5,196 research outputs found
Building a Model of Collaboration Between Historically Black and Historically White Universities
Despite increases over the last two decades in the number of degrees awarded to students from underrepresented groups in science, technology, engineering, and mathematics (STEM) disciplines, enhancing diversity in these disciplines remains a challenge. This article describes a strategic approach to this challenge—the development of a collaborative partnership between two universities: the historically Black Elizabeth City State University and the historically White University of New Hampshire. The partnership, a type of learning organization built on three mutually agreed upon principles, strives to enhance opportunities for underrepresented students to pursue careers in the STEM disciplines. This article further describes six promising practices that framed the partnership, which resulted in the submission of nine proposals to federal agencies and the funding of four grants that led to the implementation, research, learning, and evaluation that followed
Summary of the Very Large Hadron Collider Physics and Detector Workshop
One of the options for an accelerator beyond the LHC is a hadron collider
with higher energy. Work is going on to explore accelerator technologies that
would make such a machine feasible. This workshop concentrated on the physics
and detector issues associated with a hadron collider with an energy in the
center of mass of the order of 100 to 200 TeV
Prospects for Searching for Excited Leptons during RunII of the Fermilab Tevatron
This letter presents a study of prospects of searching for excited leptons
during RunII of the Fermilab Tevatron. We concentrate on single and pair
production of excited electrons in the photonic decay channel in one CDF/DO
detector equivalent for 2 fb^{-1}. By the end of RunIIa, the limits should be
easily extended beyond those set by LEP and HERA for excited leptons with mass
above about 190 GeV.Comment: 4 pages, 8 figure
Limited Lifespan of Fragile Regions in Mammalian Evolution
An important question in genome evolution is whether there exist fragile
regions (rearrangement hotspots) where chromosomal rearrangements are happening
over and over again. Although nearly all recent studies supported the existence
of fragile regions in mammalian genomes, the most comprehensive phylogenomic
study of mammals (Ma et al. (2006) Genome Research 16, 1557-1565) raised some
doubts about their existence. We demonstrate that fragile regions are subject
to a "birth and death" process, implying that fragility has limited
evolutionary lifespan. This finding implies that fragile regions migrate to
different locations in different mammals, explaining why there exist only a few
chromosomal breakpoints shared between different lineages. The birth and death
of fragile regions phenomenon reinforces the hypothesis that rearrangements are
promoted by matching segmental duplications and suggests putative locations of
the currently active fragile regions in the human genome
A Stealth Supersymmetry Sampler
The LHC has strongly constrained models of supersymmetry with traditional
missing energy signatures. We present a variety of models that realize the
concept of Stealth Supersymmetry, i.e. models with R-parity in which one or
more nearly-supersymmetric particles (a "stealth sector") lead to collider
signatures with only a small amount of missing energy. The simplest realization
involves low-scale supersymmetry breaking, with an R-odd particle decaying to
its superpartner and a soft gravitino. We clarify the stealth mechanism and its
differences from compressed supersymmetry and explain the requirements for
stealth models with high-scale supersymmetry breaking, in which the soft
invisible particle is not a gravitino. We also discuss new and distinctive
classes of stealth models that couple through a baryon portal or Z' gauge
interactions. Finally, we present updated limits on stealth supersymmetry in
light of current LHC searches.Comment: 45 pages, 16 figure
Assessment of digital image correlation measurement errors: methodology and results
Optical full-field measurement methods such as Digital Image Correlation (DIC) are increasingly used in the field of experimental mechanics, but they still suffer from a lack of information about their metrological performances. To assess the performance of DIC techniques and give some practical rules for users, a collaborative work has been carried out by the Workgroup “Metrology” of the French CNRS research network 2519 “MCIMS (Mesures de Champs et Identification en Mécanique des Solides / Full-field measurement and identification in solid mechanics, http://www.ifma.fr/lami/gdr2519)”. A methodology is proposed to assess the metrological performances of the image processing algorithms that constitute their main component, the knowledge of which being required for a global assessment of the whole measurement system. The study is based on displacement error assessment from synthetic speckle images. Series of synthetic reference and deformed images with random patterns have been generated, assuming a sinusoidal displacement field with various frequencies and amplitudes. Displacements are evaluated by several DIC packages based on various formulations and used in the French community. Evaluated displacements are compared with the exact imposed values and errors are statistically analyzed. Results show general trends rather independent of the implementations but strongly correlated with the assumptions of the underlying algorithms. Various error regimes are identified, for which the dependence of the uncertainty with the parameters of the algorithms, such as subset size, gray level interpolation or shape functions, is discussed
Assessment of Three Mitochondrial Genes (16S, Cytb, CO1) for Identifying Species in the Praomyini Tribe (Rodentia: Muridae)
The Praomyini tribe is one of the most diverse and abundant groups of Old World rodents. Several species are known to be involved in crop damage and in the epidemiology of several human and cattle diseases. Due to the existence of sibling species their identification is often problematic. Thus an easy, fast and accurate species identification tool is needed for non-systematicians to correctly identify Praomyini species. In this study we compare the usefulness of three genes (16S, Cytb, CO1) for identifying species of this tribe. A total of 426 specimens representing 40 species (sampled across their geographical range) were sequenced for the three genes. Nearly all of the species included in our study are monophyletic in the neighbour joining trees. The degree of intra-specific variability tends to be lower than the divergence between species, but no barcoding gap is detected. The success rate of the statistical methods of species identification is excellent (up to 99% or 100% for statistical supervised classification methods as the k-Nearest Neighbour or Random Forest). The 16S gene is 2.5 less variable than the Cytb and CO1 genes. As a result its discriminatory power is smaller. To sum up, our results suggest that using DNA markers for identifying species in the Praomyini tribe is a largely valid approach, and that the CO1 and Cytb genes are better DNA markers than the 16S gene. Our results confirm the usefulness of statistical methods such as the Random Forest and the 1-NN methods to assign a sequence to a species, even when the number of species is relatively large. Based on our NJ trees and the distribution of all intraspecific and interspecific pairwise nucleotide distances, we highlight the presence of several potentially new species within the Praomyini tribe that should be subject to corroboration assessments
- …