5> 
DDF3=2. 
zz=z*z 
U=F3£*ZZ 
W32=F33"ZZ 
U6=W3£*F33*Z 
DF4=-16.*kl3£ 
DXF4=DF4*DXF3 
BYF4=DF4*DYF3 
A1=-192.*U 
A£=-1&.*U32*DDF3 
A3=51£.*U6 
DXF3S=DXF3*DXF3 
DYF3S=DYF3*DYF3 
DDXF4=<A1+A3>*DXF3S+A£ 
DDYF4=< A1+A3 > »DYF3S+AS 
SPX=SIN<PI*X> 
PICPX=PI*COS<PI*X> 
GOFY=Y*Y-Y 
DGDFY=S.*Y-1. 
UXX=DDXF1*SPX*GQFY«FS»F4 

*+DXF1*PICPX*GDFY*F£*F4 
*+DXFl*SPX«GDFY«DXF4»F£ 
*+DXFl*PICPX*GDFY*F2*F4 
* -F1*PI*PI»SPX*G0FY*F2*F4 
* +F1*PICPX

B

GDFY*F2*DXF4 
•+DXF1«SPX*GOFY"F2"DXF4 
•+F1»PICPX*GDFY»F£«"DXF4 



•+F1*SPX*GQF Y*F2*DDXF 4 
UYY=F1*SPX»DGDFY"DYFS*F4 

«+Fl*SPX*2.*F2*F4 
*+Fl*SPX*DGDFY*F2*DYF4 
*+F 1*SPX*DGDFY*DYF£*F4 
*+Fl*SPX*GDFY*DDYF£*F4 
*+Fl*SPX*GDFY*DYF2*DYF4 
*+Fl*SPX*DGDFY*F2*DYF4 
*+F 1*SPX*GDFY*DYF2*DYF4 
*+F 1*SPX*GDFY*F2*DDYF4 
A=100.+CDS<2.*PI*X)+SIN<3.*PI*Y> 
ft = - ft 
U=TRU£<X» Y> 
F=UXX+UYY+A«U 
RETURN 

102 F=0. 

RETURN 
END 

FUNCTION CDEF<XiY,J> 
GD TD <101»10£»103.104»105>jJ 

101 CDEF-l. 
RETURN 

102 CDEF=1. 
RETURN 

103 CDEF=0. 
RETURN 

104 CDEF=0. 
RETURN 

105 PI=3.141592653589793 
CDEF=100.+CDS<2.*PI"X>+SIN<3.*PI*Y> 
CDEF = -CDEF 
RETURN 
END 
FUNCTIDN BCDEFCXpY.J) 
GD TD (1> 2» 3? p J 

1 BCDEF=1. 
RETURN 

2 BCDEF=0. 
RETURN 

3 BCDEF=0. 
RETURN 
END 



I 

KNKVV PROBLEM 11 DATA ***** 
FUNCTIDN COEF<XpY»J> ' 
GD TD (101»102p103P104»105)JJ 

101 CDEF = 1. 
RETURN 

102 CDEF = 1. 
RETURN 

103 CDEF = 0. 
RETURN 

104 COEF = 0. 
RETURN 

105 COEF = -100. • 
RETURN 
END 
FUNCTIDN F<XPYPJ> 
GD TO <101> 102> j J 

101 F = 0. 
RETURN 

102 F = TRUE<XpY) 
RETURN 
END 
FUNCTIDN TRUE<X»Y> 
TRUE = <CDSH(10.*X>+CDSHa0.*Y)VCDSH<10.> 
RETURN 
END 
FUNCTION CDSH<X> 
COSH = <EXP<X>+EXP<-X>V2. 
RETURN 
END 
FUNCTION BCDEF<XPY»J> 
GO TD <101p102p103)J J 

101 BCDEF = 1. 
RETURN 

102 BCDEF = 0. 
RETURN 

103 BCDEF = 0. 
RETURN 
END 
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***** PROBLEM 12 DATA 
FUNCTION CDEF<X»YpJ> 
GD TD <101»102P103>104j105>JJ 

101 COEF = 1. 
RETURN 

102 CDEF = 1. 
RETURN 

103 CDEF = 0. 
RETURN 

104 COEF = 0. \ 
RETURN 

105 COEF = -100. 
RETURN 
END 
FUNCTIDN F<X»Y»J> 
GD TD a 0 1 » 1 0 £ > p J 

101 F = 300.*CDSH<20.«YVCDSH<20.> 
RETURN 

102 F = TRUECXPY> 
RETURN 
END 
FUNCTION TRUE<XPY> 
TRUE = CDSH<10.*X>^aSH<10.>+CDSH<20.*Y)^CDSH<20.) 
RETURN 
END 
FUNCTION CDSH(X> 
CDSH = <EXP<X)+EXP<-X> >^2. 
RETURN 
END 
FUNCTION BCDEFCXjY.J) 
GD TD (101)102i103)?J 

101 BCDEF = 1 . , 
RETURN 

102 BCOEF « 0. 
RETURN 

103 BCOEF = 0. 
RETURN 
END 

i 
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k h m i PROBLEM 13 DATA 
FUNCTION COEF<X» Y> J> 
GQ TQ (101.102,103,104,105>jJ 

101 COEF = 1. 
RETURN 

102 COEF = 1 . 
RETURN 

103 CDEF = 0. 
RETURN 

104 CDEF = 0. 
RETURN 

105 COEF = 0. 
RETURN 
END 
FUNCTION F<X»Y»J) 
GD TD ClOlt102) » J 

101 F = DBP<X)*P<Y) + P<X)"D2P<Y) 
RETURN 

102 F = TRUE<X»Y> 
RETURN 
END 
FUNCTION TRUE<X»Y) 
TRUE => P<X>*P<Y> 
RETURN 
END 
FUNCTIDN BCOEF<X»Y»J) 
GD TO <101>102»103)>J 

101 BCOEF = 1 . 
RETURN 

102 BCOEF = 0. 
RETURN 

103 BCDEF = 0. 
RETURN 
END 
FUNCTION PCX) 
A = 1. 
B = 0. 
E = .15 
XI = .5 - E 
X£ = .5 + E 
IF<X .LT. XI) GO TD 1 
IF<X .GT. X2> GO TO £ 
DPHI = B - A 
DX = X£ — XI 
P = A + DPHI*<X-Xi>»«3/<DX**3>-3.>«I)PHI»0<-Xt)»3"<X-X2> 

$ /-BX*«4 + 6.*BPHI»CX-X1>W*3*<X-X2)**£^DX»*5 
RETURN 

1 P = A 
RETURN 

2 P = B 
RETURN 
END 
FUNCTIDN D2PCX) 
A = 1. 
B = 0. 
E = .15 
XI = .5 - E 
X2 = .5 + E 
IFCX .LT. XI) GO TO 1 
IFCX .GT. X2) GO TD 1 
DPHI = B - A 
DX = X£ - XI 
C3 = DPHI-'DX**3 
C4 = -3.«DPHI-'DX"M 
C5 = 6. *DPHI<

/

DX**5 
DSP = 6.*C3*<X-X1)+6.*C4»<X-X1)«<X-X2>+ 

$ 6.*C4* < X-X1> **2+6.»C5*(X-Xl)* <X-X2> ««£+ 
$ 12.*C5*(X-X1)**2* < X-X2) 
$ + £.*C5*<X-X1)**3 

RETURN 
1 D2P = 0. 

RETURN 

63 
END 



xttuxx PROBLEM 14 DATA • * « « 
FUNCTION TRUECTfS) 
E = .0625 
X = 4.*T 

Y 4.*S 
T1 = 7.*Y*<<X-£.>**£+Y*Y-l.) 
T2 - EXP<-E*i:Y-£. >*X"<X-4. >> 
T3 = <<X-2.>**£+3.>*<Y*Y+3.> 
TRUE = T1WT2/'T3 
RETURN 
END 

FUNCTIDN FCT.S.J) 
E = .0625 
GD TD(1 01 p 102)»J 

101 X = 4.*T 
Y - 4."S 
F1=?.*Y 
F2=(X-£.>**£+Y*Y-l. 
F3=EXP<-E*<Y-£.>*X*<X—4. >> 
F4=l.^<(:X-2. >*"2+3. > 
F5-l./'CY*Y+3.) 
DXF1=0. 
DXF2=2.*<X-£.> 
DXF3=<Y-2.)*<X-4.>»F3+<Y-2.>«X"F3 
DXF3 = -E* DXF3 
DXF4=-2. "<X-£. >'< CX-2. >""2+3. >«*2 
DXF5=0. 
DX2F1=0» 
DX2F2=2. 
DX2F3=<Y-2.>*F3+<Y-2.)«<X-4.>«DXF3+<Y-£.>"F3+(Y-2.)«X"DXF3 
DX2F3 = -E* DX2F3 
DX2F4=6. *< <X-£. >**2-l. <X-2. >""£+3. > « 3 
DX2F5=0. 
DYF1 = 7. 
DYF2=2.*Y 
DYF3=-E*X*<X-4.>*F3 
DYF4-0. 
DYF5=-2. *Y/"<Y*Y+3. >**2 
DY2F1=0. 
DY2F2=2. 
DY2F3=E*E"X*X*(X-4.>"*2«F3 ' 
DY2F4-0. 
DY2F5=6.* <Y*Y-1.>•(Y"Y+3.>**3 
T1=F1"DX2F2*F3"F4*F5+F1"DXF2*DXF3"F4"F5+ 

$ F1*DXF£*DXF3"F4*F5+F1*F2"DX2F3*F4«F5+ 
$ F1*DXF£*F3*DXF4*F5+F1»F2*DXF3*DXF4*F5 
% +F1*DXF2*F3"DXF4*F5+F1»F£"DXF3"DXF4"F5+ 
$ F i *F£*F3*DX£F4*F5 

T2=DYF1*BYF£*F3*F4*F5+DYF1*F£*DYF3*F4*F5+ 
$ DYF1*F£*F3*DYF4*F5+DYF1"F£*F3*F4*DYF5 

T3=DYF1*DYF£*F3*F4*F5+F1*DY£F£"F3*F4"F5+ 
$ F1»DYF2«DYF3"F4*F5+F1*DYF£*F3*F4"DYF5 

T4=DYF1*F£«DYF3"F4*F5+F1*DYF2«LYF3"F4"FS+ 
$ F1*F£*DY2F3*F4*F5+F1"F£"DYF3«F4»DYF5 

T5=DYF1*F£"F3"F4*DYF5+F1*DYF2*F3*F4*DYF3+ 
$ F1*F£*DYF3*F4*DYF5+F1"F£*F3"F4"DY£F5 

F=<T1+T£+T3+T4+T5>"16. 
RETURN 

102 F=TRUE(T»S> 
RETURN 
END 
FUNCTION CDEF<XPY>J> 
GD TD <lj£p3,4t5>,J 

1 CDEF=1. 
RETURN 

2 COEF=l. 
RETURN 

3 CDEF=0. 
RETURN 

4 CDEF=0. 
RETURN 

5 CDEF-0. 64 



RETURN 
END 
FUNCTIDN BCDEF<XjYPJ> 
GD TD <1j 2» 3> > J 

1 BCDEF=1. 
RETURN 

2 BCDEF=0. 
RETURN 

3 BCDEF=0. 
RETURN 
END 

i 
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***** PROBLEM 15 DATA ***** 
FUNCTION COEF(X»Y>J) 
GO TO (101>102,103,104j105)FJ 

101 COEF = 1. 
RETURN 

10£ CDEF = 1. 
RETURN 

103 CDEF = 0. 
RETURN 

104 CDEF = 0. 
RETURN 

105 CDEF = 0. 
RETURN 
END 
FUNCTIDN F(X»Y»J> 
P = .1 
GO TD (101,102) f J 

101 TEMP = -((X-.5>**2+(Y-.5)**2VP**2 
F1 = EXP(TEMP) 
DXU = -2.*<X-.5>*TRUE<X>YVP**2 + 

$ F1*(£.*X-1.>*(Y-1.)"Y'P 
DX2U = -2.*<TRUE<X»Y)+<X-.5>*DXUVP«i"2 

$-2.*CX-.5)*F1*(2.*X-1.)*<Y—1.)*Y/P**3 + 
$ 2.*F1*<Y-1. >*Y/-p 

DYU = -2.*<Y-.5)*TRUE(X» W P * * 2 + 
$ F1*<2.*Y-1.)*(X-1.)*X/P 

DY2U = -£.*<TRUE(X,Y)+<Y-.5)*DYUVP**2 
$-2.*<Y-.5)*Fl*C2.*Y-l.>*<X-1.)*X/P**3 + 
$ 2.*F1*(X-1.)*X^P 

F = (DX2U+DY2U) 
RETURN 

102 F = 0. 
RETURN 
END 
FUNCTION TRUECXiY> 
P = .1 
TEMP = -((X-.5)**£+<Y-.5)**2>^P**£ 
TRUE = EXP<TEMP>*(X-1.)*X*(Y-1.>*Y^P 
RETURN 
END 
FUNCTION BCDEF<XpY)J> 
GD TD (101,102>103)>J 

101 BCDEF = 1. 
RETURN 

102 BCOEF = 0. 
RETURN 

103 BCDEF = 0. 
RETURN 
END 
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WWKMK PROBLEM 16 DATA 
FUNCTION COEF<X»Y>J> 
GQ TD (101»102,103»104»105)»J 

101 CDEF = 1. 
RETURN 

102 CDEF = 1. 
RETURN 

103 COEF = 0. 
RETURN 

104 CDEF = 0. 
RETURN 

105 COEF = 0. 
RETURN 
END 
FUNCTIDN FCX.YJJ) 
GD T0<101j102)jJ 

101 F - 2.»TRUE<X>Y) 
RETURN 

102 F = TRUE<X,Y) 
RETURN 
END 
FUNCTION TRUE<X»Y) 
TRUE = EXPCX+Y) 
RETURN 
END 
FUNCTION BCDEFCX* Y» J ) 
GO TD (101»102»103>jJ 

101 BCOEF = 1. 
RETURN 

102 BCOEF = 0. 
RETURN 

103 BCOEF - 0. 
RETURN 
END 
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F U N C T I D N F < X > Y > J > 

F C O M P U T E S E I T H E R T H E T R U E S O L U T I O N O F P R D E L E M 1 7 O R 
T H E L A P L A C I R N U X X + U Y Y . 
L C U J I C A L I S U D E R V 

I F J . £ « . I.' T H E N E V A L U A T E T H E L A P L A C I A N 

E L S E E V A L U A T E T H E T R U E S D L U T I D N 

N D D E R V = . T R U E . 

I F ( J - E Q . 1 ) N O D E R V = . F A L S E . 

C A L L E V L A T E < X > Y F N D B E R V I 
A Q , Q X > G Y , G X X > Q Y Y

F
 I F L A G 5 

F = 1 7 7 7 0 C - O O O O O O O O O O O O O O B 

I F C N D D E R V ) F = Q 

I F < . N O T . N O D E R V . A N D . I F L A G . E Q . 0 > F = G!XX + Q Y Y 

R E T U R N 
E N D 

S U B R O U T I N E E V ; _ A 7 E < X X J Y Y J N D D I ^ J 
A Q V J W X » Q V Y S Q V X X » Q V Y Y » I F L A G ) 

I N P U T X X > Y Y > N O D I N J D N L Y N M J B U G A L L J B U G G V A L 

L D C A L V A R I A B L E S X > Y » N O D E R V F O R X X ? Y Y » N Q D I N 
O U T P U T C.-V - U V X , Q V Y > Q V X X , GIVYY»I F L A G 

I F L A G S E T T O 0 I F S U C C E S S F U L > S E T T O 1 I F N O T 
U H E N U N S U C C E S S F U L * Q V S E T T O Z E R O A N D Q V X > Q V Y > Q V X X J Q V Y Y 
A R E S E T T O I N D E F I N I T E . T H I S Q C C U R S A T R E E N T R A N T B O U N D A R Y 
C O R N E R S 

E V A L U A T E S G V I Q V Y J Q V X X J Q V Y Y 

OV = SIZE*QVAL 
S I Z E I S C O N S T A N T S E T I N D A T A 
U V A L = G V A L < 0 > CJ O V G V A L < A J E , C ) 

A J E , C . A R E C O N S T A N T S E T I N D A T A 
I V A I . = B V ^ L * F V A L < 3 ) " * F V A L < 5 )

S T S

F V A L < 7 ) 
B V A L = < X - 1 ) * < Y - 1 ) + A * C I R 2 

C l R £ = X * * £ + \
J

* * £ - R H D S Q R 
R H D S Q R I S C O N S T A N T S E T I N D A T A 

F V A L ( I ) = R B V A L A ; * T H V A L < I > 

R D V A L C I > = < < X - X P T < I ) ) * * £ + < Y - Y P T C I ) 
+ B » C 1 R £ 

X P T ( I > I X P T < I > I S I — T H R E E N T R A N T C O R N E R P D I N T 
T H Y A L = S N V A L + C * C I R 2 

S N V A L < I > = S I N C £ * A N V A L A > ^ 3 > 
H.-IVAL(I) = A R C T A N C < Y - Y P T < I> V ( X - X P T ( I ) > ) - P I ' 2 

Y - A X I S 

I 
I 
T 

I 
I 
I 

5 i 
INTERIOR I 

T 

i 
7 I 1 

V 
i 
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COMMON /SUBCOtV 
A PI, PII'2, PID4, TWDPIi THPIB£, £ TUTrt< TU!TKSG!» •NETHR, FRTH, NDDERV, 
r; TO. VD, XDSvRj YDSQR» RDSQR, 
i X Y XSQR ! YSQR , ANGLE 
D SIZE A B > C 
L RHD RHOSQR XPr<3> > YPT<3> , JUNKC£0> 
E ANVAL ANVflLX ANVALY , flNVALXX , ANVALYY 
G BVAL<&> B'v'ALX<2> BVALYC£) , BVALXXC2) , BVALYY<2> 
H CTR CIRX CIRY j CIRXX , CIRYY 
m CIR£ CIR2X CIR£Y j CIR2XX . CIR£YY 
J CT<£> CT*<£> CTY<£> , CTXXC2) , CTYY<£> j 
K FVALX<£,3> FVrtLYC2,3> , FVALXX<£>3> 9 FVALYY<£,3? 
L GVAL 5. > GVALYC2) > 'GVALXXC2) , GVALYYC2) 
n RDVALC2) RDVALY(2> , RDVALXX<£> , RDVALYYC2) 
M SNVAL : IiSNVAL DDSNVAL 
F THVALtS) THVALX<2> THVALY<£> > THVALXXC2> j THVALYY<2) 

DIMENSION CTALL<2? 5), CREALLCS) 

EQUIVALENCE <CTALL<1) 1), C T a ) > > <CR£ALL<1>> CIR2> 

LATA STALL s 10*0. 0 s 

LDGICAL NQDERV, NDBIN: DNLYNM? BUGRLLf BUGGVL 

REAL INBEF 
DATA INBEF • 1777COOOOOOOOOOOOOOOB 

DATA PIj PID£> PID4, TWDPI>THPID2>THTH) TWTHSQt DNETHRt FRTH • 
A 3.14159265353979, 1.57079632679490. .78539816339745> 
B S.c&316530717959J 4.71£33898038468, .66666666666667s 
C .•44444444444444, .33333333333333, 1.33333333333333 • 

DATA SIZE.' Ap B» CJ RHD> RHCISQR f 100.) ~.5> .1, 7., .8, .64 /-

BliTA XPT ^ .65 j .85 , .95 • 
IftTA YPT ' .7 , .5 p .3 /" 

MAKE XXjYYJNDDIN LOCAL IN •SUBCDM' ' 

X = XX 
Y = YY 
HDDERV = NDDIN 

XSGR = X*X 
YSCJR = Y*Y 
CfiLL CIRCLE 
CALL BVALS 

BQ SO I = 1 > 3 
XD = X - X P T U ) 
VB = Y - YPTCI) 
XBSPR = XD*XD 
YDSQR = YD* YD 
R'DSQR = XBSCR + YDSQR 
1F< RD2QR -GT. l.E-3 > GD TD 10 

THEN TDD CLOSE TO I-TH BOUNDARY CORNER 
IfLAG = 1 
QV = 0 . 
GSVX = INErEF 
QVY = INBEF 
QUXX = INDEF 
flVYY = ItfDEF 

EXIT 
GD TD 30 

0 CONTINUE 
ELSE CAN EVALUATE 

CALL ANVALS 
CALL SNVALS 
CALL RDVALS 
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CALL THVALS 
J = I

 1 

CALL FVPLS<FVAL< 1 jJ>'FVALX<1,J>>FVALY<1»J>» 
A FVALXXC1:J>» FVALYY<1> J> ' 

IFC BUGflLL > CALL DEBUGS1> 
£0 CONTINUE 

CALL GVALS 

CPLL QVALSCGV, QVX, QVY, QVXXj QVYY> 

QV = S'I2E*GV 

IFLAG = 0 

30 CONTINUE 
RETURN 
END 

SUBROUTINE CIRCLE 

FORM CIR = X**"£ + Y**£ - RHOSGR 
CIR£' = CIR**£ 
AND DERIVATIVES 

CDtfMON /SUBCDM/ REPEAT VARIABLES HERE *** 

D I M E N S I O N C T A L L C £ » 5 ) J C R £ A L L < 5 > 

EQUIVALENCE < C T A L L a , l > , CT<1))> (CR£ALL<1)» CIR£> 

LOGICAL hODERV 

CIR = XSGR + YSQR -.RHPSCR 
CIR£ = CIR**£ 
IF< NODERV > GD TO 10 

CIRX = £.*X 
CIRY = £. 
CIRXX = £. 
CIRYY = £. 

CIRSX = £.*CIR*CIRX 
Clft£Y = £.*CIR*CIRY 
CIRfiXX = 4.*t3.*XSQR + YSQR - RHDSQR > 
CIR£YY = XSQR + 3.*YSGR - RHDSQR ) 

10 CONTINUE 
RETURN 
END 

SUBROUTINE BVALS 

FCRM BVAL = CX-l + A*CIR£>»<Y-1 + rt»CIR£> 
AND DERIVATIVES 

COMMON /-SUBCOM/ REPEAT VARIABLES HERE *** 

D I M E N S I O N C T A L L ( £ J 5 > > C R £ A L L < 5 > 
EC.'UIVALENCE (CTALLC1,1>, CT<1>>» CCR£ALL(1)j CIR£) 

LOGICAL NODERV 

XMi = X - 1. 
YM1 = Y - 1. 
AC1R2 = A*CIR£ 
XFACT = XM1 + fiCIR£ 
YFACT = YM1 + ACIR£ 
BVAL C D = XM1-*YM1 
BVAL<£> = XFACT*YFACT 

IF( NOEERV > GO TO 10 

BVALX<1) = YM1 
EVALY <1> = XMI 
BVALXXC1> = 0. 
BVALYYCl) = 0. 
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XFACTX = 
yfacty = 
XFAC'TY = 
YFACTX = 
XFACT^X = 
YFACTYY = 
X^r.CTYV = 
YFriCTXX = 

EV.HLXte; 
B'vVL •,'<£> 
2v!=LXX<£i 
EVALYY^E) 
CONTINUE 

1. + A*C1R£X 
1. + A*CIR2Y 

A*CIR2Y 
A*CIR£X 
A*CIR£XX 
A*CIREYY 

YFACTYY 
XFACTXX 

= XFACTX"*YFAC'T + XFACT*YFACTX 
= XFACTY^YFACT•+ XFACT*YFACTY 
= XFACTXX*YFACT + 2.*XFACTX*YFACTX 
= XFACTYY^YF ACT + 2.*XFfiCTY*YFACTY 

XFflCT«YFACTXX 
X FACT* YF A CTY Y 

SUBROUTINE ANVALS 

FDF'M RHVPL = ARCTANC YD/XL > - PI^E ANB DERIVATIVES 

DCARCTAN<;>V>VIiU = W < V * V + U*U> 

ANGLE MEASURED CHUNTER-CLOCKWISE FROM XD-AXIS 
AUVHL MEASURES CDUNTER-CLQCKHISE FROM YD-flXIS 
ERft^CH PL.INT AT XD = YD = 0. 
&RANCH C'JT ALONG AhGLE = PI/4j ANVAL = -PI 

RETURN 
END 

I Y-A^IS 
A N V A L = 0 
YD-AXIS 
A N G L E = 

ANGLE = 0 
XD-AXIS 
ANGLE = EPI 
ANVAL = 3PI'£ 

. CX,Y) 
(XBj YD) 

X - A X I S 

COMMON /-SUBCOM^ *** REPEAT VARIABLES HERE *** 

DIrlEKSION CTALL(£j5>, CR2ALLC5) 

E O U I V A L E N C E CCTAI.L< 1 > 1 ) J C T < 1 ) > » ( C R S A L L C D J C I R 2 ) 

L O G I C A L N O D E R V 

IF< hGIiERV > GO TO 10 
CDI^UTE DERIVATIVES 

A W A L X = -YD/RDSQR 
ANVALY = XD-'RDSQR 
HNVALXX= -2. *"D

>:

AliVALX^RDSQR 
ANVALYY= -2. »:YD*rtMVALY^RDSQR 

CONTINUE 

IFC ABSC YD > .GT. AES( XD ) ) GO TO 20 
THEN ANGLE BETWEEN U AND PI'4 OR 3PI/4 AND 5PI/4 

•R 7PIS4 AND £PI 
ANGLE = ATAIK YD-'XD ) 
IF< XD .LT. 0. ) ANGLE = PI + ANGLE 
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IF< ANGLE .LT. 0. > ANGLE = TUOPI + ANGLE 

20 CONTINUE 
ELSE ANGLE BETWEEN PI/4 AND 3PI'4 CK 

ANGLE = PID2 - ATANC XD'YD > 
IF< VD .LT. 0. > ANGLE = PI + ANGLE 

30 CONTINUE 

GO TO 30 

5PI^4 AND 7PI/4 

SUBTRACT PI^£ TO MAKE ANVAL BETWEEN O AND 3PIs2 

ANVAL = ANGLE - PID2 

ADJUST FDS BRANCH CUT 

IF"( ANVAL .LT, -PID4 > ANVAL = TUOPI + ANVAL 

SUBROUTINE SNVALS 

FORM SNVAL SIN< £*ANVAL'3 >> DSNVALf DDSNVAL 

COMMON 'SUBCOM/' *** REPEAT VARIABLES HERE *** 

DIMENSION CTALL<2J5>» CR£ALL<5> EQUIVALENCE <CTALL<1>1>> CT<1)>f <CR£ALL<1)F CIR2) 

LOGICAL NDDERV 

ARG = TWTH*ANVAL 
SNVAL •= SINc ARG > 
IFf NDDERV > 

CCKf'UTE DERIVATIVES 
DSNVAI. = TUTH*COS<ARG> 
DDSNVAL = -Tk!THSG*SNVAL " 

10 COhT I N'JE 

SUBROUTINE THVALS 

FORM THvAL = SNVAL + C*CIR£ AND DERIVATIVES 

C = FOR NUMERATOR 

COMNCiN -"SUBCOM^ *** REPEAT VARIABLES HERE *** 

DIMENSION CTALL<£ j 5) > CR£ALL<5> 
K'UIVRLENCE (CTALLC1•1>S CT<1))J <CR£ALL(1)J CIR2) 

L D G I C H L N D D E R V 

THVAL a > = SNVAL 
THVAL'£> = THVAL<1') + C*CIR£ 
IF< rwDERV > 

1HVrv_X a > = DSNVAL*ANVALX 
THv.-LY <1> = DSNVAL*ANVALY 
TK'/Hl.XX(!> = DDSNVAL*CANVALX**E) + DSNVAL*ANVALXX 
":KVf;LVVa> = DDSNVAL* C AN VALY«*2> + DSNVAL*ANVALYY 

THVAL.X <2-' = THVALX <i>'+ C*CIR£X 
TK'.'hI.Y = THVALY a > + C*CIR£Y 

= THVALXX( 1i •> C*CIR£XX 
TH';K,.VY'C; = TKVAL'i'Va> + C*CIR£YY 

10 CGN'i I«:.:E 

SUBRJUTINC RDVALS 

RETURN 
END 

GD TD 10 

RETURN 
END 

GD TO 10 

RETURN 
END 

FORM RUVAL CkDSQR + B ^ C I R £ > ^ < 1 ^ 3 > 
2 = 0. FOR NUMERATOR 

AND DERIVATIVES 

COMMON •SU5CDM/' REPEAT VARIABLES HERE 
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DIMENSION CTALL<2,5>, CR£ALL(5> 

E Q U I V A L E N C E <CTflLLCljl>j CTC1))P (CR£ALL<1)» C I R 2 ) 

LOGICAL NDDERV 

SET CIRCLE-TEMP FUR DENOMINATOR (NUMERATOR SET TD ZERD IN DATA? 

DO 10 IBERV = 1> 5 
CTALL<2,IDERV> = B*CR£ALL(IDERV} 

0 CONTINUE 

EVALUATE FDR NUMERATOR AND DENOMINATOR <NUM = If DEN = 2> 

DO 30 NMDN = 1J 2 
RVALUE = RDSRR + CT(NMDN) 
RDVAL(NMDN> = RVALUE**ONETHR 
IF< NDDERV > GD TD 20 

COMPUTE DERIVATIVES 
11 = DNETHR*RDVAL < NMDN > /"RVALUE 
T£ = -TWTH*T1/RVALUE 
XBERV = 2. *XD + CTX(NMDN) 
YBERV = 2.*YD + CTY(NMDN) 
RDVALX (NMDN) = T1*XBERV 
RBVALY <NMDN> = T1*YBERV 
RE'VALXXCNMDN) = T£*XDERV*XDERV + Tl*<£. + CTXX<NM1)N>> 
RDVPLYY<NMDN> = T2*YDERV*YDERV + Tl*<£. + CTYYCNMDN>) 

0 COhTiriUE 
0 C O R I T I H U E 

RETURN 
END 

SUBROUTINE FVALS(FV> FVX. FVY» FVXXj FVYY> 

FDRMS FV = ( RSQ'**< 1/3) >*SIN< 2*ANVAL/'3 ) 

CQMMDH /SUBCDM-' *•** REPEAT VARIABLES HERE *** 

DIMENSION CTALL(£»5)j CR£ALL(5> EQUIVALENCE <CTALL(1J1)» CT(1)> I <CR£ALL(1)» CIR£> 

LOGICAL NDDERV 

DIMENSION FV(£>«FVX(£>rFVY<£>>FVXX<£)»FVYY<£) 

FCR NUMERATOR (1> AND DENOMINATOR <2> 

BD 20 N = 1> 2 
FV<N> = RBVAL<N>*THVAL(N> 
IF< NDDERV > GD TD 10 

C01PUTE DERIVATIVES 
FVX<N) = RIPVALX<N>*THVAL(N> + RDVAL<N)»THVALX<N) 
f"VY(N) = RBVALY(N>*THVAL(N> + RDVAL < N ) *THVALY < N ) 
FVXX(N> = RDVALXX<N>*THVAL(N> + £.*RDVALXCN)*THVflLX<N) 

A +RDVAL(N)*THVALXX(N) 
FVYY(N> = RDVALYY<N>*THVAL<N> + 2.*RDVALY(N)*THVALYCN) " 

{• +RDVAL(N)*-THVALYY(N> 
CONTINUE 

0 OQNUNUE 
RETURN 
END 

SUBROUTINE GVALS 

FORM GVAL'= BVAL*F3«F5*F7 AND DERIVATIVES 

COMMON /SUBCDiV *** REPEAT VARIABLES HERE *** 

DIMENSION CTALL<£«5)> CR£ALL<5j 

EQUIVALENCE CCTALLC1>1>j CTC1>>» (CR2ALL(l>p CIR2) 

LOGICAL NDDERV 
DIMENSION F357(£>>F35?X(£)jF357XX(£)rF357YC2)iF357YY<2)> 

A F57(£>> F57X<2)> F57XX<P)> F57Y<2)» F57YY<2) 
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COMPUTE NUMERATORS <1> AND,DENOMINATORS <2> 

DO £0 N = 1> 8 
FS7<RO = F 5 < N ) * F 7 < N > 
F357CN? = F3CN)»F57<N) 
GVALCN) = BVAL<N>*F357CN> 
IF< NDDERV ) 

COMPUTE DERIVATIVES 
F57X<N> = F5X<N>*F7<rO 
FS?Y<N> = F5Y<N>*F7<N:> 

F357X<N> = F3X<N)*F57<N) 
F357Y<N> = F3YCN?*F57<N) 

• GO TO 10 

+ F5<N>*F?X<N> 
+ F5CN>*F7YCN) 

+ F3CN)*F57X<N> 
+ F3<N>*F57Y<N> 

GVPiLXCN) = BVALX<N>*F357<N> + BVAL<N>»F357X<N> 
GVALYCN) = BVALY<N>*F357<N> + BVALCN)*F357Y<N) 

F57XX<N> = F5XX(N)*F7(N? + Z.•F5X<N>*F7X(N) 
A +F5<N>*F7XX<N> 

F37YY(N> = F5YYCN)*F7<N> + £.*F5YCN>*F7YCN> 
A +F5<N)*F?YY<N> 

F357XX(N> = F3XX(N>*F37(N> + £..«F3X<N)«F57X(N) 
A +F3(N>*F57XX<N> 

F357YYCN) = F3YY<N)*F57(N) + 2.*F3Y<N)*F57YCN) 
A +F3<N)*F57YY<N) 

GVALXX<N> = BVALXX < N > *F357 < N > + 2.*BVALX<N>*F357X<N> 
A .+BVAL(N>*F357XX<N> 

GVALYYCN) - BVALYY<N>"F357CN> + £.*BVALY<N)»IF357Y<N> 
A +BVAL < N)*F357YY < N > 

10 CONTINUE 
20 CONTINUE 

RETURN 
END 

SUBROUTINE QVALS < QV >QVX,QVY> QVXX. QVYY > 

FORM QV = SIZE*GVALC1VGVAL<2> 
AND DERIVATIVES 

C W M D N •SUBCOM/' *** REPEAT VARIABLES HERE 

DIMENSION CTALL<£»5)> C R 2 A L L O ) 
EQUIVALENCE CCTALLC1>1>> CT<1))J 

LOGICAL NDDERV i 

QV = GVAL<1>^GVAL<£> 
IF( NDDERV > 

<CR£ALL<1)» CIR2) 

GO TO 10 

COMPUTE DERIVATIVES. 

FACT = l./GVAL<£> 
FACTSQ = FACT*FACT 
FACTX = -GVALX(£>*FACTSQ 
FsCTY = -GVALY(£)*FACTSQ 
TACTXX = C£.*(GVALX<£>»»£>*FACT - GVALXX<2>>*FACTSQ 
"ACTYY = <2.*CGVALYC£>**2>KFACT - GVALYYC£>>*FACTSQ 
QVX =• GVALXC1 >*FACT + GVAL<0*FACTX 
aVY = GVALY C1>*FACT + GVAL <I>*FACTY 
QVXX = GVALXXC1>*FACT + £.»GVALX<1>*FACTX + GVAL<1)*FACTXX 
CVYY = GVALYY<1>*FACT + £. *GVALY<1 J*FACTY + GVAL< 1 )*FACTYY 

10 CONTINUE 
RETURN 74 
END 
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