34 research outputs found

    North Atlantic warming over six decades drives decreases in krill abundance with no associated range shift

    Get PDF
    In the North Atlantic, euphausiids (krill) form a major link between primary production and predators including commercially exploited fish. This basin is warming very rapidly, with species expected to shift northwards following their thermal tolerances. Here we show,however, that there has been a 50% decline in surface krill abundance over the last 60 years that occurred in situ, with no associated range shift. While we relate these changes to the warming climate, our study is the first to document an in situ squeeze on living space within this system. The warmer isotherms are shifting measurably northwards but cooler isotherms have remained relatively static, stalled by the subpolar fronts in the NW Atlantic. Consequently the two temperatures defining the core of krill distribution (7–13 °C) were 8° of latitude apart 60 years ago but are presently only 4° apart. Over the 60 year period the core latitudinal distribution of euphausiids has remained relatively stable so a ‘habitat squeeze’ with loss of 4° of latitude in living space, could explain the decline in krill. This highlights that, as the temperature warms, not all species can track isotherms and shift northward at the same rate with both losers and winners emerging under the ‘Atlantification’ of the sub-Arctic

    Annual phytoplankton succession results from niche-environment interaction

    Get PDF
    Annual plankton succession has been investigated for many decades and hypotheses ranging from abiotic to biotic mechanisms have been proposed to explain this recurrent pattern. Here, using data collected by the Continuous Plankton Recorder (CPR) survey and models originating from the MacroEcological Theory on the Arrangement of Life (METAL), we investigate annual phytoplankton succession in the North Sea at a species level. Our results show that this phenomenon can be well predicted by models combining photosynthetically active radiation, temperature and macro-nutrients. Our findings suggest that annual phytoplankton succession, at community level, originates from the interaction between species ecological niche and annual environmental fluctuations. We discuss our results in the context of traditional hypotheses formulated to explain this recurrent pattern in the marine field, including those on the initiation, the development and the termination of a typical extratropical spring bloom

    Global impacts of the 1980s regime shift

    Get PDF
    Despite evidence from a number of Earth systems that abrupt temporal changes known as regime shifts are important, their nature, scale and mechanisms remain poorly documented and understood. Applying principal component analysis, change-point analysis and a sequential t-test analysis of regime shifts to 72 time series, we confirm that the 1980s regime shift represented a major change in the Earth's biophysical systems from the upper atmosphere to the depths of the ocean and from the Arctic to the Antarctic, and occurred at slightly different times around the world. Using historical climate model simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5) and statistical modelling of historical temperatures, we then demonstrate that this event was triggered by rapid global warming from anthropogenic plus natural forcing, the latter associated with the recovery from the El ChichĂłn volcanic eruption. The shift in temperature that occurred at this time is hypothesized as the main forcing for a cascade of abrupt environmental changes. Within the context of the last century or more, the 1980s event was unique in terms of its global scope and scale; our observed consequences imply that if unavoidable natural events such as major volcanic eruptions interact with anthropogenic warming unforeseen multiplier effects may occur

    Prediction of unprecedented biological shifts in the global ocean

    Get PDF
    Impermanence is an ecological principle(1) but there are times when changes occur nonlinearly as abrupt community shifts (ACSs) that transform the ecosystem state and the goods and services it provides(2). Here, we present a model based on niche theory(3) to explain and predict ACSs at the global scale. We test our model using 14 multi-decadal time series of marine metazoans from zooplankton to fish, spanning all latitudes and the shelf to the open ocean. Predicted and observed fluctuations correspond, with both identifying ACSs at the end of the 1980s(4,5,6,7) and 1990s(5,8). We show that these ACSs coincide with changes in climate that alter local thermal regimes, which in turn interact with the thermal niche of species to trigger long-term and sometimes abrupt shifts at the community level. A large-scale ACS is predicted after 2014—unprecedented in magnitude and extent—coinciding with a strong El Niño event and major shifts in Northern Hemisphere climate. Our results underline the sensitivity of the Arctic Ocean, where unprecedented melting may reorganize biological communities(5,9) and suggest an increase in the size and consequences of ACS events in a warming world

    Major declines in NE Atlantic plankton contrast with more stable populations in the rapidly warming North Sea

    Get PDF
    Plankton form the base of marine food webs, making them important indicators of ecosystem status. Changes in the abundance of plankton functional groups, or lifeforms, can affect higher trophic levels and can indicate important shifts in ecosystem functioning. Here, we extend this knowledge by combining data from Continuous Plankton Recorder and fixed-point stations to provide the most comprehensive analysis of plankton time-series for the North-East Atlantic and North-West European shelf to date. We analysed 24 phytoplankton and zooplankton datasets from 15 research institutions to map 60-year abundance trends for 8 planktonic lifeforms. Most lifeforms decreased in abundance (e.g. dinoflagellates: −5 %, holoplankton: −7 % decade−1), except for meroplankton, which increased 12 % decade−1, reflecting widespread changes in large-scale and localised processes. K-means clustering of assessment units according to abundance trends revealed largely opposing trend direction between shelf and oceanic regions for most lifeforms, with North Sea areas characterised by increasing coastal abundance, while abundance decreased in North-East Atlantic areas. Individual taxa comprising each phytoplankton lifeform exhibited similar abundance trends, whereas taxa grouped within zooplankton lifeforms were more variable. These regional contrasts are counterintuitive, since the North Sea which has undergone major warming, changes in nutrients, and past fisheries perturbation has changed far less, from phytoplankton to fish larvae, as compared to the more slowly warming North-East Atlantic with lower nutrient supply and fishing pressure. This more remote oceanic region has shown a major and worrying decline in the traditional food web. Although the causal mechanisms remain unclear, declining abundance of key planktonic lifeforms in the North-East Atlantic, including diatoms and copepods, are a cause of major concern for the future of food webs and should provide a red flag to politicians and policymakers about the prioritisation of future management and adaptation measures required to ensure future sustainable use of the marine ecosystem

    Synchronous response of marine plankton ecosystems to climate in the Northeast Atlantic and the North Sea

    No full text
    Over the last few decades, global warming has accelerated both the rate and magnitude of changes observed in many functional units of the Earth System. In this context, plankton are sentinel organisms because they are sensitive to subtle levels of changes in temperature and might help in identifying the current effects of climate change on pelagic ecosystems. In this paper, we performed a comparative approach in two regions of the North Atlantic (i.e. the Northeast Atlantic and the North Sea) to explore the relationships between changes in marine plankton, the regional physico-chemical environment and large-scale hydro-climatic forcing using four key indices: the North Atlantic Oscillation (NAO), the Atlantic Multidecadal Oscillation (AMO), the East Atlantic (EA) pattern and Northern Hemisphere Temperature (NHT) anomalies. Our analyses suggest that long-term changes in the states of the two ecosystems were synchronous and correlated to the same large-scale hydro-climatic variables: NHT anomalies, the AMO and to a lesser extent the EA pattern. No significant correlation was found between long-term ecosystem modifications and the state of the NAO. Our results suggest that the effect of climate on these ecosystems has mainly occurred in both regions through the modulation of the thermal regime

    LONG-TERM ENVIRONMENTAL CHANGES IN THE GIRONDE ESTUARY

    No full text
    participantThe Gironde estuary is considered the largest South-Western European estuary and covers an area of 625 km2 at high tide. This transition zone between marine and freshwater environments is formed by the junction of the Garonne and the Dordogne rivers. The Gironde is characterized by a strong spatiotemporal variability of environmental parameters, modulating biological response. While most studies deal with the impact of anthropogenic pressures on estuaries, this research aims at understanding and distinguishing the part of variability that can be explained by human local activities from those that is linked to Climate Change. Using data from the ecological monitoring of the Blayais nuclear power plant, this research contributes to better know the estuarine evolution over the last thirty years. This paper presents the chemical, physical and climatic parameters changes by characterizing global and local trends, interannual variability and an eventual periodicity using different data analyses (i.e. linear regression, moving average, and eigenvectors filtering). Then, correlations between environmental parameters were analyzed and the potential influence of climate variability was evaluated with a standardized Principal Component Analysis

    Climate-driven changes in coastal marine systems of western Europe

    No full text
    International audienceCoastal marine systems, the interface between the ocean and terrestrial realms, are among the most important systems on the planet both ecologically and economically because of their crucial role in earth system functioning. Although direct impacts of human activities on physical, chemical and biological components of these systems have been widely documented, the potential influence of climate variability is less well known. Here, we used data from Service d'Observation en Milieu Littoral (SOMLIT), a marine monitoring programme that has since 1997 collected samples at 12 sites located along the French coasts from 42° to 51°N. Applying standardised principal component analysis (PCA), we documented the year-to-year fluctuations in these coastal systems and evaluated the potential influence of climate variability using data on atmospheric circulation (wind intensity and direction), precipitation and temperature. Our study revealed a pronounced sensitivity of these systems to climate variability. As the impact of climate change may become more prominent in the next decades, this study suggests that climate might strongly influence the marine coastal environment and act in synergism with other anthropogenic pressures to alter the state and functioning of biological and ecological systems and the services they provide
    corecore