106 research outputs found

    Spatio‐temporal patterns of tree growth as related to carbon isotope fractionation in European forests under changing climate

    Get PDF
    Aim To decipher Europe-wide spatiotemporal patterns of forest growth dynamics and their associations with carbon isotope fractionation processes inferred from tree rings as modulated by climate warming. Location Europe and North Africa (30‒70°N, 10°W‒35°E). Time period 1901‒2003. Major taxa studied Temperate and Euro-Siberian trees. Methods We characterize changes in the relationship between tree growth and carbon isotope fractionation over the 20th century using a European network consisting of 20 site chronologies. Using indexed tree-ring widths (TRWi), we assess shifts in the temporal coherence of radial growth across sites (synchrony) for five forest ecosystems (Atlantic, Boreal, cold continental, Mediterranean and temperate). We also examine whether TRWi shows variable coupling with leaf-level gas exchange, inferred from indexed carbon isotope discrimination of tree-ring cellulose (Δ13Ci). Results We find spatial autocorrelation for TRWi and Δ13Ci extending over up to 1,000 km among forest stands. However, growth synchrony is not uniform across Europe, but increases along a latitudinal gradient concurrent with decreasing temperature and evapotranspiration. Latitudinal relationships between TRWi and Δ13Ci (changing from negative to positive southwards) point to drought impairing carbon uptake via stomatal regulation for water saving occurring at forests below 60°N in continental Europe. A rise in forest growth synchrony over the 20th century together with increasingly positive relationships between TRWi and Δ13Ci indicate intensifying drought impacts on tree performance. These effects are noticeable in drought-prone biomes (Mediterranean, temperate and cold continental). Main conclusions At the turn of this century, convergence in growth synchrony across European forest ecosystems is coupled with coordinated warming-induced drought effects on leaf physiology and tree growth spreading northwards. Such a tendency towards exacerbated moisture-sensitive growth and physiology could override positive effects of enhanced leaf intercellular CO2 concentrations, possibly resulting in Europe-wide declines of forest carbon gain in the coming decades

    Root turnover and productivity of coniferous forests

    Full text link
    Fine roots and mycorrhizae have recently been shown to produce a major portion of the organic matter entering decomposition. Roots and mycorrhizae constitute 63 to 70% of total net primary production in Douglas-fir and Pacific silver fir stands. The importance of roots in primary production makes the method of root extraction from the soil important. Wet-sieving with small mesh screens is more effective than hand-sorting for fine roots and mycorrhizae. Screen size, the efficiency of recovery, the physiological status of the roots and coversion factors to derive biomass from the numbers of root tips should be stated. Published data is enhanced if the phenological status of the stand, its age, tree density, and soil texture are quoted.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43475/1/11104_2005_Article_BF02182643.pd

    Population dynamics of small mammals in semi-arid regions: a comparative study of demographic variability in two rodent species.

    No full text
    The seasonally determined demographic structure of two semi-arid rodents, both agricultural pest species (the leaf-eared mouse (Phyllotis darwini) in Chile and the multimammate mouse (Mastomys natalensis) in Tanzania), is analysed using capture-mark-recapture (CMR) statistical models and measures for elasticity (the relative change in the growth rate due to a relative unit change in the parameter of concern) derived from projection linear matrix models. We demonstrate that reproduction and survival during the breeding season contribute approximately equally to population growth in the leaf-eared mouse, whereas the multimammate mouse is characterized by a more clearly defined seasonal structure into breeding and non-breeding seasons and that reproduction contributes far more than survival during the breeding season. On this basis, we discuss evolutionary and applied (pest control) issues. Regarding the evolution of life histories (leading to a maximization of the overall net annual growth rate), we suggest that for the leaf-eared mouse, features favouring survival throughout the year will provide selective value, but that during the main breeding season, features favouring reproduction and survival are about equally favourable. For the multimammate mouse, features favouring survival are particularly important outside the breeding season, whereas during the breeding season features favouring reproduction are more important. Regarding pest control (aiming at reducing the overall net annual growth rate), we suggest that (ignoring economic considerations) affecting survival outside the main breeding season is particularly effective for the leaf-eared mouse, a feature that is even more the case for the multimammate mouse. In sum, we demonstrate through this comparative study that much is to be learnt from studying the dynamics of fluctuating small rodents-a focal issue within much of population ecology

    Vole and lemming activity observed from space

    Get PDF
    Predicting the impacts of present global warming requires an understanding of the factors controlling plant biomass and production. The extent to which they are controlled by bottom-up drivers such as climate, nutrient and water availability, and by top-down drivers such as herbivory and diseases in terrestrial systems is still under debate1. By annually recording plant biomass and community composition in grazed control plots and in herbivore-free exclosures, at 12 sites in a subArctic ecosystem, we were able to show that the regular interannual density fluctuations of voles and lemmings drive synchronous interannual fluctuations in the biomass of field-layer vegetation. Plant biomass in the field layer was between 12 and 24% lower the year after a vole peak than the year before, and the combined vole and lemming peaks are visible as a reduced normalized difference vegetation index in satellite images over a 770 km2 area in the following year, despite the wide range of abiotic, biotic and anthropogenic forces that influence the vegetation2–5. This strongly suggests that the cascading effect of rodents for the function and diversity of tundra plant communities needs to be included in our scenarios of how these ecosystems will respond to environmental changes.acceptedVersio

    Impact of fire on Finnish forests in the past and today

    No full text
    Part II BiodiversityNearly every forest stand in Finland has been burnt down by a wildfire at least once during the past 400–500 years. Slash and burn cultivation (1700–1920) was practised on 50–75 percent of Finland’s forests, while prescribed burning (1920–1990) has been applied to 2–3 percent of the country’s forests. Because of land-use changes and efficient fire prevention and control systems, the occurrence of wildfires in Finland has decreased considerably during the past few decades. Owing to the biodiversity and ecologically favourable influence of fire, the current tendency is to revive the use of controlled fire in forestry in Finland. Prescribed burning is used in forest regeneration and endeavours are being made to revert old conservation forests to the starting point of succession through forest fires
    corecore