227 research outputs found

    Continuous measurements of greenhouse gases and atmospheric oxygen at the Namib Desert atmospheric observatory

    Get PDF
    A new coastal background site has been established for observations of greenhouse gases (GHGs) in the central Namib Desert at Gobabeb, Namibia. The location of the site was chosen to provide observations for a data-poor region in the global sampling network for GHGs. Semi-automated continuous measurements of carbon dioxide, methane, nitrous oxide, carbon monoxide, atmospheric oxygen, and basic meteorology are made at a height of 21 m a.g.l., 50 km from the coast at the northern border of the Namib Sand Sea. Atmospheric oxygen is measured with a differential fuel cell analyzer (DFCA). Carbon dioxide and methane are measured with an early-model cavity ring-down spectrometer (CRDS); nitrous oxide and carbon monoxide are measured with an off-axis integrated cavity output spectrometer (OA-ICOS). Instrument-specific water corrections are employed for both the CRDS and OA-ICOS instruments in lieu of drying. The performance and measurement uncertainties are discussed in detail. As the station is located in a remote desert environment, there are some particular challenges, namely fine dust, high diurnal temperature variability, and minimal infrastructure. The gas handling system and calibration scheme were tailored to best fit the conditions of the site. The CRDS and DFCA provide data of acceptable quality when base requirements for operation are met, specifically adequate temperature control in the laboratory and regular supply of electricity. In the case of the OA-ICOS instrument, performance is significantly improved through the implementation of a drift correction through frequent measurements of a reference cylinder

    Long-term changes in tropospheric ozone

    Get PDF
    Tropospheric ozone changes are investigated using a selected network of surface and ozonesonde sites to give a broad geographic picture of long-term variations. The picture of long-term tropospheric ozone changes is a varied one in terms of both the sign and magnitude of trends and in the possible causes for the changes. At mid latitudes of the S.H. three time series of ∌20 years in length agree in showing increases that are strongest in the austral spring (August–October). Profile measurements show this increase extending through the mid troposphere but not into the highest levels of the troposphere. In the N.H. in the Arctic a period of declining ozone in the troposphere through the 1980s into the mid-1990s has reversed and the overall change is small. The decadal-scale variations in the troposphere in this region are related in part to changes in the lowermost stratosphere. At mid latitudes in the N.H., continental Europe and Japan showed significant increases in the 1970s and 1980s. Over North America rises in the 1970s are less than those seen in Europe and Japan, suggesting significant regional differences. In all three of these mid latitude, continental regions tropospheric ozone amounts appear to have leveled off or in some cases declined in the more recent decades. Over the North Atlantic three widely separated sites show significant increases since the late-1990s that may have peaked in recent years. In the N.H. tropics both the surface record and the ozonesondes in Hawaii show a significant increase in the autumn months in the most recent decade compared to earlier periods that drives the overall increase seen in the 30-year record. This appears to be related to a shift in the transport pattern during this season with more frequent flow from higher latitudes in the latest decade

    Fine sediment reduces vertical migrations of Gammarus pulex (Crustacea: Amphipoda) in response to surface water loss

    Get PDF
    Surface and subsurface sediments in river ecosystems are recognized as refuges that may promote invertebrate survival during disturbances such as floods and streambed drying. Refuge use is spatiotemporally variable, with environmental factors including substrate composition, in particular the proportion of fine sediment (FS), affecting the ability of organisms to move through interstitial spaces. We conducted a laboratory experiment to examine the effects of FS on the movement of Gammarus pulex Linnaeus (Crustacea: Amphipoda) into subsurface sediments in response to surface water loss. We hypothesized that increasing volumes of FS would impede and ultimately prevent individuals from migrating into the sediments. To test this hypothesis, the proportion of FS (1–2 mm diameter) present within an open gravel matrix (4–16 mm diameter) was varied from 10 to 20% by volume in 2.5% increments. Under control conditions (0% FS), 93% of individuals moved into subsurface sediments as the water level was reduced. The proportion of individuals moving into the subsurface decreased to 74% at 10% FS, and at 20% FS no individuals entered the sediments, supporting our hypothesis. These results demonstrate the importance of reducing FS inputs into river ecosystems and restoring FS-clogged riverbeds, to promote refuge use during increasingly common instream disturbances

    Rising atmospheric methane: 2007-2014 growth and isotopic shift

    Get PDF
    From 2007 to 2013, the globally averaged mole fraction of methane in the atmosphere increased by 5.7±1.2ppb yr−1^{-1}. Simultaneously, ÎŽ13\delta^{13}CCH4_\text{CH4} (a measure of the 13^{13}C/12^{12}C isotope ratio in methane) has shifted to significantly more negative values since 2007. Growth was extreme in 2014, at 12.5±0.4ppb, with a further shift to more negative values being observed at most latitudes. The isotopic evidence presented here suggests that the methane rise was dominated by significant increases in biogenic methane emissions, particularly in the tropics, for example, from expansion of tropical wetlands in years with strongly positive rainfall anomalies or emissions from increased agricultural sources such as ruminants and rice paddies. Changes in the removal rate of methane by the OH radical have not been seen in other tracers of atmospheric chemistry and do not appear to explain short-term variations in methane. Fossil fuel emissions may also have grown, but the sustained shift to more 13^{13}C-depleted values and its significant interannual variability, and the tropical and Southern Hemisphere loci of post-2007 growth, both indicate that fossil fuel emissions have not been the dominant factor driving the increase. A major cause of increased tropical wetland and tropical agricultural methane emissions, the likely major contributors to growth, may be their responses to meteorological change.This work was supported by the UK Natural Environment Research Council projects NE/N016211/1 The Global Methane Budget, NE/M005836/1 Methane at the edge, NE/K006045/1 The Southern Methane Anomaly and NE/I028874/1 MAMM. We thank the UK Meteorological Office for flask collection and hosting the continuous measurement at Ascension, the Ascension Island Government for essential support, and Thumeka Mkololo for flask collection in Cape Tow

    A qualitative study on the effects of psychoactive substance use upon artistic creativity

    Get PDF
    Background: Psychoactive substance use has often been claimed to help generate and facilitate the artistic creative process. Aims: The present study explored the role of artists’ substance use in their creative processes and their efforts to balance between enhancement and relaxation. Methods: Semi-structured interviews concerning the artistic creative process and the role of psychoactive substance use were recorded with 72 artists and analyzed using content analysis. The participants were classified according to their substance use in three groups (Cannabis Group, Alcohol Group, and Control Group). Results: Results show that both alcohol and cannabis were used to facilitate creativity and the emotional states that are necessary for the artistic creative process. Participants in the Control group reported that listening to music might function as a mind-altering tool. It was also found that for some artists, substance use is not only characteristic to creation, but it is also part of their everyday lives. Conclusion: Artists are aware of the balancing phenomenon during the artistic creative process. Whether psychoactive substance(s) or other environmental stimuli (such as music) are used to reach the required effect appears to depend upon the individual
    • 

    corecore