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Magnetic Frustration in an Iron-Based Cairo Pentagonal Lattice
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The Fe* lattice in the Bi,Fe Oy compound is found to materialize the first analogue of a magnetic
pentagonal lattice. Because of its odd number of bonds per elemental brick, this lattice, subject to first
neighbor antiferromagnetic interactions, is prone to geometric frustration. The Bi,Fe,Oy magnetic
properties have been investigated by macroscopic magnetic measurements and neutron diffraction. The
observed noncollinear magnetic arrangement is related to the one stabilized on a perfect tiling as obtained
from a mean field analysis with direct space magnetic configuration calculations. The peculiarity of this
structure arises from the complex connectivity of the pentagonal lattice, a novel feature compared to the

well-known case of triangle-based lattices.
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The pentagon, a five-sided polygon, is an old issue in
mathematical recreation. It forms the faces of the dodeca-
hedron, one of the platonic solids whose shape is repro-
duced in biological viruses and in some metallic clusters
[1]. The main peculiarity of this polygon is that, contrary to
triangles, squares or hexagons, it is impossible to tile a
plane with congruent regular pentagons; the tilings must
involve additional shapes to fill the gaps [2], like in the
Penrose lattice (Fig. 1). There exist, however, several
possibilities of tessellation of a plane with nonregular
pentagons, a famous one being the Cairo tessellation
whose name was given because it appears in the streets
of Cairo and in many Islamic decorations (Fig. 1).

Such a lattice could attract interest in the field of geo-
metric frustrated magnetism. Indeed, frustration usually
arises when all pairs of magnetic interactions are not
simultaneously satisfied in a system due to the lattice
topology, resulting in unusual physical properties [3].
Today, most of the studied systems are mainly based on
triangles (or tetrahedra in three dimensions), and can be
made perfect from both structural (regular polygons) and
magnetic (equal first neighbor magnetic interactions)
points of view. This is not the case with pentagonal lattices
that must involve only nonregular pentagons to fill the
space. The experimental realization of such a model sys-
tem is thus a unique opportunity that could bring new
interesting features in this field of magnetic frustration.
In this Letter we show that the Fe?" lattice in Bi,Fe,Oq
materializes the first analogue of a magnetic pentagonal
lattice, and we interpret its peculiar noncollinear magnetic
arrangement with respect to magnetic frustration.

Bi,Fe, Oy is a common by-product in the synthesis of the
multiferroic compound BiFeO;, and has been claimed
recently to display multiferroic properties itself [4]. This
was the initial motivation of our study: this finding requires
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a precise determination of the symmetries in the magnetic
ordered phase, since ferroelectricity can only arise in polar
space groups. Such a precise determination has never been
carried out on single crystals of Bi,Fe,Oq, and only powder
neutron diffraction measurements have been reported [5]
with no definitive conclusions due to the complexity of this
orthorhombic structure. Actually, there are two different
sites of four iron atoms in Bi,Fe ;Oq: Fe; occupies a
tetrahedral position and Fe, an octahedral one. In the
structure, columns of edge-sharing Fe, octahedra form
chains along the ¢ axis, and these chains are linked to-
gether by corner-sharing Fe; tetrahedra and Bi atoms
(Fig. 2). As a result, the lattice formed by the different
Fe’" magnetic atoms is quite remarkable. From a simple

FIG. 1 (color online).

Pentagonal lattices. (a) Cairo pentagonal
tiling, (b) Penrose pentagonal tiling, (c) pentagonal lattice
studied in Refs. [6-8], (d) dodecahedron.
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FIG. 2 (color online). The Bi,Fe,Oy compound (space group Pbam; a = 7.965(4), b = 8.448(5), ¢ = 6.007(3) A at 300 K). (left):
View of the unit cell with the environment of the two Fe ions. Bi atoms are purple, Fe yellow and O red. Projection of the structure on
the (a, ¢) plane (middle) and on the (a, b) plane (right). The atoms labels are in blue (dark gray). Black lines materialize the magnetic

exchange interactions.

examination of the structure, five main magnetic super-
exchange interactions, J; to Js, can be identified (Fig. 2).
The structure can be simply viewed as layers perpendicular
to the ¢ axis: the magnetic coupling of these layers along
the ¢ direction involves only Fe, atoms in the octahedron
columns and is achieved through two interactions, J; be-
tween the atoms within the unit cell and J, between the
atoms of adjacent cells. Within a layer, each Fe, interacts
with its nearest neighbor Fe; via J, and with two nearest
neighbor Fe, pair (located above and below the mean
plane) via J; and J5. The projection of this layer along ¢
forms a pentagonal lattice with three slightly different
bonds per pentagon (Fig. 2). This geometry is equivalent
to a distorted Cairo lattice, the perfect one involving con-
vex equilateral pentagons with equal-length sides, but with
different associated angles (Fig. 1).

What should be expected from such a geometry and
what is actually observed? Up to now, no experimental
studies and very few theoretical calculations are available
in the literature [6—8]. They only concern a very particular
pentagonal tiling, derived from the hexagonal lattice (see
lattice ¢ of Fig. 1). Calculations within the antiferromag-
netic Ising model on this lattice yields a disordered ground
state with a finite entropy per spin [6,8], whereas in the
Heisenberg model the classical ground state of the perfect
pentagonal lattice has not yet been solved [7].

Single crystals of Bi,Fe ;O were grown by the high
temperature solution growth method using a flux of
Bi,0O5 [9]. The temperature and magnetic field depen-
dences of the magnetization along the principal crystallo-
graphic axes were measured using a SQUID magnetometer
(Quantum Design) in the temperature range 2-380 K and
in fields up to 5.5 T. The reported data, measured on the
very same crystal used for the neutron diffraction study
(2.5 X 2 X 1.5 mm?), were corrected for the demagnetiz-
ing field effect. The dc susceptibility between 300 K and

800 K was measured on a home made Faraday-type mag-
netic balance in a magnetic field of 0.7 T, using an assem-
bly of several randomly oriented single crystals. The
reported susceptibility was corrected from diamagnetism
using Pascal’s constants yg, = —198 107% emu/mol.
Above room temperature, the magnetic susceptibility of
Bi,Fe, Oy is found to obey a Curie-Weiss law with an
extrapolated paramagnetic temperature 6, =~ —1670 K
and an effective magnetic moment . = 6.3(3)up per
iron atom (see Fig. 3). This later value is compatible with
the 5.9up expected for Fe’" ions (J = S = 5/2). When
decreasing the temperature, an evident drop in the (a, b)
plane susceptibility and a well pronounced increase of the
¢ axis susceptibility are observed at Ty = 238(2) K, in-
dicating a transition toward a magnetic long range order.
This Néel temperature is in agreement with the results on
single crystal reported in Ref. [10] but some 20 K lower
that the one reported in Refs. [4,5,11] for sintered samples.
The observed ratio between the Néel temperature and the
paramagnetic one, 6,/Ty =~ 7, suggests, as expected from
the geometry, a large degree of frustration.

Further insights concerning the magnetic arrangement
below T, were obtained using neutron diffraction. The
neutron diffraction experiments were performed on the
two CEA-CRG diffractometers D23 and D15 at the
Institut Laue-Langevin (Grenoble, France) using wave-
lengths of respectively A = 1.280 A and 1.173 A.
Complete data collections have been made at two different
temperatures 7 = 15 Kand T = 300 K. The experimental
data were corrected from absorption using the CCSL li-
brary [12]. The structural and magnetic arrangements were
refined using the least-square programs MXD [13] and
FULLPROF [14], including extinction corrections [15].

When decreasing the temperature, new reflections, char-
acteristic of an antiferromagnetic order, appear around
Ty = 244(2) K. They can be indexed with a propagation
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FIG. 3 (color online).

Linear magnetic susceptibility of Bi,Fe,;Oq as a function of temperature measured in magnetic fields of 0.1 T

and 0.7 T below and above 300 K, respectively. Inset: Temperature variation of the (1/2, 3/2, —1/2) magnetic Bragg peak in zero field
from neutron diffraction. (Right) Graphical representation of the magnetic structure refinement at 7 = 15 K in Bi,Fe,Oq4: observed

versus calculated intensities.

vector k = (1/2,1/2,1/2), that is a doubling of the mag-
netic cell compared to the nuclear one in the three direc-
tions. The temperature variation of a magnetic Bragg peak
is presented in Fig. 3. The magnetic structure was solved
from the 654 magnetic Bragg peaks collected at 7 = 15 K
taking into account the presence of two magnetic domains
[9]. There are four Fe; atoms and four Fe, in the unit cell,
whose coordinates are reported in Table I. The best refine-
ment led to a residual factor Rw = 6.4%, with two nearly
equally populated domains (42/58%). The magnetic mo-
ment parameters for the first domain are reported in
Table I. The corresponding pictures of the magnetic ar-
rangements are presented in Fig. 4. The moments on all the
atoms are found restricted in the (a, b) plane. On each site,
the four atoms are gathered into two pairs, antiferromag-
netically coupled in the case of Fe; and ferromagnetically
coupled for Fe,. The magnetic moments of each pair are
oriented at 90°, that is perpendicular to the moments of the

TABLE I. Coordinates of the Fe’" ions in Bi,Fe,O, and
spherical components of their magnetic moments in the first
magnetic domain. The magnetic moments are defined in spheri-
cal coordinates by (u, 0, ¢). In Cartesian coordinates (X, Y, Z)
where X is along a, Y along b and Z along ¢, the magnetic
moment components are: My = pcosfsing, My =
psinf singg, M, = p cose.

x y z Jz 0 ¢
Fe,! 03540 03361 05 3.52(1)  100.1(1) 90
Fe,2 06460 0.6639 05 352(1) 6l +180 90
Fe,> 0.1460 08361 05 352(1) 61 —90 90
Fe,* 08540 0.1639 05 352(1)  61+90 90
Fe,! 0 0.5 02582 3.73(1) —105.4(1) 90
Fe,2 0 0.5 0.7418  3.73(1) 6} 90
Fe,> 05 0 0.7418 3.73(1) 6, +90 90
Fe,* 05 0 02582 3.73(1)  6,+90 90

other pair on the same site. The phase between the two
sublattices Fe| and Fe, is 155°. The moment amplitudes on
the two sites Fe; and Fe, are slightly different, and both
much smaller than the expected value for an Fe’" ion
(5mp). A spin transfer process from the iron to the neigh-
boring oxygen ions [16] could explain this reduction.

As it can be seen on Fig. 4, this noncollinear magnetic
structure forms imbricated rectangles of spins. This is quite
unusual in such an orthorhombic system, where all the
directions are nonequivalent and where there is no fourfold
axis. This peculiarity certainly has an origin in the frus-
tration of the magnetic interactions. One should also notice
that for this structure the magnetic space group is centro-
symmetric, that is nonpolar. This result is a priori not
compatible with ferroelectricity, and this sheds some
doubts on the claimed ferroelectricity observed in poly-
crystalline Bi,Fe,Oq [4].

To check the relevance of the Cairo pentagon lattice
model and the role of geometric frustration on the observed

FIG. 4 (color online). Magnetic structure. First and second
magnetic domains. (Yellow [light gray]): Fe; sites. (Orange
[medium gray]): Fe, sites. The second domain is deduced
from the first one by applying the symmetry operation (x +
1/2, 4+ 1/2, 7) lost by the magnetic structure, taking into
account the translational part that shifts atoms from one cell to
a neighboring one.
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magnetic structure of Bi,Fe, Oy, we have undertaken a two
step theoretical approach based on a localized spin model.
Calculations have been made both for an ideal Cairo lattice
(including the perfect case J3; = J, = Js), and in the real
geometry. The angles between magnetic moments in a
system is imposed by the set of magnetic interactions. In
the first step, an exact Fourier space analysis at zero
temperature is performed, assuming a single-k-like order-
ing, which allows us to find the periodicity of the magnetic
structure [17]. Once the periodicity is known, an energy
minimization in real space gives the respective orientation
of the magnetic moments within the magnetic unit cell. For
these calculations, the five exchange interaction parame-
ters J; to J5 already described have been considered, using
a Heisenberg Hamiltonian H = — %ZL ij§l~ - - All the
moments were assumed to be of equal amplitudes.

In the Cairo pentagonal lattice, a large set of J; values
yield the observed (1/2, 1/2, 1/2) propagation vector. The
doubling of the magnetic cell along ¢ alone requires,
however, J, to be negative and J; positive or slightly
negative. Whatever the k = (1/2,1/2,1/2) solution
found, the magnetic configuration is always made of anti-
parallel Fe; pairs of moments and parallel Fe, ones. On the
same site, the pairs of moments are perpendicular to each
other. This is exactly what is observed experimentally. The
only parameter that could vary as a function of the particu-
lar values of the J;’s is the phase angle between the two
sites Fe; and Fe,. The ~155° observed value requires J3,
J4, Js5 to be all negative, with a ratio J;/J5 = 2.15 for
|J4| = |J3]. The observed magnetic structure of Bi,Fe,Oq
and, in particular, the 90° phase angle between pairs of
atoms at the same site, is thus recovered by this model with
some realistic set of the five superexchange interactions J;.
In the Bi,Fe, Oy real geometry, the Fe*" lattice differs from
the Cairo pentagonal one by the presence of two stacked
Fe, atoms, instead of a single atom, at two vertices in each
pentagon. Performing the calculations in the real geometry
yield very similar results than those of the ideal case. The
perpendicular ferromagnetic and antiferromagnetic Fe,
and Fe, pairs is a robust recovered feature. The only
difference between both lattices is the domain of existence
of this phase that extends to lower |J5| and |J5| with respect
to |J4] in the real case. The Bi,Fe Oy real lattice is there-
fore topologically equivalent to the Cairo one after renor-
malization of the J3 and J5 interactions with respect to the
J4 one.

To summarize, we have found that the compound
Bi,Fe,Oq displays a very original noncollinear magnetic
structure, made of four Fe; moments and four Fe, ones

forming interpenetrating patterns of fourfold spin rota-
tions. This magnetic arrangement is very peculiar for a
pentagonal lattice with nearest neighbor interactions only
and is not a mere propagation of the magnetic arrangement
minimizing the energy in each individual pentagon, con-
trary to the case of triangles based lattices. It actually
results from two ingredients, a high geometrical frustration
and an additional complex connectivity (two kinds of sites
with different coordinations). This first materialization of a
pentagonal Cairo lattice opens new perspectives in the field
of magnetic frustration.
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