5,066 research outputs found
Mean Field Theory of the Morphology Transition in Stochastic Diffusion Limited Growth
We propose a mean-field model for describing the averaged properties of a
class of stochastic diffusion-limited growth systems. We then show that this
model exhibits a morphology transition from a dense-branching structure with a
convex envelope to a dendritic one with an overall concave morphology. We have
also constructed an order parameter which describes the transition
quantitatively. The transition is shown to be continuous, which can be verified
by noting the non-existence of any hysteresis.Comment: 16 pages, 5 figure
Front Stability in Mean Field Models of Diffusion Limited Growth
We present calculations of the stability of planar fronts in two mean field
models of diffusion limited growth. The steady state solution for the front can
exist for a continuous family of velocities, we show that the selected velocity
is given by marginal stability theory. We find that naive mean field theory has
no instability to transverse perturbations, while a threshold mean field theory
has such a Mullins-Sekerka instability. These results place on firm theoretical
ground the observed lack of the dendritic morphology in naive mean field theory
and its presence in threshold models. The existence of a Mullins-Sekerka
instability is related to the behavior of the mean field theories in the
zero-undercooling limit.Comment: 26 pp. revtex, 7 uuencoded ps figures. submitted to PR
Aggregation Patterns in Stressed Bacteria
We study the formation of spot patterns seen in a variety of bacterial
species when the bacteria are subjected to oxidative stress due to hazardous
byproducts of respiration. Our approach consists of coupling the cell density
field to a chemoattractant concentration as well as to nutrient and waste
fields. The latter serves as a triggering field for emission of
chemoattractant. Important elements in the proposed model include the
propagation of a front of motile bacteria radially outward form an initial
site, a Turing instability of the uniformly dense state and a reduction of
motility for cells sufficiently far behind the front. The wide variety of
patterns seen in the experiments is explained as being due the variation of the
details of the initiation of the chemoattractant emission as well as the
transition to a non-motile phase.Comment: 4 pages, REVTeX with 4 postscript figures (uuencoded) Figures 1a and
1b are available from the authors; paper submitted to PRL
Novel type of phase transition in a system of self-driven particles
A simple model with a novel type of dynamics is introduced in order to
investigate the emergence of self-ordered motion in systems of particles with
biologically motivated interaction. In our model particles are driven with a
constant absolute velocity and at each time step assume the average direction
of motion of the particles in their neighborhood with some random perturbation
() added. We present numerical evidence that this model results in a
kinetic phase transition from no transport (zero average velocity, ) to finite net transport through spontaneous symmetry breaking of the
rotational symmetry. The transition is continuous since is
found to scale as with
Development of FTK architecture: a fast hardware track trigger for the ATLAS detector
The Fast Tracker (FTK) is a proposed upgrade to the ATLAS trigger system that
will operate at full Level-1 output rates and provide high quality tracks
reconstructed over the entire detector by the start of processing in Level-2.
FTK solves the combinatorial challenge inherent to tracking by exploiting the
massive parallelism of Associative Memories (AM) that can compare inner
detector hits to millions of pre-calculated patterns simultaneously. The
tracking problem within matched patterns is further simplified by using
pre-computed linearized fitting constants and leveraging fast DSP's in modern
commercial FPGA's. Overall, FTK is able to compute the helix parameters for all
tracks in an event and apply quality cuts in approximately one millisecond. By
employing a pipelined architecture, FTK is able to continuously operate at
Level-1 rates without deadtime. The system design is defined and studied using
ATLAS full simulation. Reconstruction quality is evaluated for single muon
events with zero pileup, as well as WH events at the LHC design luminosity. FTK
results are compared with the tracking capability of an offline algorithm.Comment: To be published in the proceedings of DPF-2009, Detroit, MI, July
2009, eConf C09072
The Evolution of FTK, a Real-Time Tracker for Hadron Collider Experiments
We describe the architecture evolution of the highly-parallel dedicated
processor FTK, which is driven by the simulation of LHC events at high
luminosity (1034 cm-2 s-1). FTK is able to provide precise on-line track
reconstruction for future hadronic collider experiments. The processor,
organized in a two-tiered pipelined architecture, execute very fast algorithms
based on the use of a large bank of pre-stored patterns of trajectory points
(first tier) in combination with full resolution track fitting to refine
pattern recognition and to determine off-line quality track parameters. We
describe here how the high luminosity simulation results have produced a new
organization of the hardware inside the FTK processor core.Comment: 11th ICATPP conferenc
A search for resonant production of pairs in $4.8\ \rm{fb}^{-1}p\bar{p}\sqrt{s}=1.96\ \rm{TeV}$
We search for resonant production of tt pairs in 4.8 fb^{-1} integrated
luminosity of ppbar collision data at sqrt{s}=1.96 TeV in the lepton+jets decay
channel, where one top quark decays leptonically and the other hadronically. A
matrix element reconstruction technique is used; for each event a probability
density function (pdf) of the ttbar candidate invariant mass is sampled. These
pdfs are used to construct a likelihood function, whereby the cross section for
resonant ttbar production is estimated, given a hypothetical resonance mass and
width. The data indicate no evidence of resonant production of ttbar pairs. A
benchmark model of leptophobic Z \rightarrow ttbar is excluded with m_{Z'} <
900 GeV at 95% confidence level.Comment: accepted for publication in Physical Review D Sep 21, 201
Measurement of the lepton charge asymmetry in W-boson decays produced in p-pbar collisions
We describe a measurement of the charge asymmetry of leptons from W boson
decays in the rapidity range 0 enu, munu events from
110+/-7 pb^{-1}of data collected by the CDF detector during 1992-95. The
asymmetry data constrain the ratio of d and u quark momentum distributions in
the proton over the x range of 0.006 to 0.34 at Q2 \approx M_W^2. The asymmetry
predictions that use parton distribution functions obtained from previously
published CDF data in the central rapidity region (0.0<|y_l|<1.1) do not agree
with the new data in the large rapidity region (|y_l|>1.1).Comment: 13 pages, 3 tables, 1 figur
Evidence for t\bar{t}\gamma Production and Measurement of \sigma_t\bar{t}\gamma / \sigma_t\bar{t}
Using data corresponding to 6.0/fb of ppbar collisions at sqrt(s) = 1.96 TeV
collected by the CDF II detector, we present a cross section measurement of
top-quark pair production with an additional radiated photon. The events are
selected by looking for a lepton, a photon, significant transverse momentum
imbalance, large total transverse energy, and three or more jets, with at least
one identified as containing a b quark. The ttbar+photon sample requires the
photon to have 10 GeV or more of transverse energy, and to be in the central
region. Using an event selection optimized for the ttbar+photon candidate
sample we measure the production cross section of, and the ratio of cross
sections of the two samples. Control samples in the dilepton+photon and
lepton+photon+\met, channels are constructed to aid in decay product
identification and background measurements. We observe 30 ttbar+photon
candidate events compared to the standard model expectation of 26.9 +/- 3.4
events. We measure the ttbar+photon cross section to be 0.18+0.08 pb, and the
ratio of the cross section of ttbar+photon to ttbar to be 0.024 +/- 0.009.
Assuming no ttbar+photon production, we observe a probability of 0.0015 of the
background events alone producing 30 events or more, corresponding to 3.0
standard deviations.Comment: 9 pages, 3 figure
Combined search for the standard model Higgs boson decaying to a bb pair using the full CDF data set
We combine the results of searches for the standard model Higgs boson based
on the full CDF Run II data set obtained from sqrt(s) = 1.96 TeV p-pbar
collisions at the Fermilab Tevatron corresponding to an integrated luminosity
of 9.45/fb. The searches are conducted for Higgs bosons that are produced in
association with a W or Z boson, have masses in the range 90-150 GeV/c^2, and
decay into bb pairs. An excess of data is present that is inconsistent with the
background prediction at the level of 2.5 standard deviations (the most
significant local excess is 2.7 standard deviations).Comment: To be published in Phys. Rev. Lett (v2 contains minor updates based
on comments from PRL
- …