1,135 research outputs found

    XY checkerboard antiferromagnet in external field

    Full text link
    Ordering by thermal fluctuations is studied for the classical XY antiferromagnet on a checkerboard lattice in zero and finite magnetic fields by means of analytical and Monte Carlo methods. The model exhibits a variety of novel broken symmetries including states with nematic ordering in zero field and with triatic order parameter at high fields.Comment: 6 page

    Vocabulario English-Spanish/ Español-Inglés

    Get PDF

    Genesis of self-organized zebra textures in burial dolomites : displacive veins, induced stress, and dolomitization

    Get PDF
    The dolomite veins making up rhythmites common in burial dolomites are not cement infillings of supposed cavities, as in the prevailing view, but are instead displacive veins, veins that pushed aside the host dolostone as they grew. Evidence that the veins are displacive includes a) small transform-fault-like displacements that could not have taken place if the veins were passive cements, and b) stylolites in host rock that formed as the veins grew in order to compensate for the volume added by the veins. Each zebra vein consists of crystals that grow inward from both sides, and displaces its walls via the local induced stress generated by the crystal growth itself. The petrographic criterion used in recent literature to interpret zebra veins in dolomites as cements - namely, that euhedral crystals can grow only in a prior void - disregards evidence to the contrary. The idea that flat voids did form in dolostones is incompatible with the observed optical continuity between the saddle dolomite euhedra of a vein and the replacive dolomite crystals of the host. The induced stress is also the key to the self-organization of zebra veins: In a set of many incipient, randomly-spaced, parallel veins just starting to grow in a host dolostone, each vein's induced stress prevents too-close neighbor veins from nucleating, or redissolves them by pressure-solution. The veins that survive this triage are those just outside their neighbors's induced stress haloes, now forming a set of equidistant veins, as observed

    Magnetic frustration in an iron based Cairo pentagonal lattice

    Get PDF
    The Fe3+ lattice in the Bi2Fe4O9 compound is found to materialize the first analogue of a magnetic pentagonal lattice. Due to its odd number of bonds per elemental brick, this lattice, subject to first neighbor antiferromagnetic interactions, is prone to geometric frustration. The Bi2Fe4O9 magnetic properties have been investigated by macroscopic magnetic measurements and neutron diffraction. The observed non-collinear magnetic arrangement is related to the one stabilized on a perfect tiling as obtained from a mean field analysis with direct space magnetic configurations calculations. The peculiarity of this structure arises from the complex connectivity of the pentagonal lattice, a novel feature compared to the well-known case of triangle-based lattices

    Morfoestructura y evolución del ramal N160 de la dorsal de la Cuenca Nor-Fidjiana (Pacífico sudoeste)

    Get PDF
    The North Fiji Basin is a complex marginal basin formed 10 Ma ago. It is located in the south-west Pacific, on the border of the Pacific and Indo-Australian crustal plates, between two subduction zones of opposed polarity: the New Hebndes trench, to the west, and the Tonga- Kennadec trench, to the east. The North Fiji Basin contains, on a small scale, many of the essential components of global plate tectonics: fracture zones, active spreading ridges, and triple junctions. In the center of the North Fiji Basin, there is a spreading axis constituted of three separate branches which can be individualized in accordance to their dominant directions. One of them, the N160 segment, is discussed in detail in this article, mainly based on recent data sets obtained during the Yokosuka 90 cruise (STARMER project, managed by the IFREMER, France, and the Science and Technology Agency, Japan). The aim of this cruise, carried out between 10th January and 6th February 1991, was the geological and geophysical study of the N160 section of the North Fiji Basin Ridge. Specific features of the N160 segment are pointed out which make it especially interesting with regard to the general knowledge and hypotheses about oceanic spreading ridges. As an example, the N160 segment shows an intermediate spreading rate of 5 cm/a and, at the same time, has a morphology which should be considered as being typical of slow-spreading centers. A succession of en échelon alternating rises and grabens exists between the two triple junctions limiting the segment, the northern one belonging to the Ridge-Ridge-Ridge (RRR) type, and the southern one to the Ridge-Ridge-Fracture Zone (RRF) type. The entire N160 segment is an extremely young morphostructural feature which, according to recorded magnetic stripes, began to be active less than one million years ago as a result of a rapid volcano-tectonic event

    “I’ll take care of you,” said the robot: Reflecting upon the Legal and Ethical Aspects of the Use and Development of Social Robots for Therapy

    Get PDF
    The insertion of robotic and artificial intelligent (AI) systems in therapeutic settings is accelerating. In this paper, we investigate the legal and ethical challenges of the growing inclusion of social robots in therapy. Typical examples of such systems are Kaspar, Hookie, Pleo, Tito, Robota, Nao, Leka or Keepon. Although recent studies support the adoption of robotic technologies for therapy and education, these technological developments interact socially with children, elderly or disabled, and may raise concerns that range from physical to cognitive safety, including data protection. Research in other fields also suggests that technology has a profound and alerting impact on us and our human nature. This article brings all these findings into the debate on whether the adoption of therapeutic AI and robot technologies are adequate, not only to raise awareness of the possible impacts of this technology but also to help steer the development and use of AI and robot technologies in therapeutic settings in the appropriate direction. Our contribution seeks to provide a thoughtful analysis of some issues concerning the use and development of social robots in therapy, in the hope that this can inform the policy debate and set the scene for further research.Horizon 2020(H2020)707404Article / Letter to editorInstituut voor Metajuridic

    Chiral two-dimensional electron gas in a periodic magnetic field

    Full text link
    We study the energy spectrum and electronic properties of two-dimensional electron gas in a periodic magnetic field of zero average with a symmetry of triangular lattice. We demonstrate how the structure of electron energy bands can be changed with the variation of the field strength, so that we can start from nearly free electron gas and then transform it continuously to a system of essentially localized chiral electron states. We find that the electrons near some minima of the effective potential are responsible for occurrence of dissipationless persistent currents creating a lattice of current contours. The topological properties of the electron energy bands are also varied with the intensity of periodic field. We calculated the topological Chern numbers of several lower energy bands as a function of the field. The corresponding Hall conductivity is nonzero and, when the Fermi level lies in the gap, it is quantized.Comment: 10 pages;9 figures;42 reference

    Longitudinal and Transverse Zeeman Ladders in the Ising-Like Chain Antiferromagnet BaCo2V2O8

    Full text link
    We explore the spin dynamics emerging from the N\'eel phase of the chain compound antiferromagnet BaCo2V2O8. Our inelastic neutron scattering study reveals unconventional discrete spin excitations, so called Zeeman ladders, understood in terms of spinon confinement, due to the interchain attractive linear potential. These excitations consist in two interlaced series of modes, respectively with transverse and longitudinal polarization. The latter have no classical counterpart and are related to the zero-point fluctuations that weaken the ordered moment in weakly coupled quantum chains. Our analysis reveals that BaCo2V2O8, with moderate Ising anisotropy and sizable interchain interactions, remarkably fulfills the conditions necessary for the observation of these longitudinal excitations.Comment: 5 pages, 4 figures, 2 additional pages of supplemental material with 2 figures; Journal ref. added; 1 page erratum added at the end with 1 figur

    Non-universality of artificial frustrated spin systems

    Full text link
    Magnetic frustration effects in artificial kagome arrays of nanomagnets with out-of-plane magnetization are investigated using Magnetic Force Microscopy and Monte Carlo simulations. Experimental and theoretical results are compared to those found for the artificial kagome spin ice, in which the nanomagnets have in-plane magnetization. In contrast with what has been recently reported, we demonstrate that long range (i.e. beyond nearest-neighbors) dipolar interactions between the nanomagnets cannot be neglected when describing the magnetic configurations observed after demagnetizing the arrays using a field protocol. As a consequence, there are clear limits to any universality in the behavior of these two artificial frustrated spin systems. We provide arguments to explain why these two systems show striking similarities at first sight in the development of pairwise spin correlations.Comment: 7 pages, 6 figure

    Observation of magnetic fragmentation in spin ice

    Get PDF
    Fractionalised excitations that emerge from a many body system have revealed rich physics and concepts, from composite fermions in two-dimensional electron systems, revealed through the fractional quantum Hall effect, to spinons in antiferromagnetic chains and, more recently, fractionalisation of Dirac electrons in graphene and magnetic monopoles in spin ice. Even more surprising is the fragmentation of the degrees of freedom themselves, leading to coexisting and a priori independent ground states. This puzzling phenomenon was recently put forward in the context of spin ice, in which the magnetic moment field can fragment, resulting in a dual ground state consisting of a fluctuating spin liquid, a so-called Coulomb phase, on top of a magnetic monopole crystal. Here we show, by means of neutron scattering measurements, that such fragmentation occurs in the spin ice candidate Nd2_2Zr2_2O7_7. We observe the spectacular coexistence of an antiferromagnetic order induced by the monopole crystallisation and a fluctuating state with ferromagnetic correlations. Experimentally, this fragmentation manifests itself via the superposition of magnetic Bragg peaks, characteristic of the ordered phase, and a pinch point pattern, characteristic of the Coulomb phase. These results highlight the relevance of the fragmentation concept to describe the physics of systems that are simultaneously ordered and fluctuating.Comment: accepted in Nature Physic
    corecore