47 research outputs found

    Producing 'Human Elements Based Medical Technologies' in Biotech Companies: Some Ethical and Organisational Ingredients for Innovative Cooking

    Full text link
    This article is based on the findings of an EU-funded qualitative research project, entitled 'From GMP to GBP: Fostering good bioethics practices [GBP] among the European biotechnology industry', which seeks to improve the understanding of bioethical issues through the observation of the daily practices in European biotechnology companies and proposes a methodology approaching ethical issues. The comparative study was carried out in biotech companies in France, Italy, Sweden, Hungary and Belgium which develop a wide range of new technologies, all of them involving human materials or where human subjects participate (in clinical trials). Based on our findings in these local settings, we suggest that the notion of bioethics and the way its production is theorised need to be re-conceptualised. We argue that material practices and moral statements are intermingled in inextricable ways that render the formation of bioethical concerns fully dependent on the organisational landscape in which it is embedded. More precisely, the here presented co-production model of moral statements and organisational practices presents a set of common factors that influence how bioethical discourses are shaped, despite the heterogeneity of their epistemic cultures. For example, the procedural design of cell-based-products, the modes of collecting and storing biological specimen, the relationship between patients and companies and technological transfers to emerging countries are defining components that contribute to the shaping process of bioethical concerns. Thus, the path dependency of bioethical concerns relies on an already existing, specific infrastructure and existing relationships within and outside a company rather than on external judgement subsequently applied to its objects, or a collection of processes of reasoning coming from external institutions

    Germline-Focused Analysis of Tumour-Only Sequencing: Recommendations from the ESMO Precision Medicine Working Group.

    Get PDF
    It is increasingly common in oncology practice to perform tumour sequencing using large cancer panels. For pathogenic sequence variants in cancer susceptibility genes identified on tumour-only sequencing, it is often unclear whether they are of somatic or constitutional (germline) origin. There is wide-spread disparity regarding both the extent to which systematic 'germline-focused analysis' is performed upon tumour sequencing data and for which variants follow-up analysis of a germline sample is performed. Here we present analyses of paired sequencing data from 17,152 cancer samples, in which 1494 pathogenic sequence variants were identified across 65 cancer susceptibility genes. From these analyses, the European Society of Medical Oncology Precision Medicine Working Group Germline Subgroup have generated (i) recommendations regarding germline-focused analyses of tumour-only sequencing data, (ii) indications for germline follow-up testing and (iii) guidance on patient information-giving and consent

    Public preferences for digital health data sharing: Discrete choice experiment study in 12 european countries

    Get PDF
    Background: With new technologies, health data can be collected in a variety of different clinical, research, and public health contexts, and then can be used for a range of new purposes. Establishing the public s views about digital health data sharing is essential for policy makers to develop effective harmonization initiatives for digital health data governance at the European level. Objective: This study investigated public preferences for digital health data sharing. Methods: A discrete choice experiment survey was administered to a sample of European residents in 12 European countries (Austria, Denmark, France, Germany, Iceland, Ireland, Italy, the Netherlands, Norway, Spain, Sweden, and the United Kingdom) from August 2020 to August 2021. Respondents answered whether hypothetical situations of data sharing were acceptable for them. Each hypothetical scenario was defined by 5 attributes ("data collector," "data user," "reason for data use," "information on data sharing and consent," and "availability of review process"), which had 3 to 4 attribute levels each. A latent class model was run across the whole data set and separately for different European regions (Northern, Central, and Southern Europe). Attribute relative importance was calculated for each latent class s pooled and regional data sets. Results: A total of 5015 completed surveys were analyzed. In general, the most important attribute for respondents was the availability of information and consent during health data sharing. In the latent class model, 4 classes of preference patterns were identified. While respondents in 2 classes strongly expressed their preferences for data sharing with opposing positions, respondents in the other 2 classes preferred not to share their data, but attribute levels of the situation could have had an impact on their preferences. Respondents generally found the following to be the most acceptable: A national authority or academic research project as the data user; being informed and asked to consent; and a review process for data transfer and use, or transfer only. On the other hand, collection of their data by a technological company and data use for commercial communication were the least acceptable. There was preference heterogeneity across Europe and within European regions. Conclusions: This study showed the importance of transparency in data use and oversight of health-related data sharing for European respondents. Regional and intraregional preference heterogeneity for "data collector," "data user," "reason," "type of consent," and "review" calls for governance solutions that would grant data subjects the ability to control their digital health data being shared within different contexts. These results suggest that the use of data without consent will demand weighty and exceptional reasons. An interactive and dynamic informed consent model combined with oversight mechanisms may be a solution for policy initiatives aiming to harmonize health data use across Europe

    Legislation of direct-to-consumer genetic testing in Europe: a fragmented regulatory landscape

    Get PDF
    Despite the increasing availability of direct-to-consumer (DTC) genetic testing, it is currently unclear how such services are regulated in Europe, due to the lack of EU or national legislation specifically addressing this issue. In this article, we provide an overview of laws that could potentially impact the regulation of DTC genetic testing in 26 European countries, namely Austria, Belgium, Cyprus, the Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Latvia, Lithuania, Luxembourg, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, the Netherlands and the United Kingdom. Emphasis is placed on provisions relating to medical supervision, genetic counselling and informed consent. Our results indicate that currently there is a wide spectrum of laws regarding genetic testing in Europe. There are countries (e.g. France and Germany) which essentially ban DTC genetic testing, while in others (e.g. Luxembourg and Poland) DTC genetic testing may only be restricted by general laws, usually regarding health care services and patients’ rights

    A 12-gene pharmacogenetic panel to prevent adverse drug reactions: an open-label, multicentre, controlled, cluster-randomised crossover implementation study

    Get PDF
    Background The benefit of pharmacogenetic testing before starting drug therapy has been well documented for several single gene–drug combinations. However, the clinical utility of a pre-emptive genotyping strategy using a pharmacogenetic panel has not been rigorously assessed. Methods We conducted an open-label, multicentre, controlled, cluster-randomised, crossover implementation study of a 12-gene pharmacogenetic panel in 18 hospitals, nine community health centres, and 28 community pharmacies in seven European countries (Austria, Greece, Italy, the Netherlands, Slovenia, Spain, and the UK). Patients aged 18 years or older receiving a first prescription for a drug clinically recommended in the guidelines of the Dutch Pharmacogenetics Working Group (ie, the index drug) as part of routine care were eligible for inclusion. Exclusion criteria included previous genetic testing for a gene relevant to the index drug, a planned duration of treatment of less than 7 consecutive days, and severe renal or liver insufficiency. All patients gave written informed consent before taking part in the study. Participants were genotyped for 50 germline variants in 12 genes, and those with an actionable variant (ie, a drug–gene interaction test result for which the Dutch Pharmacogenetics Working Group [DPWG] recommended a change to standard-of-care drug treatment) were treated according to DPWG recommendations. Patients in the control group received standard treatment. To prepare clinicians for pre-emptive pharmacogenetic testing, local teams were educated during a site-initiation visit and online educational material was made available. The primary outcome was the occurrence of clinically relevant adverse drug reactions within the 12-week follow-up period. Analyses were irrespective of patient adherence to the DPWG guidelines. The primary analysis was done using a gatekeeping analysis, in which outcomes in people with an actionable drug–gene interaction in the study group versus the control group were compared, and only if the difference was statistically significant was an analysis done that included all of the patients in the study. Outcomes were compared between the study and control groups, both for patients with an actionable drug–gene interaction test result (ie, a result for which the DPWG recommended a change to standard-of-care drug treatment) and for all patients who received at least one dose of index drug. The safety analysis included all participants who received at least one dose of a study drug. This study is registered with ClinicalTrials.gov, NCT03093818 and is closed to new participants. Findings Between March 7, 2017, and June 30, 2020, 41696 patients were assessed for eligibility and 6944 (51·4 % female, 48·6% male; 97·7% self-reported European, Mediterranean, or Middle Eastern ethnicity) were enrolled and assigned to receive genotype-guided drug treatment (n=3342) or standard care (n=3602). 99 patients (52 [1·6%] of the study group and 47 [1·3%] of the control group) withdrew consent after group assignment. 652 participants (367 [11·0%] in the study group and 285 [7·9%] in the control group) were lost to follow-up. In patients with an actionable test result for the index drug (n=1558), a clinically relevant adverse drug reaction occurred in 152 (21·0%) of 725 patients in the study group and 231 (27·7%) of 833 patients in the control group (odds ratio [OR] 0·70 [95% CI 0·54–0·91]; p=0·0075), whereas for all patients, the incidence was 628 (21·5%) of 2923 patients in the study group and 934 (28·6%) of 3270 patients in the control group (OR 0·70 [95% CI 0·61–0·79]; p Horizon 2020 (H2020)Genetics of disease, diagnosis and treatmen

    Recontacting patients in clinical genetics services: recommendations of the European Society of Human Genetics

    Get PDF
    Technological advances have increased the availability of genomic data in research and the clinic. If, over time, interpretation of the significance of the data changes, or new information becomes available, the question arises as to whether recontacting the patient and/or family is indicated. The Public and Professional Policy Committee of the European Society of Human Genetics (ESHG), together with research groups from the UK and the Netherlands, developed recommendations on recontacting which, after public consultation, have been endorsed by ESHG Board. In clinical genetics, recontacting for updating patients with new, clinically significant information related to their diagnosis or previous genetic testing may be justifiable and, where possible, desirable. Consensus about the type of information that should trigger recontacting converges around its clinical and personal utility. The organization of recontacting procedures and policies in current health care systems is challenging. It should be sustainable, commensurate with previously obtained consent, and a shared responsibility between healthcare providers, laboratories, patients, and other stakeholders. Optimal use of the limited clinical resources currently available is needed. Allocation of dedicated resources for recontacting should be considered. Finally, there is a need for more evidence, including economic and utility of information for people, to inform which strategies provide the most cost-effective use of healthcare resources for recontacting
    corecore