84 research outputs found

    Genetics of Dothistromin Biosynthesis of Dothistroma septosporum: An Update

    Get PDF
    Dothistroma needle blight is one of the most devastating fungal pine diseases worldwide. The disease is characterized by accumulation in pine needles of a red toxin, dothistromin, that is chemically related to aflatoxin (AF) and sterigmatocystin (ST). This review updates current knowledge of the genetics of dothistromin biosynthesis by the Dothistroma septosporum pathogen and highlights differences in gene organization and regulation that have been discovered between the dothistromin and AF/ST systems. Some previously reported genes are promoted or demoted as ‘dothistromin genes’ based on recent research. A new dothistromin gene, norB, is reported, and evidence of dothistromin gene homologs in other Dothideomycete fungi is presented. A hypothesis for the biological role of dothistromin is outlined. Finally, the impact that the availability of the D. septosporum genome sequence will have on dothistromin research is discussed

    Species Tree Estimation for the Late Blight Pathogen, Phytophthora infestans, and Close Relatives

    Get PDF
    To better understand the evolutionary history of a group of organisms, an accurate estimate of the species phylogeny must be known. Traditionally, gene trees have served as a proxy for the species tree, although it was acknowledged early on that these trees represented different evolutionary processes. Discordances among gene trees and between the gene trees and the species tree are also expected in closely related species that have rapidly diverged, due to processes such as the incomplete sorting of ancestral polymorphisms. Recently, methods have been developed for the explicit estimation of species trees, using information from multilocus gene trees while accommodating heterogeneity among them. Here we have used three distinct approaches to estimate the species tree for five Phytophthora pathogens, including P. infestans, the causal agent of late blight disease in potato and tomato. Our concatenation-based “supergene” approach was unable to resolve relationships even with data from both the nuclear and mitochondrial genomes, and from multiple isolates per species. Our multispecies coalescent approach using both Bayesian and maximum likelihood methods was able to estimate a moderately supported species tree showing a close relationship among P. infestans, P. andina, and P. ipomoeae. The topology of the species tree was also identical to the dominant phylogenetic history estimated in our third approach, Bayesian concordance analysis. Our results support previous suggestions that P. andina is a hybrid species, with P. infestans representing one parental lineage. The other parental lineage is not known, but represents an independent evolutionary lineage more closely related to P. ipomoeae. While all five species likely originated in the New World, further study is needed to determine when and under what conditions this hybridization event may have occurred

    Sampling and Detection Strategies for the Pine Pitch Canker (PPC) Disease Pathogen Fusarium circinatum in Europe

    Get PDF
    Fusarium circinatum Nirenberg & O’Donnel is listed among the species recommended for regulation as quarantine pests in Europe. Over 60 Pinus species are susceptible to the pathogen and it also causes disease on Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) and species in genera such as Picea and Larix. The European Food Safety Authority considers the probability of new introductions—via contaminated seeds, wood material, soil and growing substrates, natural means and human activities—into the EU very likely. Due to early detection, constant surveillance and control measures, F. circinatum outbreaks have officially been eradicated in Italy and France. However, the global spread of F. circinatum suggests that the pathogen will continue to be encountered in new environments in the future. Therefore, continuous surveillance of reproductive material, nurseries and plantations, prompt control measures and realistic contingency plans will be important in Europe and elsewhere to limit disease spread and the “bridgehead effect”, where new introductions of a tree pathogen become increasingly likely as new environments are invaded, must be considered. Therefore, survey programs already implemented to limit the spread in Europe and that could be helpful for other EU countries are summarized in this review. These surveys include not only countries where pitch canker is present, such as Portugal and Spain, but also several other EU countries where F. circinatum is not present. Sampling protocols for seeds, seedlings, twigs, branches, shoots, soil samples, spore traps and insects from different studies are collated and compiled in this review. Likewise, methodology for morphological and molecular identification is herein presented. These include conventional PCR with a target-specific region located in the intergenic spacer region, as well as several real-time PCR protocols, with different levels of specificity and sensitivity. Finally, the global situation and future perspectives are addressed

    Global Geographic Distribution and Host Range of Fusarium circinatum, the Causal Agent of Pine Pitch Canker

    Get PDF
    Fusarium circinatum, the causal agent of pine pitch canker (PPC), is currently one of the most important threats of Pinus spp. globally. This pathogen is known in many pine-growing regions, including natural and planted forests, and can affect all life stages of trees, from emerging seedlings to mature trees. Despite the importance of PPC, the global distribution of F. circinatum is poorly documented, and this problem is also true of the hosts within countries that are affected. The aim of this study was to review the global distribution of F. circinatum, with a particular focus on Europe. We considered (1) the current and historical pathogen records, both positive and negative, based on confirmed reports from Europe and globally; (2) the genetic diversity and population structure of the pathogen; (3) the current distribution of PPC in Europe, comparing published models of predicted disease distribution; and (4) host susceptibility by reviewing literature and generating a comprehensive list of known hosts for the fungus. These data were collated from 41 countries and used to compile a specially constructed geo-database. A review of 6297 observation records showed that F. circinatum and the symptoms it causes on conifers occurred in 14 countries, including four in Europe, and is absent in 28 countries. Field observations and experimental data from 138 host species revealed 106 susceptible host species including 85 Pinus species, 6 non-pine tree species and 15 grass and herb species. Our data confirm that susceptibility to F. circinatum varies between different host species, tree ages and environmental characteristics. Knowledge on the geographic distribution, host range and the relative susceptibility of different hosts is essential for disease management, mitigation and containment strategies. The findings reported in this review will support countries that are currently free of F. circinatum in implementing effective procedures and restrictions and prevent further spread of the pathogen

    The Plant Pathogen Phytophthora andina Emerged via Hybridization of an Unknown Phytophthora Species and the Irish Potato Famine Pathogen, P. infestans

    Get PDF
    Emerging plant pathogens have largely been a consequence of the movement of pathogens to new geographic regions. Another documented mechanism for the emergence of plant pathogens is hybridization between individuals of different species or subspecies, which may allow rapid evolution and adaptation to new hosts or environments. Hybrid plant pathogens have traditionally been difficult to detect or confirm, but the increasing ease of cloning and sequencing PCR products now makes the identification of species that consistently have genes or alleles with phylogenetically divergent origins relatively straightforward. We investigated the genetic origin of Phytophthora andina, an increasingly common pathogen of Andean crops Solanum betaceum, S. muricatum, S. quitoense, and several wild Solanum spp. It has been hypothesized that P. andina is a hybrid between the potato late blight pathogen P. infestans and another Phytophthora species. We tested this hypothesis by cloning four nuclear loci to obtain haplotypes and using these loci to infer the phylogenetic relationships of P. andina to P. infestans and other related species. Sequencing of cloned PCR products in every case revealed two distinct haplotypes for each locus in P. andina, such that each isolate had one allele derived from a P. infestans parent and a second divergent allele derived from an unknown species that is closely related but distinct from P. infestans, P. mirabilis, and P. ipomoeae. To the best of our knowledge, the unknown parent has not yet been collected. We also observed sequence polymorphism among P. andina isolates at three of the four loci, many of which segregate between previously described P. andina clonal lineages. These results provide strong support that P. andina emerged via hybridization between P. infestans and another unknown Phytophthora species also belonging to Phytophthora clade 1c
    corecore