52 research outputs found
Innexin function dictates the spatial relationship between distal somatic cells in the Caenorhabditis elegans gonad without impacting the germline stem cell pool
Gap-junctional signaling mediates myriad cellular interactions in metazoans. Yet, how gap junctions control the positioning of cells in organs is not well understood. Innexins compose gap junctions in invertebrates and affect organ architecture. Here, we investigate the roles of gap-junctions in controlling distal somatic gonad architecture and its relationship to underlying germline stem cells i
Insights into hominid evolution from the gorilla genome sequence.
Gorillas are humans' closest living relatives after chimpanzees, and are of comparable importance for the study of human origins and evolution. Here we present the assembly and analysis of a genome sequence for the western lowland gorilla, and compare the whole genomes of all extant great ape genera. We propose a synthesis of genetic and fossil evidence consistent with placing the human-chimpanzee and human-chimpanzee-gorilla speciation events at approximately 6 and 10 million years ago. In 30% of the genome, gorilla is closer to human or chimpanzee than the latter are to each other; this is rarer around coding genes, indicating pervasive selection throughout great ape evolution, and has functional consequences in gene expression. A comparison of protein coding genes reveals approximately 500 genes showing accelerated evolution on each of the gorilla, human and chimpanzee lineages, and evidence for parallel acceleration, particularly of genes involved in hearing. We also compare the western and eastern gorilla species, estimating an average sequence divergence time 1.75 million years ago, but with evidence for more recent genetic exchange and a population bottleneck in the eastern species. The use of the genome sequence in these and future analyses will promote a deeper understanding of great ape biology and evolution
Finishing the euchromatic sequence of the human genome
The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
Large meta-analysis of genome-wide association studies identifies five loci for lean body mass
Lean body mass, consisting mostly of skeletal muscle, is important for healthy aging. We performed a genome-wide association study for whole body (20 cohorts of European ancestry with n = 38,292) and appendicular (arms and legs) lean body mass (n = 28,330) measured using dual energy X-ray absorptiometry or bioelectrical impedance analysis, adjusted for sex, age, height, and fat mass. Twenty-one single-nucleotide polymorphisms were significantly associated with lean body mass either genome wide (p < 5 x 10(-8)) or suggestively genome wide (p < 2.3 x 10(-6)). Replication in 63,475 (47,227 of European ancestry) individuals from 33 cohorts for whole body lean body mass and in 45,090 (42,360 of European ancestry) subjects from 25 cohorts for appendicular lean body mass was successful for five single-nucleotide polymorphisms in/ near HSD17B11, VCAN, ADAMTSL3, IRS1, and FTO for total lean body mass and for three single-nucleotide polymorphisms in/ near VCAN, ADAMTSL3, and IRS1 for appendicular lean body mass. Our findings provide new insight into the genetics of lean body mass
A “FLP-Out” System for Controlled Gene Expression in Caenorhabditis elegans
We present a two-part system for conditional FLP-out of FRT-flanked sequences in Caenorhabditis elegans to control gene activity in a spatially and/or temporally regulated manner. Using reporters, we assess the system for efficacy and demonstrate its use as a cell lineage marking tool. In addition, we construct and test a dominant-negative form of hlh-12, a gene that encodes a basic helix-loop-helix (bHLH) transcription factor required for proper distal tip cell (DTC) migration. We show that this allele can be conditionally expressed from a heat-inducible FLP recombinase and can interfere with DTC migration. Using the same DTC assay, we conditionally express an hlh-12 RNAi-hairpin and induce the DTC migration defect. Finally, we introduce a set of traditional and Gateway-compatible vectors to facilitate construction of plasmids for this technology using any promoter, reporter, and gene/hairpin of interest
Caenorhabditis elegans germline patterning requires coordinated development of the somatic gonadal sheath and the germ line
AbstractInteractions between the somatic gonad and the germ line influence the amplification, maintenance, and differentiation of germ cells. In Caenorhabditis elegans, the distal tip cell/germline interaction promotes a mitotic fate and/or inhibits meiosis through GLP-1/Notch signaling. However, GLP-1-mediated signaling alone is not sufficient for a wild-type level of germline proliferation. Here, we provide evidence that specific cells of the somatic gonadal sheath lineage influence amplification, differentiation, and the potential for tumorigenesis of the germ line. First, an interaction between the distal-most pair of sheath cells and the proliferation zone of the germ line is required for larval germline amplification. Second, we show that insufficient larval germline amplification retards gonad elongation and thus delays meiotic entry. Third, a more severe delay in meiotic entry, as is exhibited in certain mutant backgrounds, inappropriately juxtaposes undifferentiated germ cells with cells of the proximal sheath lineage, leading to the formation of a proximal germline tumor derived from undifferentiated germ cells. Tumors derived from dedifferentiated germ cells, however, respond to the proximal interaction differently depending on the mutant background. Our study underscores the importance of strict developmental coordination between neighboring tissues. We discuss these results in the context of mechanisms that may underlie tumorigenesis
Multi-pathway control of the proliferation versus meiotic development decision in the Caenorhabditis elegans germline
2004 Elsevier Inc. All rights reserved.An important event in the development of the germline is the initiation of meiotic development. In Caenorhabditis elegans, the conserved
GLP-1/Notch signaling pathway regulates the proliferative versus meiotic entry decision, at least in part, by spatially inhibiting genes in the
gld-1 and gld-2 parallel pathways, which are proposed to either inhibit proliferation and/or promote meiotic development. Mutations that
cause constitutive activation of the GLP-1 pathway, or inactivation of both the gld-1 and gld-2 parallel pathways, result in a tumorous
germline in which all cells are thought to be proliferative. Here, to analyze proliferation and meiotic entry in wild-type and mutant tumorous
germlines, we use anti-REC-8 and anti-HIM-3 specific antibodies as markers, which under our fixation conditions, stain proliferative and
meiotic cells, respectively. Using these makers in wild-type animals, we find that the border of the switch from proliferation to meiotic entry
is staggered in late-larval and adult germlines. In wild-type adults, the switch occurs between 19 and 26 cell diameters from the distal end, on
average. Our analysis of mutants reveals that tumorous germlines that form when GLP-1 is constitutively active are completely proliferative,
while tumors due to inactivation of the gld-1 and gld-2 pathways show evidence of meiotic entry. Genetic and time course studies suggest
that a third pathway may exist, parallel to the GLD-1 and GLD-2 pathways, that promotes meiotic development.ye
“Don’t Care ” Modeling: A Logical Framework for Developing Predictive System Models ⋆
Abstract. Analysis of biological data often requires an understanding of components of pathways and/or networks and their mutual dependency relationships. Such systems are often analyzed and understood from datasets made up of the states of the relevant components and a set of discrete outcomes or results. The analysis of these systems can be assisted by models that are consistent with the available data while being maximally predictive for untested conditions. Here, we present a method to construct such models for these types of systems. To maximize predictive capability, we introduce a set of “don’t care ” (dc) Boolean variables that must be assigned values in order to obtain a concrete model. When a dc variable is set to 1, this indicates that the information from the corresponding component does not contribute to the observed result. Intuitively, more dc variables that are set to 1 maximizes both the potential predictive capability as well as the possibility of obtaining an inconsistent model. We thus formulate our problem as maximizing the number of dc variables that are set to 1, while retaining a model solution that is consistent and can explain all the given known data. This amounts to solving a quantified Boolean formula (QBF) with three levels of quantifier alternations, with a maximization goal for the dc variables. We have developed a prototype implementation to support our new modeling approach and are applying our method to part of a classical system in developmental biology describing fate specification of vulval precursor cells in the C. elegans nematode. Our work indicates that biological instances can serve as challenging and complex benchmarks for the formal-methods research community.
- …