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Abstract 

Impermanence is an ecological principle1 involving changes that can sometimes occur non-linearly 

as Abrupt Community Shifts (ACSs) to transform ecosystem states and the goods and services they 

provide2. Here, we present a model based on niche theory3 to explain and predict ACSs at the global 

scale. We test our model using 14 multi-decadal time series of marine metazoans from zooplankton 

to fish, spanning all latitudes and the shelf to the open ocean. Predicted and observed fluctuations 

correspond, with both identifying ACSs at the end of the 1980s4-7 and 1990s5,8. We show that these 

ACSs coincide with changes in climate that alter local thermal regimes, which in turn interact with 

the thermal niche of species to trigger long-term and sometimes abrupt shifts at the community 

level. A large-scale ACS is predicted after 2014 - unprecedented in magnitude and extent - coinciding 

with a strong El Niño event and major shifts in Northern Hemisphere climate. Our results underline 

the sensitivity of the Arctic Ocean, where unprecedented melting may reorganize biological 

communities5,9 and suggest an increase in the size and consequences of ACS events in a warming 

world. 

 

Main text  

The processes that cause long-term changes and Abrupt Community Shifts (ACSs) in ecosystems  are 

poorly understood despite decades of research2,4,10-12. We define an ACS as a stepwise shift in 

community structure12, a definition that does not necessarily imply the existence of stable states2,10, 

which are rarely observed in pelagic ecosystems10,12-14. Such ACSs correspond to rapid and major 

alterations in species composition15, which alter biodiversity with consequences for ecosystem 

services. Here, we apply a framework based on the MacroEcological Theory on the Arrangement of 

Life (METAL; Methods and Supplementary Table 1 for a list of acronyms)12,16-18. METAL integrates key 

ecological concepts (e.g. the ecological niche sensu Hutchinson) into a unique and coherent scheme 

that unifies space and time patterns at both species and community levels and enables quantifiable 

predictions. METAL has been used to explain responses of species and communities to climate change 

and the large-scale arrangement of biodiversity12,16-18.  

 

We applied the METAL-based model to investigate long-term community changes and ACSs in pelagic 

marine metazoans in the global ocean from 1960 to 2015. In each geographical cell of a gridded ocean, 

we built pseudo-communities from a pool of pseudo-species, i.e. simulated species characterised by 

unique thermal niches ranging from stenotherms (species with narrow temperature tolerance) to 

eurytherms (adapted to extreme temperature variations) and from psychrophiles (adapted to cold 

temperatures) to thermophiles (adapted to warm temperatures)12. Pseudo-communities were built 



from pseudo-species adapted to temperature fluctuations in a given region. We therefore focused on 

climate-induced changes that originate from fluctuations in the thermal regime and not from shifts 

induced by other environmental parameters19 (e.g. nutrients, salinity, oxygen) or anthropogenic 

pressures (e.g. fishing, eutrophication and pollution)2. It is now a key principle in ecology that thermal 

tolerance is species-specific3 and the strong influence of temperature on species through their thermal 

niche has been observed for a variety of ecosystems and taxonomic groups17,20,21. The novelty in this 

present analysis is our conceptual incorporation of the niche into a model that allows us to explore the 

influence of temperature at the community level in the context of climate-induced changes, including 

ACSs. 

 

We first tested if our model’s predictions of long-term changes in pseudo-communities agreed with 

independent observations from 14 multi-decadal series (Supplementary Figure 1; Supplementary 

Tables 2-3). These records included measurements of zooplankton (11 ecosystems), decapods (1 

ecosystem), and/or fish (4 ecosystems) spanning tropical (Hawaii) to polar regions (Southern Ocean), 

coastal (e.g. Adriatic and San Francisco Bay) to deep/open oceans (Pacific, Atlantic and Southern 

Oceans) and seas (Adriatic, Ligurian, North and Baltic Seas). For each observed community we 

performed a standardised Principal Components Analysis (PCA) on a matrix of years by biological 

variables (e.g. species abundance, biomass, or size fraction) and retained the first two Principal 

Components to investigate their long-term changes (Obs-PC1-PC2s). In each system, 10,000 PCAs were 

also performed on 10,000 pseudo-communities, each resulting from different simulated pseudo-

species associations. From these, we retained 10,000 pairs of predicted changes (Pred-PC1-PC2s)12. 

We provide an illustrative case-example of the skill of our model for the North Sea (Figure 1). Here, the 

first obs-PC shows a pronounced change at the end of the 1980s for 43% of taxa, and our simulated 

first PC also exhibits the same pattern for 71% of the pseudo-species; both PCs were highly correlated 

(Figure 1a-b,e-f; r=0.83,p=0.01,n=50).  

 

When all 14 ecoregions are considered (Fig. 2a-n), 89% (25) of all first two observed eigenvalues are 

significant (Supplementary Table 4). The observed and predicted community changes are highly 

correlated for every ecoregion, except for the highly dynamic and heterogeneous22 Western Pacific 

Transition Zone where only the two late-1980s and -1990s substantial shifts were predicted (Figure 2; 

Supplementary Note 1 and Table 5). Note that long-term changes shown in the figure are the examples 

showing the highest correlations between an observed and a predicted PC. As it might be expected, 

some observed PCs were weakly correlated with predicted PCs (Supplementary Table 5), which could 

be because i) some species may not react to temperature when their thermal optimum coincides with 

the mean local thermal regime12,23, or ii) some species may be more sensitive to other forcing (e.g. 



anthropogenic pressure, other ecological factors, biotic interactions or local complex circulation 

patterns)5,19,22,24. Such differences in response may explain why the climatic signal identified by the 

PCAs was sometimes associated with PC1 and at other times with PC2. Therefore, to consider the full 

complexity of the signal, we used the first 2 predicted PCs (mean Pred-PC1-2, averaged over 10,000 

simulated PCs; Figure 2a-n) and applied a regression (Methods) that explained 50.4% 

(r=0.71,p<0.01,n=567,Fig. 2o) of the total variance of all observed long-term changes in the 14 

ecoregions (red Obs-PCs; Figure 2a-n). Since predicted communities are independent of the observed 

communities, correlations of observed and predicted PCs are higher than we expected. This suggests 

that our framework captures the main drivers of changing communities.  

 

To verify that these results were not due to chance, we also examined correlations between 

observations and null models generated for each system and composed of random time series both 

with and without autocorrelation (Methods). Simulated Pred-PC1-PC2s from these null models 

exhibited a pronounced variability in each system, far exceeding that originating from METAL 

(Supplementary Figure 2 versus Figure 2a-n). All mean correlations were smaller than those expected 

from METAL, with the exception of the HOT time series. When all PCs were combined together (Fig. 

2o-p), the correlations based on METAL were substantially higher than could be explained by chance 

(Figure 2p). The small range in METAL/observation correlations (Fig. 2p, red bar) in comparison to null 

models (Fig. 2p, green and blue) indicates that results are stable, regardless of the selected pseudo-

species. This suggests that inclusion of all species might not be necessary to assess a community’s 

state. This is fortuitous because most monitoring programmes sample only a small part of a community 

(Supplementary Table 3).   

 

Next, we tested the capability of our framework to reveal large-scale community changes, including 

ACSs, by combining results from all 14 ecoregions (Figure 3). To extract the overall biological variability, 

we performed ‘global’ PCAs on the first two Pred-PCs extracted from (i) simulated (METAL and the null 

model based on autocorrelated time series) and (ii) observed communities for the 14 systems (14 

systems x 2 PCs =28 variables for each PCA). Therefore, we used all of the first two observed and 

predicted PCs for this analysis, which represents the full set of interactions within the observed and 

predicted PCs (Supplementary Table 6). We chose the period 1960-2007 because it had less than 50% 

missing data per year in each time series (Supplementary Figure 3). We performed this procedure in 

two ways: (i) a single ‘global’ PCA based on the average of 10,000 PC1-PC2s for each system to calculate 

the correlation between observations and predictions from METAL, and (ii) 10,000 ‘global’ PCAs to 

compare the variability of long-term changes from METAL and the null model. The first global PC 

originating from observed communities was highly correlated (r=0.87) with the first global PC derived 



from the mean of 10,000 theoretical communities (Figure 3a). Predicted and observed PC2s and PC3s 

were also significantly correlated, although at a lower level (Figure 3b-c). METAL predictions had 

smaller variability than predictions based on the null model (Figure 3a-c, green versus blue curves).  

 

We verified the representativity of these time series with respect to the global ocean. While our 14 

initial sites or ecoregions span a range of water depths from 31 to 5492m, many are close to the 

coastline and so our results could be biased towards shallow marine environments (Supplementary 

Table 3). To address this possibility, we analysed observations in 5 additional regions of the North 

Atlantic where we had spatially and temporally consistent data from nearshore and offshore and from 

shallow to deep waters (Supplementary Note 1). This analysis confirmed the validity of our framework 

in open oceanic domains (Supplementary Note 1) even if no data were available to us from the centre 

of oceanic basins nor from the South Pacific, South Atlantic or Indian Oceans (Supplementary Note 1).  

 

We then tested METAL predictions of abrupt shifts. Using pooled data from the 14 initial sites, we 

identified ACSs using an Abrupt Shift Detection (ASD) algorithm on 10,000 global PC1-PC3s (Methods). 

The algorithm detected a significant shift circa 1987 in our North Sea example for both predicted and 

observed first PCs (Figure 1c-d). For global PCs, the first two observed and predicted PCs showed 

significant ACSs at the end of the 1980s and 1990s respectively (Figure 3d-e). Predicted ACSs (blue 

curves) occurred one year before observed ACSs (red curves), possibly reflecting inertia related to 

species’ life cycles16. This analysis shows that the most frequent (but not necessarily the most intense) 

shift in the ecoregions coincided with the well-documented events of the late 1980s (Figure 3a,d)4,6,7. 

Although they were not significant, we detected acceleration phases on both third predicted and 

observed PCs (Figure 3c,f). The well documented 1976/77 ACS15 was not significant when all systems 

were considered (Fig. 3), probably because our observations did not include many areas where this 

shift occurred (Figure 2k, Supplementary Note 1). No significant trends were observed in global PCs 

based on autocorrelated time series (Figure 3d-f, green curves). These results suggest that our model 

can predict a substantial part of long-term community change, including ACSs.  

 

We then used our ASD algorithm to predict ACSs in space and time by applying it to the whole ocean 

for the period 1960-2015 and covering areas and years not monitored. For this analysis, we did not use 

any PCA but applied our algorithm to pseudo-species and retained only ACSs when they involved half 

or more pseudo-species for a given location and year. Our analysis suggests that ACSs may occur every 

year, but only in a limited part of the ocean (~2.8%), involving on average an area of ~10 million km² 

of ocean per year (Figure 4a and Supplementary Figure 4). Some periods had geographically limited 

ACSs (e.g. 0.89 million km² for 1984-1987) whereas others showed more extensive shifts (e.g. 50.5 



million km² for 2012-2015). Widespread predicted ACSs were always observed after El Niño events 

(e.g. weak El Niño episode of 1977-1978 and very strong episodes of 1997-1998 and 2015-2016) but 

not all El Niño events led to widespread ACS predictions (e.g. very strong episodes of 1982-1983; Figure 

4a). The late-1980s ACS, so frequently found in areas where monitoring took place4-6,8,11,12, was not 

predicted on a global scale. Despite similar strength in the two strong El Niño events 1997-1998 and 

2015-2016, the spatial extent of the predicted ACSs was very different, the recent one being more 

widespread (50 million km² circa 2014 versus 29 million km² circa 1999). The mean magnitude of ACSs 

increased substantially after the mid-2000s with a peak circa 2012 (Figure 4b). When both spatial 

extent (number of geographical cells) and magnitude were combined, an unprecedented shift (5 and 

3 times the average extent and magnitude, respectively) occurred after 2010 with a maximum ~2014 

(Figure 4c). Our null model (Figure 3d-f) showed that such an ACS at the end of the time series is 

unlikely to be an artifact as is sometimes reported with other techniques4 (Methods).   

 

The next question was whether the predicted ACSs could be associated to climate. We investigated 

these relationships using six climate parameters measured at a global scale: annual Sea Level Pressure 

(SLP), meridional and zonal winds, wind intensity, cloudiness, and Sea Surface Temperature (SST) 

(Methods). Using maps of ACSs and climatic shifts calculated for each year (Supplementary Figures 4-

5), we found significant correlations (Supplementary Table 7) between the spatial extent of both 

predicted and observed ACSs from 1960 to 2015 with annual SLP (r=0.69,pACF<0.01,n=53), atmospheric 

circulation (wind intensity and direction) variables (r=0.54-0.57,pACF<0.01,n=53) and, as expected, with 

annual SST (r=0.97,pACF<0.01,n=53). No significant correlation was found with cloudiness. These results 

identify a strong link between the spatial extent of predicted ACSs and shifts in atmospheric circulation 

and SST.  

 

We subsequently calculated predicted shifts on a global scale, focusing on 5 time periods: 1975-1979, 

1985-1989 and 1995-1999 because these include previously documented ACS4-8,11,15, 2005-2009 as an 

example of a relatively stable period; and 2010-2014 because of its exceptional nature (Figure 5). The 

predicted 2014-2015 ACS, clearly evident by visual inspection (Supplementary Figure 4), is much more 

intense and widespread than previous shifts (Figures 4-5), encompassing meteo-oceanic warm 

anomalies in the Northwest Atlantic, Northeast Pacific Ocean and many areas of the Arctic Ocean and 

the central North-Atlantic cold blob9,25-27(Figure 5). Although changes in the North Atlantic and Pacific 

Oceans resulted in part from changes in atmospheric and oceanic circulation and its influence on 

regional thermal regimes, changes in the Arctic resulted mainly from abrupt shifts in annual SST (Figure 

5e,j, Supplementary Figure 6). 

 



Our framework provides a theoretical explanation for long-term biological changes and ACSs. Each 

species responds individually, depending upon the interaction between its thermal niche and 

fluctuations in the thermal environment12, with cumulative responses leading to ecosystem shifts. The 

close correspondence between shifts in predicted and observed communities supports our framework 

and provides a useful basis for predicting climate/temperature-induced ACS at the community scale. 

However, large unexpected events such as the collapse or explosive growth of some populations 

(black-swan events28) may not be predicted by our approach.  

 

Our ability to resolve the spatial extent of oceanic community shifts is severely constrained by a paucity 

and unrepresentative coverage of observations. Most marine communities, in particular marine 

metazoans, are hidden from earth observation tools and adequate monitoring coverage for the entire 

ocean is logistically unlikely. Our framework could therefore be meshed with existing monitoring 

programmes to provide a macroscopic tool for identifying regions likely to develop ACSs and to help 

anticipate biological perturbations that could affect production of ecosystem goods and services27. For 

example, our framework has predicted an ACS of unprecedented scale in 2014-2015 that may have 

substantial ecological consequences25,27 across the Northern Hemisphere, including in the Arctic where 

current changes such as sea-ice melting are accelerating9. Finally, our study alerts us to the potential 

for a growing size and consequence of future ACS events as the world warms in response to rapidly 

increasing concentrations of atmospheric greenhouse gases. Even though it will remain difficult to 

predict ACSs, both because of model uncertainties and the fact that some event types will remain 

unpredictable29,30, the ability to forecast putative ACS events is an important development in our 

understanding of climate change biology. 

 

Acknowledgements 

This work was supported by the ‘Centre National de la Recherche Scientifique’ (CNRS), the Research 

Programme CPER CLIMIBIO (Nord-Pas de Calais), the regional programme INDICOP (Pas-de-Calais) and 

the ANR project TROPHIK. The authors also thank the French Ministère de l'Enseignement Supérieur 

et de la Recherche, the Hauts de France Region and the European Funds for Regional Economical 

Development for their financial support to this project. We are indebted to Philippe Notez for his help 

in computer engineering. AA and the Antarctic dataset was supported by the World Wildlife Fund and 

NERC and Department for Environment, Food and Rural affairs (DEFRA) grant NE/L 003279/1 (Marine 

Ecosystems Research Programme). PCR was also funded by NERC. We thank the anonymous reviewers 

for their competent and accurate comments that improved the original version of the manuscript. 

 

 



Author contributions 

G.B. conceived the study; G.B., A.C., A.A., E.G., J.C., S.C. and all co-authors compiled the data and G.B. 

analysed the data. G.B. wrote the (initial draft) paper. G.B., A.C., A.A., P.C.R., E.G., J.C., R.R.K., S.O., S.C., 

M.E. and all other co-authors discussed the results and contributed to the paper writing. 

 

Additional information 

The authors declare no competing financial interests. Supplementary information 

accompanies this paper at www.nature.com. Reprints and 

permissions information are available online at www.nature.com/reprints.  

 

To whom correspondence should be addressed: gregory.beaugrand@cnrs.fr 

 

Data availability 

The authors declare that data supporting the findings of this study are available from the 

corresponding author upon request.  

 

Literature cited 

 

1 Boero, F. et al. From biodiversity and ecosystem functioning to the roots of ecological 

complexity. Ecological Complexity 1, 101-109 (2004). 

2 Scheffer, M. Critical transitions in nature and society.  (Princeton University Press, 2009). 

3 Hutchinson, G. E. An introduction to population ecology.  (Yale University Press, 1978). 

4 Reid, P. C. et al. Global impacts of the 1980s regime shift. Global Change Biology 22, 682-703, 

doi:10.1111/gcb.13106 (2016). 

5 Greene, C. H., Pershing, A. J., Cronin, T. M. & Ceci, N. Arctic climate change and its impacts on 

the ecology of the North Atlantic. Ecology 89, S24-S38 (2008). 

6 Conversi, A. et al. The Mediterranean Sea regime shift at the end of the 1980s, and intriguing 

parallelisms with other European basins. PLOS one 5, 1-15 (2010). 

7 Beaugrand, G. et al. Synchronous marine pelagic regime shifts in the Northern Hemisphere. 

Philosophical Tansactions of the Royal Society B: Biological Sciences 370, 20130272, 

doi:10.1098/rstb.2013.0272 (2015). 

8 Luczak, C., Beaugrand, G., Jaffré, M. & Lenoir, S. Climate change impact on Balearic Shearwater 

through a trophic cascade. Biology Letters 7, 702-705 (2011). 



9 Arctic Council. Arctic Resilience Report., (Stockholm Environment Institute and Stockholm 

Resilience Centre, Stockholm, 2016). 

10 Conversi, A. et al. A holistic view of marine regime shifts. Philosophical Transations of the Royal 

Society B 370, 20130279, doi:10.1098/rstb.2013.0279 (2015). 

11 Möllmann, C. & Diekmann, R. Marine ecosystem regime shifts induced by climate and 

overfishing: A review for the Northern hemisphere. Advances in Ecological Research 47, 303-347 

(2012). 

12 Beaugrand, G. Theoretical basis for predicting climate-induced abrupt shifts in the oceans. 

Philosophical Tansactions of the Royal Society B: Biological Sciences 370 20130264, 

doi:10.1098/rstb.2013.0264 (2015). 

13 Mac Nally, R., Albano, C. & Fleishman, E. A scrutiny of the evidence for pressure-induced state 

shifts in estuarine and nearshore ecosystems. Austral Ecology 39, 898-906 (2014). 

14 Di Lorenzo, E. & Ohman, M. D. A double-integration hypothesis to explain ocean ecosystem 

response to climate forcing. Proceedings of the National Academy of Sciences of the United States of 

America 110, 2496-2499, doi:10.1073/pnas.1218022110 (2013). 

15 Hare, S. R. & Mantua, N. J. Empirical evidence for North Pacific regime shifts in 1977 and 1989. 

Progress in Oceanography 47, 103-145 (2000). 

16 Beaugrand, G., Goberville, E., Luczak, C. & Kirby, R. R. Marine biological shifts and climate. 

Proceedings of the Royal Society B: Biological Sciences 281, 20133350, doi:10.1098/rspb.2013.3350 

(2014). 

17 Beaugrand, G., Edwards, M., Raybaud, V., Goberville, E. & Kirby, R. R. Future vulnerability of 

marine biodiversity compared with contemporary and past changes. Nature Climate Change 5, 695-

701, doi:10.1038/NCLIMATE2650 (2015). 

18 Beaugrand, G. Marine biodiversity, climatic variability and global change.,  (Routledge, 2015). 

19 Cloern, J. E. & Jassby, A. D. Drivers of change in estuarine-coastal ecosystems: discoveries from 

four decades of study in San Francisco Bay. Reviews of Geophysics 50, rg4001, 

doi:10.1029/2012RG000397 (2012). 

20 Sunday, J. M., Bates, A. E. & Dulvy, N. K. Global analysis of thermal tolerance and latitude in 

ecthoterms. Proceedings of the Royal Society B 278, 1823-1830 (2011). 

21 Stuart-Smith, R. D., Edgar, G. J., Barrett, N. S., Kininmonth, S. J. & Bates, A. E. Thermal biases 

and vulnerability to warming in the world’s marine fauna. Nature 528, 88-92 (2015). 

22 Di Lorenzo, E. et al. Synthesis of Pacific Ocean climate and ecosystems dynamics. 

Oceanography 26, 68-81 (2014). 

23 Beaugrand, G. & Kirby, R. R. Quasi-deterministic responses of marine species to climate 

change. Climate Research 69, 117-128, doi:10.3354/cr01398 (2016). 



24 Mollmann, C. et al. Reorganization of a large marine ecosystem due to atmospheric and 

anthropogenic pressure: a discontinuous regime shift in the Central Baltic Sea. . Global Change Biology 

15, 1377-1393 (2009). 

25 Bond, N. A., Cronin, M. F., Freeland, H. & Mantua, N. Causes and impacts of the 2014 warm 

anomaly in the NE Pacific. Geophysical Research Letters 42, 3414-3420, doi:10.1002/2015/GL063306 

(2015). 

26 Duchez, A. et al. Drivers of exceptionally cold North Atlantic Ocean temperatures and their link 

to the 2015 European heat wave. Environmental Research Letters 11, 074004, doi:10.1088/1748-

9326/11/7/074004 (2016). 

27 Greene, C. H. North America’s iconic marine species at risk due to unprecedented ocean 

warming. Oceanography 29, 14-17 (2016). 

28 Aarssen, L. W. High productivity in grassland ecosystems: effected by species diversity or 

productive species? Oikos 80, 183-184 (1997). 

29 Boettiger, C. & Hastings, A. Early warning signals and the prosecutor's fallacy. Proceedings of 

the Royal Society B 279, 4734-4739 (2012). 

30 Schindler, D. & Hillborn, R. Prediction, precaution and policy under climate change. Science 

347, 953-954 (2015). 

 

Figure legends 

Figure 1 | Long-term biological changes and abrupt community shifts (ACSs) for both the observed 

community and a simulated pseudo-community in the North Sea. a-b. Long-term changes of the first 

principal components (PCs) and in biological variables related to them (i.e. absolute values of the 

normalized eigenvector ≥0.6; blue): (a) observed species and (b) simulated pseudo-species. The first 

PC, reflecting major changes in community structure, is in black for observed taxa (a,e) and red (b,e) 

for simulated pseudo-species. Taxa related to the observed first PC included Calanus finmarchicus 

(negative relationship, -), C. helgolandicus (positive relationship, +), Candacia armata (+), Centropages 

typicus (+), Corycaeus spp. (+), and Oithona spp. (-). Ten pseudo-species were related to the simulated 

first PC. The grey band shows the timing of the ACS revealed in panels c-d. c-d. Detection of ACSs for 

the first PC based on (c) the observed community and (d) the simulated pseudo-community. The 

dashed red horizontal line indicates the threshold of 3 used throughout this study. e-f. Measured 

(black) and simulated (red) first PCs (e) and their relationships (f). This ecosystem, and most biological 

systems considered in this study (except HOT, Southern Ocean and San Francisco Bay; see Methods) 

were also analysed in detail by Beaugrand12 and Beaugrand and colleagues7, respectively.   



Figure 2 | Predicted (grey) and observed (red) long-term community changes for 14 systems. 

Principal components were standardised between -1 and 1. Pred-PC: 10,000 Principal Components 

(grey) based on 10,000 simulated communities. Obs-PC: Principal Component based on observed 

communities (red). a. North Sea (Pred-PC1s and Obs-PC1), b. Baltic Sea (Pred-PC1s and Obs-PC1), c. 

Adriatic Sea (Pred-PC1s and Obs-PC1), d. Ligurian Sea (Pred-PC2s and Obs-PC1), e. Northwest Atlantic, 

southern area (Pred-PC1s and Obs-PC2), f. Northwest Atlantic, northern area (Pred-PC1s and Obs-PC1), 

g. West Pacific Transition zone (Pred-PC1s and Obs-PC1), h. Oyashio (Pred-PC1s and Obs-PC1), i. 

CALCOFI (Pred-PC1s and Obs-PC1), j. San Francisco Bay (Pred-PC1s and Obs-PC1), k. East Pacific region 

(Pred-PC1s and Obs-PC1), l. West Pacific region (Pred-PC1s and Obs-PC2), m. HOT (Pred-PC1s and Obs-

PC2), n. Antarctic Peninsula area (Pred-PC1s and Obs-PC2). a-n. rm are the mean linear correlations 

between the mean of 10,000 predicted and the observed community PC. Biological variables 

considered at each site are indicated by D (benthic decapods), Z (zooplankton), and F (Fish). Biological 

variables are indicated in the Methods. x|y: x is the number of pseudo-species used in METAL and y is 

the number of time periods (1 indicates the annual value).  The total number of variables used in 

METAL model is the product of x and y. For California Current (total zooplankton biomass) and Hawaii 

(zooplankton size fractions), we chose arbitrarily pseudo-communities composed of 30 pseudo-

species. o. Long-term community shifts predicted from a regression on principal components, using 

the first two Pred-PCs from the 14 systems (averaged from the 10,000 first 2 PCs) and observed 

community shifts as in panels a-n. p. Histograms of the 10,000 correlations between selected Obs-PCs 

and predictions based on the first 2 Pred-PCs from (i) the null model based on random time series 

(grey), (ii) randomly generated time series with an order-1 autocorrelation ≥ 0.5 (blue), and (iii) the 

METAL theory (red).  

 

Figure 3 | Comparisons of observed (red) and predicted (blue and green; 10,000 simulations) 

community shifts, all ecoregions combined. Model predictions are in blue and predictions from a null 

model with autocorrelation in green. (a) First PC (30.72% of the total variance): predicted and observed 

community changes. (b) Second PC (21.46%): predicted and measured community changes. (c) Third 

PC (15.47%): predicted and observed community changes. Index of abruptness of predicted and 

observed community changes: (d) First PC. (e) Second PC. (f) Third PC. Correlation (r), probability of 

significance without (p) and with (pACF) correction for temporal autocorrelation, and degree of freedom 

(n) are indicated in panels a, b and c and correspond to the correlation calculated between 

observations and METAL predictions when all local PCs are averaged. In d-f, the wide blue (METAL) 

and green (null model) curves correspond to the medians of 10,000 simulations and the lower and 

upper part, are the 5th and 95th percentiles, respectively. The first three axes of the PCA performed on 

observed data were significant using a statistical test based on a broken-stick distribution (Methods). 



  

Figure 4 | Predicted long-term variation of Abrupt Community Shifts (ACSs) in the global ocean. (a) 

spatial extent, (b) magnitude and (c) spatial extent and magnitude of ACS. Curves in red are order-1 

moving average of predicted values (blue bars) (Methods). Thin-dashed, thin-solid and thick red arrows 

identify weak, moderate, and strong El Niño events, ‘E’  =  super El-Niño events. Thin and thick blue 

arrows identify moderate and strong La Niña events. 

 

Figure 5 | Predicted Abrupt Community Shifts (ACSs; a-e) and climatic shifts (f-j) during the period 

1960-2015 with a focus on the years 1975-1979 (a and f), 1985-1989 (b and g), 1995-1999 (c and h), 

2005-2009 (d and i) and 2010-2014 (e and j). Colour bars show the percentage of individual time series 

having a significant shift (threshold>3). For ACSs, 50% means that half the pseudo-species exhibited a 

significant shift for a given pseudo-community. For climatic shifts, 50% means that half the climate 

parameters (3 of 6 parameters) had a significant shift. White areas are regions with no shift. When the 

percentage of shifts is >0, the percentage is indicated by a colour: yellow and red for low and high 

percentage, respectively. The six climatic parameters are: annual Sea Level Pressure (SLP), meridional 

wind, zonal wind, wind intensity, cloudiness and annual sea surface temperature (SST). The spatial 

extent of ACSs increases when the climatic shifts are more widespread. Individual maps of all predicted 

ACSs and observed climatic shifts are displayed in Supplementary Figures 4-5. Black arrow: direction 

and intensity of mean annual wind (1960-2015). Black line: isobar based on mean annual SLP (1960-

2015).  

  



Methods section 
 

Materials 
 
Sea surface Temperature 
 
Annual SSTs originated from the dataset ERSST_v3 (1960-2015). The dataset is derived from a 
reanalysis based on the most recently available International Comprehensive Ocean-
Atmosphere Data Set (ICOADS). Improved statistical methods have been applied to produce a 
stable monthly reconstruction, on a 2° x 2° spatial grid, based on sparse data31. Data were 
interpolated on a global grid of 1° latitude x 1° longitude. 
 
Sea Level Pressure, wind and cloudiness 
 
Sea Level Pressure (SLP), cloudiness and both the meridional (V) and the zonal (U) components 
of the wind were extracted from the National Center for Environmental Prediction/National 
Center for Atmospheric Research (NCEP/NCAR) Reanalysis project32. NCEP uses a climate 
model that is initialised with observations originating from a variety of sources (e.g. ships, 
planes and satellite observations). The spatial grid (2.5° latitude x 2.5° longitude) of annual 
average SLP and U and V wind data were constructed for the period 1960-2015. Wind intensity 
was calculated from U and V wind. Data were interpolated on a global grid of 1° latitude x 1° 
longitude for the period 1960-2015.  
 
Observed biological data 
 
We used a summary of long-term community shifts (i.e. the first 2 principal components after 
applying a Principal Components Analysis, PCA) in 14 regions located in three oceans (the 
Atlantic, the Pacific and the Southern Oceans) and four Longhurst biomes33 (Polar, Westerlies, 
Trade-Winds, and Coastal biomes). The first 11 regions have been analysed by standardised 
PCA in Beaugrand and colleagues7, the 12th has been analysed in Cloern and colleagues using 
the same technique34 and both the 13th and 14th time series were added to the present study, 
following the same procedure. Supplementary Note 2 summarized the main characteristics of 
the 14 selected regions (see also Supplementary Figure 1 and Supplementary Table 2 for more 
details).  
 
 
 

  



Models and numerical procedures 
 
Overview of the METAL theory 
 
We applied a framework based on the MacroEcological Theory on the Arrangement of Life 
(METAL)12,16-18,35,36, a theory that explains how marine pelagic metazoans are arranged in the 
sea and how changing environmental conditions alter biological arrangements in space and 
time at different organisational levels (e.g. species, community, ecosystem), allowing precise 
predictions to be tested. METAL proposes that biodiversity is to a large extent influenced by 
climate and the environment. This influence mainly takes place through the interactions 
between the species ecological niche (sensu Hutchinson37) and both climatic and 
environmental changes. This interaction determines in large part the arrangement of life in 
the oceans at different organisational levels from the species to the ecosystem level and from 
small to large ecosystems18. More information on the METAL theory is available in 
Supplementary Note 3.  
 
Generation of pseudo-species and pseudo-communities 
 
To construct long-term changes in pseudo-community in each geographical cell of the global 
ocean, we used here the model described in Beaugrand12 and Beaugrand and colleagues17; 
this model only uses one environmental parameter: temperature. We create pseudo-species, 
each having a unique Gaussian thermal niche with distinct degrees of eurythermy and 
thermophily16,17,38 (Supplementary Figure 7, step 1). The response curve of the abundance E 
of a pseudo-species s in a given site i and time j to change in SSTs was modelled by the 
following function17,39:  
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With Ei,j,s the expected abundance of a pseudo-species s at location i and time j; cs the 
maximum value of abundance for species s fixed to one; xi,j the value of SST at location i and 
time j; us the thermal optimum and ts the thermal amplitude for species s. The thermal 
tolerance is an estimation of the breadth (or thermal amplitude) of the species thermal 
niche39.  
 
A large number of pseudo-species was created with us varying between -1.8°C and 40°C by 
0.1°C increments and ts varying between 1.1°C and 10°C by increments of 0.05°C. This 
represented a total of 39,218 potential species. However, to consider niche vacancy38, we 
randomly selected half of this number17. At the end of the procedure, the global pool of 
pseudo-species was equal to 19,609; pseudo-species were randomly chosen to create local 
pseudo-communities (Supplementary Figure 7, step 1) so long as they could withstand the 
local temperature (annual SST) regime (Supplementary Figure 7, steps 1-3).  
 



In each geographical cell, a pseudo-community was composed of a given number of pseudo-
species (see the map in Supplementary Figure 7). A similar biodiversity map generated by the 
procedure can also be seen in Beaugrand and colleagues (their figure 1a)17. Each pseudo-
species has an index of abundance varying between 0 and 1 (Supplementary Figure 7, step 4). 
The expected abundance of such pseudo-species was determined by linear interpolation from 
the pseudo-species’ thermal niche and monthly SSTs in a given geographical cell from 1960 to 
2015 (Supplementary Figure 7, step 4). The procedure has been evaluated in detail for the 
North Sea by Beaugrand12. 
 
A summary of the state of the community is subsequently made by Principal Components 
Analysis (PCA), using the first two principal components (Supplementary Figure 7, step 5). 
More details on this analysis are presented in subsequent sections.  
 
Detection of Abrupt Community Shifts  
 
Many methods have been proposed40,41. Shift detection can be accomplished by the use of 
the coefficient of variation41, the measure of the autocorrelation42, or the quantification of 
the multi-scale variance along time series43. Here, we calculated an index of abruptness to 
identify in a simple way Abrupt Community Shifts (ACSs). Our abrupt shift detection algorithm 
was a simplified version of the methodology developed in Beaugrand and colleagues43. This 
index was developed because (i) it does not require stable states in contrast to other 
algorithms, (ii) it identifies a shift by evaluating the variability of the time series and (iii) it can 
be applied in the intensive research of ACSs on a global scale. For a given time series, we first 
calculated the order-1-5 difference of a time series where observations were standardised 
between 0 and 1. Be Z a time series, Z=[zi] was standardised as follows: 
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The amplitude vector Ap=[ap

i] was subsequently calculated as the first p difference between a 
value of X=[xi] at year t+p and year t, with 1≤p≤5: 
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After transformation, the time series has a length of n-p. This transformation enables the time 
series to become stationary (i.e. constant mean, variance and autocorrelation structure), an 
important assumption for many statistical tests. The magnitude vector Mp=[mp

i] was 
subsequently calculated by making the ratio of the amplitude of change a on the average 
amplitude of the time series: 
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The denominator can reach values up to 1; therefore, for a constant numerator, the smaller 
the denominator the higher the values of M. On 100 simulated time series of 10,001 points, 



95% of the 10,000 first differences ranged between 2.29 and 2.37. To be conservative, we 
selected a detection threshold of 3. Any values above 3 were considered to be indicative of an 
abrupt shift. We also used an order-1 symmetrical moving average prior to the application of 
the abrupt shift detection algorithm to diminish the influence of white noise in biological time 
series. Test of the procedure can be found in Supplementary Note 4 (see also Supplementary 
Figures 8-13).  
 
Relationships between observed and predicted long-term community shifts 
 
To test whether the METAL model was able to reproduce well long-term community shifts 
(including Abrupt Community Shifts or ACSs), we compared METAL predictions of long-term 
pseudo-community shifts with observed community shifts in 14 oceanic regions 
(Supplementary Figure 14). We applied a standardised PCA on a table years x biological 
variables and used the first 2 principal components to characterise biological changes in each 
of the 14 regions for which we had data. For 12 of those regions, the standardised Principal 
Components Analyses (standardised PCAs) were already performed7 and we applied a similar 
procedure for the two others: (i) HOT station and (ii) Antarctic Peninsula area. Note that the 
standardised PCA for San Francisco Bay was updated to 2013 using the same procedure34. We 
tested the significance of the first two axes (eigenvalues) by using a broken-stick distribution44 
(Supplementary Table 7). 
 
We calculated long-term pseudo-community shifts in each of the 14 regions by applying the 
procedure described in Beaugrand12; we produced a pool of pseudo-species that were able to 
colonise each of the 14 regions so long as they could withstand annual changes in SSTs 
(Supplementary Figure 7; see the section “Generation of pseudo-species and pseudo-
communities”). The generation of the pseudo-species was made using Equation (1) for the 
period 1960-2015. Many pseudo-species were produced. However, only pseudo-species with 
an annual relative (i.e. expressed as percentage) abundance > 0.005 and a presence > 6% for 
all years of the time period were kept45. As more pseudo-species were generated than 
observed biological variables involved in the calculations of the summary of each observed 
community shifts, we chose randomly, for each region, a number of pseudo-species that 
corresponded to the number of biological variables (Supplementary Table 3 and 
Supplementary Figure 14). For example in the Pacific Rim, we selected a number of pseudo-
species that corresponded to the number of biological variables used to perform the PCA. 
However, when total zooplankton biomass (CalCOFI) or size fractions (HOT) were used, we 
arbitrarily chose 30 pseudo-species and also chose two 2-month periods instead of a single 4-
month period for the Southern Ocean. For CalCOFI and HOT, the selection of this number of 
pseudo-species did not affect significantly the results above 5 pseudo-species. For the 
Southern Ocean, the selection of two 2-month periods instead of one 4-month period reduced 
the variability of the different trajectories but did not strongly affect our conclusions. We 
repeated the selection of the pseudo-species 10,000 times and recalculated each time the first 
two principal components on pseudo-species (Supplementary Figure 14). Therefore, 10,000 
PCAs were performed for each of the 14 regions. When the number of pseudo-species was 
high in a given system, variability in the METAL predictions was low. 
 
We subsequently compared the first two observed and predicted Principal Components (PCs) 
of the 14 regions; Obs-PC for PCs from the PCA based on observed community and Pred-PC 



for PCs from the PCAs based on pseudo-communities (PC1 and PC2 for first and second 
principal components, respectively). This comparison was made in 3 different ways 
(Supplementary Figure 14). 
 
First, we calculated the linear correlation coefficients between each Obs-PC and the average 
of the 10000 Pred-PCs (Supplementary Table 4); when the average was calculated, 
probabilities were calculated with and without adjusting the degree of freedom to correct for 
temporal autocorrelation46. Based on the correlation coefficients, we represented the best 
relationships between one of the two Obs-PCs and Pred-PCs for the 14 systems (Figure 2).  
 
Second, we performed a regression on Principal Components47 between the Obs-PC selected 
in Figure 2a-n and the first two corresponding Pred-PCs (averaged for the 10000 simulations) 
for the 14 systems. Those analyses were performed because they better integrate the 
complexity of the temporal signal of predictive PCs and removes any bias related to the 
selection of a given Pred-PC. A scatterplot was then performed between observed and 
modelled Obs-PCs of all systems and a linear correlation coefficient was calculated (Figure 2o). 
We also repeated the procedure for every simulation (10000) to examine the variability of the 
correlations between observed and predicted PCs (Figure 2p, red bars).  
 
Third, we calculated two ‘global’ standardised PCAs: the first, on the matrix that combined the 
first 2 Obs-PCs obtained from each PCA applied on observed communities; the second, on the 
matrix that resulted from the combination of the first 2 Pred-PCs obtained from PCAs applied 
on simulated pseudo-communities (after averaging the 10,000 simulations). Prior to these 
analyses, we estimated the number of missing data from 1950 to 2014 to select a time period 
for which years had less than 50% of missing data (period 1960-2007; Supplementary Figure 
3). This threshold of 50% was chosen to have a maximum of years in the analyses with an 
alteration towards the beginning and the end of the selected time period as low as possible.  
We examined the relationships between the first 3 global Obs-PCs and Pred-PCs. We tested 
the significance of the first three axes by using a broken-stick distribution44. Normalised 
eigenvectors (i.e. correlations between long-term changes in the value of each variable with 
the first three principal components) are in Supplementary Table 5. This analysis focused on 
the different long-term and more abrupt patterns that were observed in the 14 systems. We 
also repeated the procedure for every simulation (10000) to examine the variability of the first 
3 predicted global PCs (Figure 3a-c; curves in blue) and its influence on the detection of ACSs 
(Figure 3d-f; curves in blue). We applied our abrupt shift detection algorithm to identify ACSs 
in the three global Obs-PCs and Pred-PCs. For this analysis, we used an order-3 weighted 
difference in all analyses after having applied an order-1 symmetrical moving average (see 
Equation 4 with p=3). This procedure was chosen to remove the effects of episodic events and 
to concentrate on ACSs that may have persistent effects. 
 
Null models 
 
We designed two null models to examine whether our METAL predictions fit better the 
observations than those obtained randomly (with and without temporal autocorrelation; 
Supplementary Figure 14). The first null model generated a number of random time series for 
each station corresponding to the species richness simulated by METAL, with a length 
corresponding to the time period covered in each sampling site (Figure 2) and a length 



corresponding to the time period chosen to perform ‘global’ PCAs (Figure 3). The second null 
model generated the same number of time series but using random time series with an order-
1 temporal autocorrelation ≥ 0.5 as many of our observed and METAL-simulated time series 
were autocorrelated. We analysed those data using the same procedures applied to analyse 
METAL-simulated data (see the previous section) and to examine the relationships with 
observed biological data (Supplementary Figure 14). We only represented expected biological 
changes based on the null model using randomly generated time series with an order-1 
autocorrelation ≥ 0.5 as the null model based on random time series gave similar results. The 
average correlation between expected and observed changes was reported for each site 
(Supplementary Figure 2).  
 
Subsequently, we calculated regression on PCs (the first two PCs for each system) using the 
same procedure as above for every expected Pred-PCs (therefore 10000 times). We 
performed this analysis for both random time series and randomly generated time series with 
an autocorrelation ≥ 0.5. A histogram of all correlations (random time series and randomly 
generated time series) was performed and compared with correlations based on the METAL 
model (Figure 2p). Green: correlations between Pred-PCs based on random time series and 
Obs-PCs; Blue:  correlations between Pred-PCs based on randomly generated time series with 
an order-1 autocorrelation ≥ 0.5 and Obs-PCs; Red: correlations between Pred-PCs based on 
the METAL model and Obs-PCs. 
 
We calculated ‘global’ PCAs based on the 10000 Pred-PCs originating from Pred-PCs based on 
randomly generated time series with an order-1 autocorrelation ≥ 0.5; 10000 global PCAs were 
thereby calculated to examine the variability of the first 3 ‘global’ PCs (Figure 3a-c; green). We 
also applied the Abrupt Shift Detection algorithm on each global PC (1-3 global PCs) and 
represented the 5th, 50th (median) and 95th percentiles (Figure 3d-f; green).   
 
Predictions of Abrupt Community Shifts 
 
After testing our theoretical framework and abrupt shift detection algorithm against field 
observations, we estimated theoretically ACSs from 1960 to 2015 in all areas of the oceans. 
Here also, only pseudo-species with an annual relative (i.e. expressed as percentage) 
abundance > 0.005 and a presence >6% for all years of the time period were kept 45. In each 
geographical cell of the oceans, we estimated ACSs for all pseudo-species composing a 
pseudo-community. To estimate ACSs, we used an order-3 weighted difference after having 
applied an order-1 symmetrical moving average (see Equation 4 with p=3), as above. Then, we 
represented for each tested time period from 1960-1963 (mean year 1961.5) to 2012-2015 
(mean year 2013.5) the amount of species that exhibit ACSs out of the pseudo-species 
composing the pseudo-community (Supplementary Figure 4). Data of mean sea level pressure 
and mean wind circulation were superimposed on maps for the corresponding time period. 
Because the number of maps was large (see Supplementary Figure 4 for all maps), we chose 
5 time periods: (i) 1975-1979, 1985-1989 and 1995-1999 because these include already 
documented ACSs4,7,8,15,48, (ii) 2005-2009 because it is an example of a relatively calm period 
and (iii) the last period 2010-2014 (Figure 5). To pool different mean year of shift (e.g. 1976.5 
as an average of period 1975-1978) within those time periods (e.g. 1975-1979), we calculated 
the highest percentage of pseudo-species’ shift in each geographical cell (e.g. 1975.5, 1976.5, 
1977.5, 1978.5, 1979.5).  



 
Observations of abrupt climatic shifts 
 
We applied the same procedure to identify abrupt climatic shifts from 1960 to 2015. We also 
applied an order-3 weighted difference after having applied an order-1 symmetrical moving 
average (see Equation 4 with p=3). The abrupt shift detection algorithm was performed on 
annual sea level pressure, meridional (U) and zonal (V) wind, wind intensity, cloudiness and 
SST. We then added the number of significant shifts observed in each geographical cell from 
1960-1963 to 2012-2015 (Supplementary Figure 5). To examine the potential relationships 
between predicted ACSs and climatic shifts, we applied the same procedure as above for the 
same time periods: 1975-1979, 1985-1989, 1995-1999, 2005-2009 and 2010-2014 (Figure 4d-
f). Abrupt climatic shifts were mapped for the period 2010-2014 for each climatic variable 
(2010-2014) in an attempt to understand the exceptional nature of the time period identified 
by our theoretical framework (Supplementary Figure 6).  
 
Long-term changes in spatial extent and magnitude of abrupt shifts 
 
For each year, we estimated the spatial extent, the magnitude, and both combined, of ACSs 
(Figure 5).  
 
Estimation of spatial extent of ACSs 
 
For each geographical cell that had a percentage of pseudo-species that shifted significantly 
above 50% in a given pseudo-community, geographical distances in a geographical cell were 
calculated as follows 49: 
 

d(i,j)=6377.221 x hi,j   (5) 

With di,j being the geographical distance between point i and j, the constant the Earth radius 
and hi,j computed as follows49:  
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With ϕi the latitude (in radians) at point i, ϕj the latitude (in radians) at point j and g the 
difference in longitude between i and j. The area was subsequently calculated by multiplying 
the zonal and meridional distance of the cell. Finally, we added all areas to obtain the spatial 
extent concerned by ACSs (Figure 4a). The same type of calculation was applied for each 
climatic variable that shifted significantly. This procedure allowed us to calculate the 
correlation (and its probability of significance pACF; ACF means autocorrelation function) 
between long-term changes in spatial extent of significant ACSs and the spatial extent of 
climatic shift (threshold of 3) for each variable taken individually (Supplementary Table 6).  
 
Estimation of the magnitude of ACSs 
 
We also estimated the magnitude of ACSs for each year of the time period (1960-2015) by 
averaging the index of abruptness for each geographical cell for which more than 50% of 
pseudo-species shifted significantly (threshold of 3; Figure 4b).  
 



Estimation of both magnitude and spatial extent 
 
The last index was calculated by summing the magnitude of all ACSs characterised by at least 
50% of pseudo-species’ shifts inside a pseudo-community. This index takes into consideration 
both the magnitude of the shift and the number of geographical cells concerned by an ACS 
(Figure 4c).  
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Introduction 

 

This piece provides details on the data and on the background work supporting the main article, 
including a number of statistical tests and validations meant to provide the reader with confidence on 
the METAL1-based framework used. A glossary with the list of the acronyms used in the text is available 
in Supplementary Table 1. The observed data time series are described in Supplementary Tables 2-3, 
Supplementary Figure 1, and in Methods. Supplementary Figure 2 shows the relationships between 
observed and predicted long-term biological changes, with predictions originating from a null model 
that results from the standardised Principal Components Analysis (PCA) of randomly generated time 
series with an order-1 temporal autocorrelation ≥ 0.5 carried out for each system. Supplementary 
Figure 3 shows how/why years were chosen to perform the ‘global’ PCAs. The METAL-based abrupt 
shifts predicted at global-scale for the marine community are shown at 3-yearly intervals from 1960-
1963 to 2012-2015 in Supplementary Figure 4, while the abrupt shifts in observed climate parameters 
are shown in Supplementary Figure 5 for the same period and scale. Supplementary Table 4 shows the 
percentage of variance explained by the first two axes of the principal component analyses performed 
on observations and the variance predicted from a broken-stick distribution. Background statistical 
information on observed and predicted Principal Components is presented in Supplementary Tables 
5-6, while Supplementary Table 7 shows the linear correlations between the spatial extent of predicted 
abrupt community shifts from 1960 to 2015 and the spatial extent of significant abrupt climatic shifts 
based on six climatic parameters. Supplementary Figure 6 shows the spatial patterns of abrupt shifts 
of six climatic parameters centred on the period 2010-2014. Supplementary Figure 7 shows a summary 
of the METAL procedures that lead to the building of each local pseudo-community, the test of our 
framework against observed data and the prediction of abrupt community shifts. The detection ability 
of the abrupt shift algorithm is shown in Supplementary Figures 8-12 using simulated times series of 
growing complexity. Supplementary Figure 13 shows the autocorrelation of the time series used to 
test the algorithm of abrupt shift detection. Supplementary Figures 14 described the main numerical 
procedures used in Figures 2 and 3. Supplementary Note 1 discusses the limitations of our framework 
and of some statistical procedures. Supplementary Note 2 describes information on biological sites. 
Supplementary Note 3 summarizes the MacroEcological Theory on the Arrangement of Life. 
Supplementary Note 4 summarizes the test of the abrupt shift detection algorithm. 

 

Supplementary Notes 

Supplementary Note 1| Limitations of our procedures 

 

Principal Component Analyses 

 

As with all statistical analyses, Principal Component Analyses (PCAs) have some limitations1. Although 
some parts of the signal in the first two PCs may have been influenced by the noise associated to 
biological time series1, we are confident that this stochasticity did not alter our conclusions because (i) 
we used null models with and without autocorrelation, which showed that patterns in observed and 
predicted biological shifts were far from random (Figures 1-3, Supplementary Figure 2); (ii) Most long-
term changes were significantly correlated with predictions at the scale of a marine system and globally 
(Figures 1-3); indeed correlations were significant after accounting for temporal autocorrelation and 
also substantially higher than correlations based on null models (Figures 1-3, Supplementary Figure 2); 
(iii) our framework, not based on PCA (Figure 5), predicted well all shifts reported in the mid-1970s 
(north-east Pacific and tropical), the mid-1980s (European Seas) and the mid-1990s (e.g. north-east 

                                                           
1 MacroEcological Theory on the Arrangement of Life 



Atlantic); (iv) the last two shifts were also detected using time series analyses and not ordination 
techniques in this study (Figure 5) and others2-4.  

We applied a test based on a broken-stick distribution5 to evaluate the significance of the first two axes 
of the PCAs. With the exception of three eigenvalues, this analysis revealed that 89% (25) of the first 
two observed eigenvalues were significant (Supplementary Table 7; see Figure 2); the nonsignificant 
eigenvalues (PCs) were not selected in Figure 2a-n because the correlation with pred-PCs was low.  

Representativity of the monitoring sites to test our global-scale model 

Any proposed global frameworks, including global biogeochemical models, are likely to suffer from 
lack of representativity, especially when long-term time series are needed. We have done our best to 
select time series representative of different biomes. Data used in the paper are well representative 
of the long-term datasets currently available in pelagic ecosystems6,7. Our modelled data will be 
available through our website (http://metaltheory.weebly.com/) to allow researchers to test our 
theory using their datasets.  

Although we do not cover all oceanic regions (e.g. South Pacific and Atlantic, Indian Ocean), areas 
chosen to calculate long-term changes in community have a large bathymetry range (Supplementary 
Figure 15). The histogram, based on the geographical limits shown in Supplementary Table 3 (last 
column), shows that we cover continental shelves and oceanic areas; selected oceanic areas (i.e. water 
depth > 200m) and continental shelves (i.e. water depth < 200m) represented 7.5 million km² (2.25% 
of the total oceans) and 2.23 million km² (8.04% of the total continental shelves), respectively. These 
area calculations are based on the regions selected for the pseudo-communities, which are larger than 
observation sites. However, because they were frequently correlated (Figures 1-3), we assumed that 
the areas we chose to test our framework represented at best 2.25% and 8.04% of the total oceans 
and continental shelves, respectively. 
 

Although our framework is applied on a global scale (Figures 4 and 5), it was tested on a restricted 
section of the global ocean as such a global monitoring network does not exist (Supplementary Figure 
1). However, we considered the sampling spatial coverage representative of environmental conditions 
from oceanic to neritic and from tropical to polar. In this section, we tested whether the correlation 
was related to the characteristics of a region (Supplementary Figure 16). We represented the 
correlation between observed and predicted principal components (PCs of Figure 2a-n) as a function 
of the surface area and the mean bathymetry of each region (Supplementary Figure 16). Although 
correlations are highest for shallow regions, there are places where both low and high correlations can 
be observed for similar bathymetry and surface area everywhere; this is the case from high bathymetry 
(Oyashio versus transition zone) to medium (California Current versus East Pacific Rim) and low 
bathymetry (northern part of the north-west Atlantic versus Adriatic Sea). This analysis did not provide 
evidence against an application of our framework in remote oceanic areas, although more tests in 
other regions will definitively reinforce it. 

Test of METAL performance in offshore areas of the North Atlantic Ocean 

To further test whether our framework could be extended to deep-sea/open oceanic regions (i.e. areas 
below 200m8 or corresponding to case 1 waters9), we used a separate subset of data from the 
Continuous Plankton Recorder (CPR) survey. We chose this survey because it provides consistent, 
multi-decadal plankton sampling over a large number of areas, spanning from near-coast to open 
waters and from shallow to deep waters10,11. We selected five offshore regions well covered by the 
CPR survey (i.e. number of samples >5000 samples; Supplementary Figure 17, left inner panels). We 
included zooplankton species that had an annual abundance > 0 in ≥20 years during the period 1958-
2016 and used the procedure applied previously to compare long-term changes in biological and 

http://metaltheory.weebly.com/


theoretical communities (Supplementary Figure 7 and Figures 1-2). Long-term observed community 
changes were highly positively correlated with predicted biological changes from our model for the 
time period 1958-2016 in all five regions (Supplementary Figure 17, left panels). All predicted and 
observed communities exhibited a pronounced shift in the middle to the end of the 1990s. Such a shift 
has been reported in the Celtic Sea, the Bay of Biscay and oceanic areas located to the west of the 
British Isles3,12. High values of the principal components were found at the beginning of the time series 
in northern regions (e.g. Denmark Strait and Faroe-Iceland Rise). Cumulative frequency histograms 
(middle and right panels) show that >~90% of samples used to estimate long-term community changes 
in the five regions were collected in regions with water depth > 200m (i.e. the shelf edge and the ocean) 
and in regions > 100 km from land (Supplementary Figure 17, middle panels). We are therefore 
confident that our framework is applicable more generally to oceanic regions including the open 
ocean, despite the fact that our framework was not tested in some oceanic basins such as the South 
Atlantic, Pacific and Indian Oceans.  

Long-term changes in the 14 systems unexplained by our model 

Although the predicted data provided overall very good significant correlations with observed data, 
higher residual variability was observed occasionally in some areas such as in the Western Pacific 
Transition Zone (Figure 2g) and may reflect any of three main causes. First, it may be related to local 
environmental complexity that is not fully resolved in our model. Future improvements of the METAL 
theory may help reduce this variability by including further ecological factors13. At present however, 
ecological dimensions of interest are rarely available on a year-to-year basis. Second, it is likely that 
many marine ecosystems, especially coastal ones, are also influenced by human-induced factors such 
as overfishing, eutrophication and pollution, and these probably affect the biological composition of 
communities14,15. Third, it is possible that uncertainties in sampling procedures significantly affect the 
time series, although the PCA helped to reduce this variance16. 
 

The West Pacific transition Zone 

The low correlation found in the West Pacific Transition Zone (zone 11 in Figure 2g) is probably related 
to its sampling spatio-temporal variability17 or its high hydro-dynamic complexity18. We have 
investigated whether this absence of a correlation was constant throughout the time series (1960-
2000) or whether it was related to a specific event. To do so, we calculated the correlations by 
progressively removing observations (years) from the beginning to the 31st observation. The first 5 
years were badly reproduced by the model, being off-phase (Supplementary Figure 18). When these 
years were removed, the correlation improved and became close to the level of significance after 
adjusting the degree of freedom to account for temporal autocorrelation (Supplementary Figure 18, 
left lower and upper panels). A plateau was reached after removing the first 24 years (Supplementary 
Figure 18, right lower and upper panels); correlations became significantly high. This was primarily due 
to the presence of two substantial shifts observed at the end of the 1980s and 1990s that were well 
reproduced by our framework (Figure 2g and Supplementary Figure 18). Although the year-to-year 
variability were not well reproduced at the beginning of the time series, the two substantial shifts 
observed at the end of the 1980s and the 1990s were captured by our model. 

The 1976/1977 North Pacific shift 

 

Based on 69 biological and 31 climatic time series, Hare and Mantua19 examined long-term changes in 
the north-east Pacific from 1965 to 1997. They found what they termed a regime shift (i.e. a sudden, 
substantial and temporally persistent changes in the state of communities/ecosystems20) in 
1976/1977, which was latter supported by a number of studies21. The 1976/1977 shift was not 
identified in Figure 3 because the number of systems in the north-east Pacific were limited in our 



analyses. However, other results are in agreement with what is currently known about this shift. For 
example, Hare and Mantua19 found that the regime shift was more detected on biological than climatic 
time series, the latter being more noisy than regime-like19. It is interesting that in our study no abrupt 
climatic shifts were detected because changes were more gradual (Figure 5f). This situation is well 
explained in the example provided in Supplementary Figure 10 when time series are mainly composed 
of cyclical or pseudo-cyclical and “noisy” variability. (It is also well-documented that shifts are more 
easily explained by large-scale hydro-climatic indices than by local hydro-climatic time series22.) 
Applied on pseudo-species, our procedure revealed that between 20 (yellow in Figure 5a) and 40% 
(orange in Figure 5a) of the pseudo-species exhibited a significant shift in the area covered by Hare 
and Mantua19. Although abrupt shifts were not detected on the local hydro-climatic time series (Figure 
5f), many pseudo-species exhibited a substantial abrupt shift (Figure 5a). Our model therefore suggests 
that the non-linear interaction between the niche of species and environmental fluctuations is the 
mechanism by which biological systems amplify weak environmental fluctuations23. When a PCA was 
applied on pseudo-species, the first PC revealed the 1976/1977 shift (Figure 2k). Finally, the substantial 
spatial extent of the 1976/1977 shift was also clearly identified (see Figure 4).  

Is our framework mechanistic or correlative? 

Our framework is mechanistic rather than empirical (correlative or phenomenological). Empirical 
(correlative) models are based on direct observations or measurements. In contrast, mechanistic 
models are based on an understanding of the system’s behaviour. Here, our model based on the 
METAL theory24-26 was fully independent on the biological data and no observations were needed for 
calibration. We generated pseudo-species that had their own thermal niche and species interacted 
subsequently with local fluctuations in the thermal regime. At this organisational level, we assumed 
that the ecological niche is an elementary macroscopic foundation, which integrates mechanisms that 
are controlled by the genome fixing individual’s physiology26. Based on the same model (with no 
adjustment of any parameters whatever the system under consideration), we reproduce most long-
term changes well, including abrupt community shifts, observed in 14 marine pelagic ecosystems 
ranging from tropical to temperate and polar regions. 

Strengths and limitations of the use of a single parameter (temperature) 
 
We assume here that the main driver by which atmospheric forcing may affect biological communities 
is sea temperature because many studies have shown that this parameter has a cardinal influence on 
species physiology, biology and ecology27-29. Temperature controls all biological processes from the 
molecular to the cell and the organism levels28. Temperature alters growth, reproduction, mortality, 
the behaviour of organisms at the species level and biotic interactions (positive or negative) at the 
community level30,31. At a global scale, temperature alterations can influence the ocean deep and 
surface circulation, and largely determine the location of biogeographic provinces and biomes. 
Temperature patterns modulate ecological services such as food production and carbon sequestration 
that marine ecosystems provide to humanity32,33. It is therefore not surprising that many 
biogeographical studies have revealed a cardinal influence of temperature on marine biodiversity34-38. 
 
However, we are aware that multiple environmental parameters influence the productivity and 
distributions of individual marine species, and their grouping together as communities and 
ecosystems13. Nutrients and light limit phytoplankton production39,40. Both bathymetry and local 
spatial variability in bathymetry are key determinants of marine pelagic biodiversity41. Dissolved 
oxygen must remain high enough to support respiration42. Mixed Layer Depth (MLD) is an important 
parameter for phytoplankton production and controls the spatial distribution of many plankton 
species39,43. Oceanic pH influences calcifying organisms such as coccolithophorids, foraminifers, corals 
and pteropods44,45. Wind intensity, affects prey-predator encounter rates46 by its effects on oceanic 
turbulence, and nutrient supply rates by its effects on vertical mixing43. Wind direction, by its control 



of the distribution of some meroplankton species might strongly affect recruitment of some benthic 
organisms47. Additional anthropogenic factors such as overfishing may compound synergistically with 
natural factors to drive ecosystem shifts48,49. The above list is far from exhaustive, but shows the 
complexity of pathways and types of control that the environment might exert on organisms and 
biocoenoses. 
 
Future versions of our framework should therefore consider several environmental parameters 
simultaneously. However, this may not improve significantly the model because many marine 
environmental parameters covary with temperature (e.g. ice, oxygen, some nutrients). Furthermore, 
many environmental parameters are not available with sufficient accuracy on a global scale and on a 
year-to-year basis. That is why we have first focused on temperature.   
 
Our model cannot realistically implement biotic interactions in the construction of pseudo-
communities on a global scale, although multiple examples suggest that they can be quite important 
in some ecosystems31,50. There are currently insufficient data to include these potentially important 
top-down and competitive interactions over the scales needed. Therefore, our overall approach was 
to test temperature to examine how well this factor alone could modulate global-scale pelagic 
assemblages, leaving scope for future refinement. We are aware, however, that at a more local scale, 
biotic interactions may precipitate the climatic effects on pseudo-communities51.  
 
Terminology  
 
All biological systems do not persist in total stasis for long and it is just a matter of time before they 
change. Here, we talk about long-term community change to characterise any type of alteration in a 
pseudo-community and Abrupt Community Shift (ACS) when a rapid and substantial shift takes place.  
 
In the scientific literature, the terminology used to qualify shifts in a community includes regime 
shift52,53, critical transition14, abrupt shift54, abrupt transition55, acceleration phases, stepwise change56, 
phase transition57, phase shift, state shift58, system flips59, stark changes60, and catastrophic shift61. 
Although sometimes seen as synonymous, at least two types of terms focus on different aspects. The 
first category (regime, phase and state shift as well as phase transition) puts an emphasis on the 
dynamic regime or dynamic equilibrium of systems. These concepts are defined as a substantial and 
rapid shift between two contrasting persistent states20. These terms assume the existence of stable 
states. After the shift, the system has a different mean and sometimes an altered variance but the 
variability around the mean is assumed to be stationary (i.e. no temporal autocorrelation and no 
cyclical variability). Many statistical tests can be used to identify this type of shift. The sequential t-test 
of Rodionov62,63 has been frequently applied3 but many other techniques such as split-moving window 
boundary analysis64 may also be used56. When the table contains many variables, (chronological or not) 
cluster analysis or principal component analysis have also been used19,65. Note that other techniques 
can be applied56,66,67, including change-point analysis68.  
 
The second category (abrupt shift or transition, acceleration phases, stark changes, catastrophic shifts, 
critical transition) focuses mainly on the shift, which makes the emphasis on the variance at the time 
of the shift and not the state. They are sometimes called vacillations in climatology69. These terms are 
interesting because there is no need to invoke a stable state or the persistence of a regime. Such shifts 
may be better defined by their variance signature54. All sources of variability can coexist and periods 
of slow and fast variance are often observed54. Detection of these shifts can be accomplished by the 
use of the coefficient of variation, the measure of the autocorrelation, or the quantification of the 
multi-scale variance along the time series 54. Change-point analysis may also be used to detect such 
shifts. Principal components analysis, often used in this research field, is also adapted to detect 
changes in mean and the increase of variance at the time of the shift.   
 



In this study, we have used the terms Abrupt Community Shift (ACS) instead of regime shift because 
the former term places the emphasis on the variance at the time of the shift and not the state. There 
is no need to invoke a stable state or the persistence of a regime. Therefore, ACSs simply reflect rapid 
alterations in species composition that may significantly affect biodiversity with potential 
consequences for ecosystems services. This definition is more general and has no a priori requirement 
to invoke mechanisms behind the origin of those shifts (e.g. double-integration hypothesis, alternative 
stable states)4,14,70.  
 

Supplementary Note 2| Information on biological variables 

 
Below, we summarise the main characteristics of the 14 selected regions (see also Supplementary 
Figure 1 and Supplementary Table 2 for more details). Biological variables (e.g. species, taxon, biomass, 
size fraction) varied from one region to another (see Methods section and Supplementary Tables 2-3). 
For each system, all available biological data were used. A thorough description of species composition 
in each system can be found in Beaugrand and colleagues71, Cloern and colleagues72, Landry and 
colleagues73 and Atkinson and colleagues74.  
 

1. The North Sea (zooplankton). The Continuous Plankton Recorder (CPR) survey is the largest 
multi-decadal plankton monitoring programme in the world10. The CPR is towed behind ships 
of opportunity on their normal trading routes at usually 15–20 knots speed. The routes are 
repeated in most cases with monthly frequency, and have varied somewhat over time. The 
self-contained automatic plankton recorder collects plankton continuously from a standard 
depth of about 7 m75. Water enters the CPR through a square aperture at the front with sides 
of 1.27 cm (1.61 cm2) and exits through the rear of the device. In-between, the plankton in the 
water is filtered onto a constantly moving band of silk. Sampling is performed on a monthly 
basis. The PCA was performed at an annual scale using 14 zooplankton species for the 50-year 
period 1958-200771. The first two PCs were retained and explained 27.96% and 27.15% of the 
variance, respectively. For this work we have used the area enclosed in the North Sea, from 
1958-2007 (53645 samples), and the taxa Acartia spp., Calanus finmarchicus, Calanus 
helgolandicus, Candacia armata, Centropages hamatus, Centropages typicus, Labidocera 
wollastoni, Metridia lucens, Para-pseudocalanus spp., Pseudocalanus elongatus adult, Temora 
longicornis, total Harpacticoida, Corycaeus spp., Oithona spp. 
 

2. The Central Baltic Sea (zooplankton biomass). Data on biomass of major mesozooplankton 
species were derived from a database of the Latvian Institute of Food Safety, Animal Health 
and Environment BIOR covering the Gotland basin. The Latvian dataset is the longest and most 
consistent dataset in the Baltic Sea. Individual hauls were carried out to a maximum depth of 
100 m76. Sampling takes place on a seasonal basis and the PCA was performed at a seasonal 
scale using 10 zooplankton species for the 52-year period 1957-200871. The first two PCs were 
retained and explained 23.08% and 11.12% of the variance, respectively. For this work we have 
used seasonal mean abundances (ind/m3) of Acartia spp., Bivalvia, Centropages hamatus, 
Evadne nordmanni, Fritillaria borealis, Podon spp., Polychaeta, Pseudocalanus acuspes, 
Synchaeta spp., Temora longicornis. 
 

3. The Ligurian Sea, Western Mediterranean Sea (zooplankton abundance and biovolume). The 
Villefranche Point B dataset consists of more than 50 years of samples collected off 
Villefranche in the Ligurian Sea (western Mediterranean) at 43°41’N, 07°19’E. Samples were 
collected daily by a vertical tow from bottom to surface (75-0 m) using a Juday-Bogorov net 
(1966-2003, 330 μm mesh). Taxa abundance was counted from ongoing and historical samples 
using the wet-bed image scanning technique of ZooScan77. Sampling takes place on a seasonal 
basis and the PCA was performed at a seasonal scale using 6 zooplankton group for the 30-



year period 1974-200371. The first two PCs were retained and explained 30.53% and 13.86% of 
the variance, respectively. For this work we have used monthly abundances (ind/m3) of the 
taxa Copepoda, Chaetognatha, Decapoda, Jellyfish, Siphonophora, plus Total Zooplankton 
Biovolume (mm3/m3) from January 1974 to December 2003. This series has no major gaps (just 
a few months are missing). 
 

4. The Northern Adriatic Sea, Eastern Mediterranean Sea (zooplankton). The Gulf of Trieste is the 
shallowest (<27 m), landlocked, northernmost section of the Adriatic Sea with a surface area 
of about 600 km2, and a volume of 9.5 km3 78. It is characterised by an overall shallowness - 
10% of the average bottom depth is less than 10 m and the maximum depth is about 23 m in 
the southern part; and by large and variable freshwater inputs34. The copepod community in 
the Gulf of Trieste is characterised by a few coastal and estuarine species, which in turn can 
exhibit high dominance. Sampling takes place on a monthly basis and the PCA was performed 
at a seasonal scale using 12 zooplankton groups or species for the 36-year period 1970-200571. 
The first two principal components (PCs) were retained and explained 17.70% and 12.63% of 
the variance, respectively. The copepod multidecadal time series includes the following taxa: 
Total copepods, Acartia clausi, Paracalanus parvus, Oithona spp, Oncaea spp, Centropages 
typicus, Pseudocalanus elongatus, Corycaeus spp, Temora longicornis, Centropages spp, 
Calanus helgolandicus, Temora stylifera, Euterpina acutifrons, Centropages kroyeri, 
Harpacticoida, Ctenocalanus vanus, Clausocalanus spp, and other copepods (see Conversi et 
al., 2009).  
 

5. Western Atlantic – NOAA EcoMon – northern subarea (zooplankton abundance). The 
Ecosystem Monitoring (EcoMon) zooplankton sampling is carried out at about 120 stations, 6 
times a year, over an area from Cape Hatteras, North Carolina, to Nova Scotia. Zooplankton 
samples were collected with a 61-cm Bongo frame fitted with a net of 0.333 mm mesh, towed 
obliquely to a maximum depth of 200 m, or 5 m from the bottom and back to the surface. 
Zooplankton are sorted, counted, and identified to the lowest possible taxa. Abundance is 
expressed as number per 100 m3 79. Over this region, ecosystems are very distinct; the 
northern regions are dominated by Calanus finmarchicus whereas the species is only 
occasionally detected in the southern areas. For this reason, the area was divided into two 
subareas in Beaugrand and colleagues71: a northern area which includes the Gulf of Maine and 
Georges Bank and a southern one, which includes the New England and Mid-Atlantic regions. 
Only the stations with a depth > 50 m (i.e. offshore) were considered. The northern area 
contained approximately 60 stations, sampled about 6 times per year, and the PCA was 
performed at a bi-monthly scale using 24 zooplankton groups or species for the 35-year period 
1977-201171. The first two PCs were retained and explained 15.01% and 10.57% of the 
variance, respectively. The following taxa were considered in the analyses for the northern 
area: Centropages typicus, Calanus finmarchicus, Pseudocalanus spp., Penilia spp., Temora 
longicornis, Centropages hamatus, Echinodermata, Paracalanus parvus, Gastropoda, Acartia 
spp., Metridia lucens, Evadne spp., Oithona spp., Cirripedia, Hyperiidea, Gammaridea, Evadne 
nordmanni, Coelenterata, Copepoda, Clausocalanus arcuicornis, Decapoda, Protozoa, 
Polychaeta, Pisces. 
 

6. Western Atlantic – NOAA EcoMon - southern subarea (zooplankton abundance). The southern 
subarea included the New England and Mid-Atlantic regions. Here also, only the stations with 
a water depth > 50 m (i.e. offshore) were taken into account. The southern subarea also 
contained approximately 60 stations, sampled about 6 times per year. The PCA was performed 
at a bi-monthly scale using 17 zooplanktonic groups or species for the 35-year period 1977-
2011 71. The first two PCs were retained and explained 19.31% and 11.07% of the variance, 
respectively. The following taxa were considered for the southern area: Calanus finmarchicus, 



Pseudocalanus spp., Penilia spp., Temora longicornis, Centropages hamatus, Paracalanus 
parvus, Acartia spp., Metridia lucens, Evadne spp., Oithona spp., Hyperiidea, Gammaridea, 
Evadne nordmanni, Copepoda, Clausocalanus arcuicornis, Protozoa, Pelecypoda. 
 

7. Eastern Pacific, California Current (zooplankton biomass). The California Cooperative Oceanic 
Fisheries Investigations (CalCOFI) data set used in Beaugrand and colleagues 71 was based on 
total zooplankton biomass displacement volume (ml/1000m3) averaged across 55 stations 
consistently sampled from 1951 to 2009 (59 years)80. The data were averaged over time by 
season. During the period 1970-1977 sampling was carried out every three years (missing 
years: 1970, 71, 73, 74, 76, 77). In addition, there are several missing seasons over the years. 
Therefore, seasonal data over the period 1951-2009 were corrected for changes in the 
sampling procedure in 1969 and 1977 by applying the methods of Ohman and Smith81. The 
PCA was performed at a seasonal scale (four seasons) using only one descriptor (zooplankton 
biomass displacement volume), although considering the 55 sampling stations, during the 
period 1951-200971. The first two PCs were retained and explained 64.98% and 21.08% of the 
variance, respectively. For this work we use the seasonal data over the period 1951-2009, 
corrected for changes in the sampling procedure (in 1969 and 1977) using the methods 
of Ohman and Smith81. 
 

8. Pacific Rim – north-eastern Pacific (wild salmon abundance). Total annual abundance (catch 
plus escapement) of “wild” pink salmon, chum salmon, and sockeye salmon population groups 
returning to 12 regions of Asia and North America were used for the 54-year time period 1952-
2005 (annual data). Ruggerone and colleagues82 compiled all available annual data of wild 
adults of these species from South Korea, Japan, Russia, Alaska, British Columbia, and 
Washington (including the Columbia River). In Beaugrand and colleagues4, data were 
subdivided into two main areas (eastern Pacific and western Pacific) on the basis of the 
location of regional salmon stock groups82 and their main oceanic distribution83. Those areas 
include both neritic and oceanic regions. The PCA was calculated spatially at an annual scale 
over northeastern Pacific using abundance of 3 “wild” salmon species in 8 areas for 1952-
200571. The first two PCs were retained and explained 30.31% and 13.04% of the variance, 
respectively. 
 

9. Pacific Rim – north-western Pacific (wild salmon abundance). In this area, the PCA was 
calculated spatially at an annual scale using abundance of 3 “wild” salmon species in 4 areas 
for 1952-2005 (54 years)71. The first two PCs were retained and explained 27.77% and 20.63% 
of the variance, respectively.  
 

10. Western Pacific, Oyashio Current (zooplankton abundance). The ODATE collection consists of 
>18,000 zooplankton samples collected in waters adjacent to Japan by several research 
institutes since the 1950s and assembled together by Dr K. Odate. The ODATE sampling area 
covers both subarctic Oyashio and southern Transition waters, 35-43°N, 142-150°E, which 
have distinctive water mass structure and zooplankton community structure. As the boundary 
of Oyashio and Transition water varies year by year, usually the water mass structure is defined 
by the water temperature criteria at 100 m depth (Oyashio: < 5°C) and the zooplankton 
community is studied within the Oyashio (or Transition) water rather than a fixed latitude-
longitude boundary. The ODATE Collection is not gathered via routine observation efforts, 
hence the time and location of sampling and the spatio-temporal resolution of data differ year 
by year84, and several months are missing throughout the time series. In this area, the PCA was 
calculated at a seasonal scale (2 seasonal periods: months 4-6 and 7-9) using 32 zooplankton 
species for 1960-2002 (43 years). Year 1977 was not considered in the study of Beaugrand and 
colleagues71 because this year had abnormal values. The first two PCs were retained and 



explained 17.32% and 11.64% of the variance, respectively. In this work we used the monthly 
abundances (ind/1000m3) of the following species (April 1960-September 2002): Acartia 
longiremis, Acartia omorii, Calanus pacificus s.l., Candacia columbiae, Clausocalanus 
arcuicornis, Clausocalanus parapergens, Clausocalanus pergens, Corycaeus affinis, 
Ctenocalanus vanus, Eucalanus bungii, Gaetanus armiger, Lucicutia flavicornis, Mesocalanus 
tenuicornis, Metridia lucens, Metridia okhotensis, Metridia pacifica, Neocalanus cristatus, 
Neocalanus flemingeri, Neocalanus flemingeri and/or plumchrus , Neocalanus plumchrus, 
Oithona atlantica, Oithona similis, Oncaea borealis, Oncaea mediterranea, Oncaea venusta, 
Paracalanus parvus, Paraeuchaeta elongata, Pleuromamma scutullata, Pseudocalanus 
minutus, Pseudocalanus newmani, Racovitzanus antarcticus, Scolecithricella minor. 
 

11. Western Pacific, Transition zone – south of the Oyashio Current (zooplankton abundance). In 
this area, the PCA was calculated at a seasonal scale (2 seasonal periods: months 4-6 and 7-9) 
using 67 species for 1960-2000 (41 years). Year 1977 was not considered in the study of 
Beaugrand and colleagues71 because this year had abnormal values. The first two PCs were 
retained and explained 15.26% and 13.76% of the variance, respectively. We used the monthly 
abundances (ind/1000m3) of the following species (April 1960-July 1999): Acartia danae, 
Acartia negligens, Acartia omorii, Calanus jashnovi, Calanus pacificus, Calocalanus pavo, 
Calocalanus plumulosus, Calocalanus styliremis, Calocalanus tenuis, Candacia bipinnata, 
Centropages bradyi, Clausocalanus arcuicornis, Clausocalanus farrani, Clausocalanus furcatus, 
Clausocalanus lividus, Clausocalanus mastigophorus, Clausocalanus minor, Clausocalanus 
parapergens, Clausocalanus pergens, Corycaeus affinis, Corycaeus crassiusculus, Corycaeus 
flaccus, Corycaeus furcifer, Corycaeus giesbrechti, Corycaeus pacificus, Corycaeus speciosus, 
Cosmocalanus darwini, Ctenocalanus vanus, Eucalanus bungii, Eucalanus californicus, 
Eucalanus hyalinus, Eucalanus subtenuis, Heterorhabdus papilliger, Lucicutia flavicornis, 
Mecynocera clausi, Mesocalanus tenuicornis, Metridia okhotensis, Metridia pacifica, 
Nanocalanus minor, Neocalanus cristatus, Neocalanus flemingeri, Neocalanus plumchrus, 
Oithona atlantica, Oithona longispina, Oithona plumifera, Oithona setigera, Oithona similis, 
Oncaea conifera, Oncaea mediterranea, Oncaea scottodicarloi, Oncaea venusta, Paracalanus 
aculeatus, Paracalanus parvus, Paraeuchaeta elongata, Pleuromamma abdominalis, 
Pleuromamma gracilis, Pleuromamma piseki, Pleuromamma xiphias, Pseudocalanus minutus, 
Pseudocalanus newmani, Sapphirina nigromaculata, Scaphocalanus curtus sensu Tanaka, 
Scaphocalanus echinatus, Scolecithricella dentata, Scolecithricella minor, Scolecithrix danae, 
Temora dicaudata. 

 
A full description of these 11 regions, their species composition and biological data availability is 
presented in Beaugrand and colleagues71 (Supplementary Information). Three more datasets were 
added in this study.  
 

12. San Francisco Bay (fish and crustaceans abundance)72. Cloern and colleagues72 analysed by PCA 
the catch data from monthly (February–October) bottom trawls taken by the California 
Department of Fish and Game at 24 sites in San Francisco Bay during the 29-year period 1980–
2008. The PCA was performed on annual indices of abundance of 11 fish, 3 crabs and 4 
caridean shrimps for the period 1980-2008. More details of the data are available in Cloern 
and colleagues72. In the present study, the analysis was updated to 2013 considering the matrix 
35 years x 11 biological variables. The first two principal components, which explained 29.60% 
and 14.80% of the variance, respectively, were considered to be a good summary of the long-
term community shift.  

 

13. Hawaiian Ocean Time-series (zooplankton biomass)73. We used the database HOT (Hawaiian 
Ocean Time-series) from the Joint Global Ocean Flux Study which is representative of the North 



Pacific subtropical gyre. Monthly biomass data (in mg carbon (C) m−2) from 1994 onwards were 
collected at Station ALOHA (A Long-Term Oligotrophic Habitat Assessment; 22° 45'N, 158° 
00'W) located 100 km north of Oahu, Hawaii. For data collection, the net was towed obliquely 
from the surface to approximatively 175 m depth. The tows were then size fractioned through 
nested filters of the following mesh sizes: 5, 2 and 1 mm and 500 µm, and 200 µm. Here, the 
size fraction of 5 mm was not used because of methodological issues. More information on 
the HOT programme can be found at http://hahana.soest.hawaii.edu. We used zooplankton 
wet weight for four size fractions (2 mm, 1 mm, 500 µm, and 200 µm) and averaged for every 
two months for the 21-year period 1994-2014. A standardised PCA was applied on the matrix 
21 years x [4 size fractions x 6 months]. The first two principal components were retained and 
explained 43.39% and 14.55% of the variance, respectively. 
 

14. Southern Ocean (zooplankton abundance)74. We used KRILLBASE, a circumpolar database of 
Antarctic krill and salps in the Southern Ocean https://www.bas.ac.uk/project/krillbase/. 
KRILLBASE has compiled all available scientific net-haul data into a single dataset, first 
published over a decade ago74 but recently updated. This project so far encompasses ~15000 
net hauls for abundance of salps (all species and individuals of both solitary and aggregate 
forms combined) and postlarval krill, Euphausia superba). The database is derived from un-
targeted oblique or vertical net sampling data and spans the austral summers of 1926-1939 
and 1976-2016. This is not a dataset collected by a single organised monitoring programme, 
but is a composite of all available net sample data collected on krill and salps. This includes 
rescued historical data as well as ongoing live monitoring programmes and pools data from 10 
countries. The database is circumpolar and best coverage is from December to March in the 
Atlantic and Indian sectors (1926-1939, post-1976). The dataset, and the supporting data 
paper providing metadata, are available from the above website85. KRILLBASE needs careful 
analysis because the methods were not standardised. This is a particular problem for the 
actively swimming krill so the data used were standardised to a single, relatively efficient net 
sampling method using the method in Atkinson and colleagues86. We examined spatial and 
temporal changes in sampling and chose an area ranging from 66°W and 40°W of longitude, 
64°S and 56°S of latitude (i.e. Antarctic Peninsula and western Scotia Sea areas) and a depth 
ranging from 0 to 400 m. Other regions did not have sufficient information for the purpose of 
our study. We had to restrict our analysis to the 29-year time period 1975-2003 for months 
ranging from November to February to increase the percentage of data in the time series. A 
standardised PCA was applied on the matrix 29 years x [2 zooplankton taxa (Euphausia superba 
and salps)]. Note however that the standardised PCA performed in this case was to ensure 
homogeneity among analyses as only two variables were available. The first two PCs were 
retained and explained 54.80% and 45.20% of the variance, respectively. 

 
Supplementary Note 3| The MacroEcological Theory on the Arrangement of Life (METAL) 

 
Although Grinnell87, Elton 88, Hutchinson89, Whittaker90 and more recently Chase and Leibold91 
developed or used the concept of the niche, they did not explicitly connect this concept to the 
arrangement of life from the species to the community level. 
 
At the species level, it is well-known that the niche/environment interaction enables the species’ 
spatial distribution to be estimated with confidence at a macro-scale, explaining the strong 
development of Ecological Niche (ENM), Spatial Distribution (SDM) and macro-physiological Models92-

97. Indeed, Brown’s theory98 states that species’ local density and range are the result of the species’ 
ecological niche. Far less known, however, is the fact that phenology and local year-to-year changes in 
species abundance, and their interaction within the spatial range of a species, can also be inferred 
from the knowledge of the niche99-101. At the species level, METAL enables the understanding and 

http://hahana.soest.hawaii.edu/


prediction of annual abundance, phenology and biogeography24,101-103. METAL has also been applied 
recently to explain the apparent inconsistency in the relationships between climate and species on a 
year-to-year basis99,100. Predictions of the effects of climate change on species are possible when the 
niche is assessed from physiology (fundamental niche) or spatial distribution (realised niche). The 
METAL framework not only explains the spatial and temporal responses of species to climatic 
variability or climate change but also enables these apparently independent responses to be 
connected throughout a theoretical framework24,102.  
 
At a higher organisational level, the METAL theory may be used to better understand how communities 
organise themselves and how they may be affected by environmental changes25. Although the METAL 
theory has been tested for a limited number of species at present24,99-101, the evidence available so far 
suggests that the ecological niche of each species influences their spatial and temporal responses to 
climate change. If we admit this postulate, we can create a pool of pseudo-species, each having a 
unique niche after the principle of competitive exclusion of Gause104, and with the possibility of niche 
overlapping. Species are allowed to colonise a given oceanic region so long as they can survive changes 
in the environmental regime at different temporal scales. By reconstructing pseudo-communities, we 
can then investigate the origin of various ecogeographic patterns (e.g. latitudinal gradients in 
biodiversity, Rapoport’s effect, Infrequency Law)24,105, community processes such as seasonal 
succession, properties of communities and their consequences for ecosystem functioning, regulating 
and provisioning services16,103,105. METAL shows that large-scale biodiversity patterns are influenced by 
an underlying mathematical constraint, we called the chessboard of life26, that results from the 
interaction between the ecological niche of a species and spatial and temporal fluctuations in the 
environment.  
 
Recently, we have theoretically investigated palaeo (mid-Pliocene and Last Glacial Maximum or LGM), 
contemporaneous (1960-2013) and future (2080-2100) changes in biodiversity in the context of global 
climate change to evaluate the sensitivity and vulnerability of biodiversity to climate change103. This 
theoretical work has revealed that climate change may rapidly alter marine biodiversity over large 
oceanic regions and that the intensity of this reorganisation will depend on the magnitude of warming. 
If global warming is small (RCP2.6), the study has shown that biological changes would reflect 15.5% 
of the amount of change seen between the LGM and the present day, or 25.3% of the amount of 
change observed between the mid-Pliocene and today; neither are much different from annual 
variability (1960-2013) and so it may be benign overall. If warming is moderate (RCP4.5), changes in 
marine biodiversity will be three-times more extensive and at least twice as strong in magnitude than 
changes observed over the last 50 years. If global warming is severe (RCP6.0 and 8.5), between 50 and 
70% of the global ocean will experience a change in marine biodiversity equivalent to, or higher than, 
that experienced between the LGM/mid-Pliocene and today, emphasizing that climate warming will 
have a major effect on marine biodiversity.  
 
In the previous work, we did not investigate decadal changes at the community level nor did we focus 
on Abrupt Community Shifts (ACSs). Recently, we have designed another METAL model to specifically 
investigate long-term changes in community, including ACSs16. The full procedure used in the present 
article is described in detail in Beaugrand16 and was tested in the North Sea using Continuous Plankton 
Recorder (CPR) data16. Here, we use time series originating from 14 marine pelagic ecosystems in 
tropical, temperate and polar regions to test extensively the method and apply it at a global scale to 
investigate spatial and temporal patterns as well as processes at the origin of climate-induced ACSs in 
the pelagic ocean.  
 

Supplementary Note 4| Test of the abrupt shift detection algorithm 

 



We tested our procedure using order-1-5 weighted differences in 5 different situations 
(Supplementary Figures 8-12). Simulated time series used to test our procedure had different degrees 
of autocorrelation (Supplementary Figure 13). Expectedly, autocorrelation was reinforced by the use 
of the first-order symmetrical moving average. In Supplementary Figures 8-12, we combined the 
results of the first to fifth weighted differences. In the first situation, we generated randomly a time 
series of 100 years, with maximum amplitude of 1 (Supplementary Figure 8). One value crossed the 
threshold of 3 (Supplementary Figure 8b) but when an order-1 moving average was applied prior to 
the analysis, no value reached the threshold (Supplementary Figure 8c). In the second situation, we 
generated a linear trend of amplitude = 0.5 in addition to white noise with a maximum amplitude of 1 
(Supplementary Figure 9). A result close to the previous situation was observed. This example shows 
that our procedure is unlikely affected by temporal autocorrelation. In the third situation, we 
generated a cycle with amplitude of 1 in addition to the linear trend and white noise (Supplementary 
Figure 10). Significant abrupt shifts were detected, often corresponding to acceleration phases 
between the minimum and the maximum of a cycle and resulting from the interaction between white 
noise and the cycle (Supplementary Figure 10b). After diminishing the white noise by using the order-
1 moving average, no significant abrupt shift was detected (Supplementary Figure 10c). This result 
reflects an important property of our algorithm: it is sensitive to the variability throughout the time 
series. When the variability throughout the time series is high, this makes more difficult the detection 
of an abrupt shift. Therefore, our algorithm considers the inner variability of the time series to identify 
a significant shift60. In the fourth situation, we added an abrupt shift of amplitude 1 (Supplementary 
Figure 11). The shift was detected for all order-1-5 differences. The application of an order-1 moving 
average improved detection by diminishing false detection. In the fifth situation, we added an episodic 
event of amplitude 1 (Supplementary Figure 12). The algorithm identified the abrupt shift as well as 
the beginning and the end of the episodic event, results being clearer when an order-1 moving average 
was applied prior to the analysis. It should be noted that there can be a big difference in the index of 
abruptness, simply resulting from the interaction between the signal and white noise. White noise can 
therefore strongly alter our perception of a shift, a result already suggested in some studies, which 
explains why we used an order-1 symmetrical moving average prior to the analysis56. In our study, we 
focused on abrupt shifts and not on changes related to the passage of a phase to another within a cycle 
or pseudo-cycle. Therefore, community shifts related to pseudo-cyclical variability106 may not be 
revealed in this study.  

 
 

  



Supplementary Tables 

 

Supplementary Table 1 | List of the abbreviations used in this study. 

 

 

ACS Abrupt Community Shift 
ASD Abrupt Shift Detection algorithm 
HOT Hawaiian Ocean Time-series 
METAL Macro-Ecological Theory on the 

Arrangement of Life 
OBS-PC Principal Component based on observed 

biological data 
PCA Principal Component Analysis 
PC Principal Component 
Pred-PC Principal Component based on simulated 

data (pseudo-species) 
SLP Sea Level Pressure 
SST Sea Surface Temperature 

 

  



Supplementary Table 2 | Main characteristics of observed biological time series for the 14 
study systems.  
 

 Area Period Frequency Gaps Source Variables Notes 

1. Central 

North Sea 

1958- 2007 monthly no SAHFOS 

http://www.sahfo

s.ac.uk 

zooplankton CPR 

2. Central 

Baltic Sea 

1959-2008 seasonal no Otto zooplankton Juday Net 

3. Ligurian Sea  1974-2003 monthly no Laboratoire 

d’Océanologie de 

Villefranche 

http://www.obs-

vlfr.fr/ 

zooplankton Juday, Bogorov 

net, Zooscan 

imaging 

technique 

4. Northern 

Adriatic Sea 

(Gulf of 

Trieste) 

1970- 2005 monthly Yes 

(1981-

1985) 

Conversi zooplankton WP2 net 

5. Northwest 

Atlantic 

Northern area 

1977- 2011 seasonal no http://osprey.bco

dmo.org/dataset.

cfm?flag=view&id

=13684  

zooplankton Marmap bongo 

data 

6. Northwest 

Atlantic 

Southern area 

1977- 2011 seasonal no http://osprey.bco

dmo.org/dataset.

cfm?flag=view&id

=13684  

zooplankton Marmap bongo 

data 

7. California 

Current 

1951-2009 seasonal no California 

Cooperative 

Oceanic Fisheries 

Investigations: 

http://data.calcof

i.org/zooplankton

.html 

zooplankton CAlCOFI 

8. E. Pacific 

Rim 

1952- 2005 annual no http://hdl.handle.

net/1773/16262  
107 

wild salmon Large region 

http://www.sahfos.ac.uk/
http://www.sahfos.ac.uk/
http://www.obs-vlfr.fr/
http://www.obs-vlfr.fr/
http://osprey.bcodmo.org/dataset.cfm?flag=view&id=13684
http://osprey.bcodmo.org/dataset.cfm?flag=view&id=13684
http://osprey.bcodmo.org/dataset.cfm?flag=view&id=13684
http://osprey.bcodmo.org/dataset.cfm?flag=view&id=13684
http://osprey.bcodmo.org/dataset.cfm?flag=view&id=13684
http://osprey.bcodmo.org/dataset.cfm?flag=view&id=13684
http://osprey.bcodmo.org/dataset.cfm?flag=view&id=13684
http://osprey.bcodmo.org/dataset.cfm?flag=view&id=13684
http://hdl.handle.net/1773/16262
http://hdl.handle.net/1773/16262


 Area Period Frequency Gaps Source Variables Notes 

9. W. Pacific 

Rim 

1952 -2005 annual no http://hdl.handle.

net/1773/16262  
107 

wild salmon Large region 

10. Oyashio 

Current 

1960-2002 Seasonal (April-

June and July-

September) 

Yes (1969) Sugisaki, Chiba 

http://tnfri.fra.aff

rc.go.jp/eindex.ht

ml 

zooplankton NORPAC ring net 

11. Trans

ition zone  

(south of the 

Oyashio 

Current) 

1960-2000 Seasonal 

(April-June and 

July-September) 

Yes (1992) Sugisaki, Chiba 

http://tnfri.fra.aff

rc.go.jp/eindex.ht

ml 

zooplankton NORPAC ring net 

12. HOT 1994-2014 Monthly Yes (some 

months) 

http://hahana.so

est.hawaii.edu/ho

t/methods/plankt

on.html  

zooplankton 4 size fractions 

13. San 

Francisco Bay 

1980-2013 Annual mean No Cloern 

 

decapods and 

fish 

 

14. Antar

ctic Peninsula 

Area 

1975-2003 Seasonal Yes (1979, 

1982, 

1986, 

1992) 

https://www.bas.

ac.uk/project/krill

base/ 

 

zooplankton  Euphausiids and 

salps 

 

http://hdl.handle.net/1773/16262
http://hdl.handle.net/1773/16262
http://tnfri.fra.affrc.go.jp/eindex.html
http://tnfri.fra.affrc.go.jp/eindex.html
http://tnfri.fra.affrc.go.jp/eindex.html
http://tnfri.fra.affrc.go.jp/eindex.html
http://tnfri.fra.affrc.go.jp/eindex.html
http://tnfri.fra.affrc.go.jp/eindex.html
http://hahana.soest.hawaii.edu/hot/methods/plankton.html
http://hahana.soest.hawaii.edu/hot/methods/plankton.html
http://hahana.soest.hawaii.edu/hot/methods/plankton.html
http://hahana.soest.hawaii.edu/hot/methods/plankton.html
https://www.bas.ac.uk/project/krillbase/
https://www.bas.ac.uk/project/krillbase/
https://www.bas.ac.uk/project/krillbase/


Supplementary Table 3 | Main characteristics of the 14 observed and simulated matrices 
analysed by standardised PCA. When total zooplankton biomass (California Current) or size 
fractions (HOT) were used, we chose arbitrarily pseudo-communities composed of 30 pseudo-
species. The selection of the number of pseudo-species did not affect significantly the results 
above 5 pseudo-species. The last column also contains the area (expected as million (M) km²) 
of each region used to test our procedure and its average bathymetry (m). Note that this is 
not the area where sampling took place but rather the area chosen to test our model.  
 

Area Biological 
parameters in 

observed matrices 

Area covered by 
observed 

community 

Biological 
parameters in 

theorized 
matrices 

Area considered to 
reconstruct pseudo-

community 

1. Central North Sea 

 

14 species or 
taxonomic groups 

3°W-10°E 
51-60°N 

14 pseudo-
species  

3°W-10°E 
51-60°N 
Bathymetry: 81m 
Surface area: 0.85 M km² 

2.       Central Baltic Sea 10 species or 
taxonomic groups x 
4 3-month periods 

19°10’-22°10’E 
56.30’-58°30’N 

10 pseudo-
species x 4 3-
month periods 

18-22°E 
56-58°N 
Bathymetry: 83m 
Surface area: 0.06 M km² 

3.        Ligurian Sea  6 zooplankton 
groups x 4 3-month 
periods 

07°19 E 
43°41 N  

6 pseudo-species 
x 4 3-month 
periods 

6-8°E 
42-44°N 
Bathymetry: 2283m 
Surface area: 0.04 M km² 

4.         Northern Adriatic 
Sea (Gulf of Trieste) 

12 species or 
taxonomic groups x 
4 3-month periods 

13° 42' 36"E  
45° 42' 03" N 

12 pseudo-
species x 4 3-
month periods 

12-14°E 
42-46°N 
Bathymetry: 31m 
Surface area: 0.08 M km² 

5.         Northwest 
Atlantic 

Northern area 

24 species or 
taxonomic groups x 
6 2-month periods 

65.17-70.95°W 
40.09-44.83°N 

24 pseudo-
species x 6 2-
month periods 

65-70°W 
41-44°N 
Bathymetry: 317m 
Surface area: 0.13 M km² 

6.          Northwest 
Atlantic 

Southern area 

17 species or 
taxonomic groups x 
6 2-month periods 

68.79-76.07°W 
35.14-41.69°N 

17 pseudo-
species x 6 2-
month periods 

68-76°W 
35-41°N 
Bathymetry: 2363m 
Surface area: 0.47 M km² 

7.           California Current 1 biological 
attribute (total 
zooplankton 
biomass) x 4 3-
month periods 

117-124°W 
31-35°N 

30 pseudo-
species x 4 3-
month periods 

116-124°W 
30-36°N 
Bathymetry: 2768m 
Surface area: 0.48 M km² 

8.           E. Pacific Rim 3 species 
abundance in 8 
areas 

120-170°W 
50-60°N 

24 pseudo-
species 

120-170°W 
50-60°N 
Bathymetry: 2612m 
Surface area: 3.53 M km² 

9.           W. Pacific Rim 3 species 
abundance in 4 
areas 

140-170°E 
40-60°N 

12 pseudo-
species 

140-170°E 
40-60°N 
Bathymetry: 3044m 
Surface area: 4.73 M km² 

10.         Oyashio Current 32 species or 
taxonomic groups x 
2 periods (months 
4-6 and 7-9) 

142-149.29°E 
37.36-42.96°N 

32 pseudo-
species x 2 
periods (months 
4-6 and 7-9) 

144-148°E 
38-42°N 
Bathymetry: 5359m 
Surface area: 0.16 M km² 

11. Transition zone  67 species or 
taxonomic groups x 

144.95-150.02°E 
35.18-42.53°N 

67 pseudo-
species x 2 

144-150°E 
36-42°N 



(south of the Oyashio 
Current) 

2 periods (months 
4-6 and 7-9) 

periods (months 
4-6 and 7-9) 

Bathymetry: 5492m 
Surface area: 0.37 M km² 

1. HOT 4 size fractions x 6 
2-month periods 

158° 00'W 22° 45'N 
 

30 pseudo-
species x 6 2-
month periods 

158.5-157.5°W                             
22-23°N 
Bathymetry: 4502m 
Surface area: 0.02 M km² 

2. San Francisco 
Bay 

11 species or 
taxonomic groups 

San Francisco Bay 
(121' 45'' - 122' 30" 
N and 37' 30" - 38' 
15" W) 

11 pseudo-
species 

120-122°W 
36-38°N 
Bathymetry: 286m 
Surface area: 0.04 

3. Antarctic 
Peninsula Area 

2 zooplankton taxa 
(Euphausia superba 
and salps) x a 4-
month periods 
(November to 
February) 

40-66°W 
56-64°S 

2 pseudo-species 
x 2 2-month 
periods 
(November to 
February) 

40-66°W 
56-64°S 
Bathymetry: 2945m 
Surface area: 1.28 

 



Supplementary Table 4 | Results of the principal component analyses performed on biological 

variables in the 14 marine systems. Observed and predicted (broken-stick distribution) first 

two eigenvalues. Bold: significant relative eigenvalues.  

 

Area Number of 
variables 

Observed 
eigenvalue 1 

Observed 
eigenvalue 2 

Predicted 
Eigenvalue 1 
 

Predicted 
Eigenvalue 2 
 

Central North 
Sea 

14 27.96 27.15 23.25 16.08 

Central Baltic 
Sea 

40 23.08 11.12 10.67 8.19 

Ligurian Sea 20 30.53 13.86 17.97 12.98 

Northern 
Adriatic Sea 

(Gulf of 
Trieste) 

48 17.70 12.63 9.30 7.21 

Northwest 
Atlantic 

Northern area 

144 15.01 10.57 3.85 3.16 

Northwest 
Atlantic 

Southern area 

102 19.31 11.07 5.11 4.13 

California 
Current 

4 64.98 21.08 52.12 27.08 

E. Pacific Rim 24 30.31 13.04 15.73 11.58 

W. Pacific Rim 12 27.77 20.63 25.85 17.53 

Oyashio 
Current 

64 17.32 11.64 7.41 5.85 

Transition 
zone 

(south of the 
Oyashio 
Current) 

134 15.26 13.76 4.08 3.34 

HOT 24 43.39 14.55 15.75 11.56 

San Francisco 
Bay 

11 29.60 14.80 27.42 18.35 

Antarctic 
Peninsula 

Area 

2 54.80 45.20 75 25 

 

 



Supplementary Table 5 | Absolute values of linear correlation coefficients calculated 

between the first and second principal components originating from a PCA performed on 

observed communities (Obs-PC1-2) and the average of the first and second PCs originating 

from theoretical communities (Pred-PC1-2). Values in bold were significant and higher than 

0.47.  Asterisks highlight couples of variables that were used in Figure 2.  

 

Areas PredPC1/ObsPC1 PredPC1/ObsPC2 PredPC2/ObsPC1 PredPC2/ObsPC2 

Central North 
Sea 

0.84* 0.11 0.47 0.28 

Central Baltic 
Sea 

0.86* 0.17 0.25 0.62 

Ligurian Sea 0.17 0.28 0.48* 0.61 

Northern 
Adriatic Sea 

(Gulf of 
Trieste) 

0.87* 0.12 0.15 0.18 

Northwest 
Atlantic 

Northern area 

0.54* 0.32 0.18 0.29 

Northwest 
Atlantic 

Southern area 

0.14 0.49* 0.16 0.27 

California 
Current 

0.55* 0.32 0.42 0.42 

E. Pacific Rim 0.67* 0.01 0.11 0.02 

W. Pacific Rim 0.09 0.67* 0.26 0.38 

Oyashio 
Current 

 0.69* 0.11 0.19 0.06 

Transition 
zone 

(south of the 
Oyashio 
Current) 

0.18* 0.22 0.08 0.29 

HOT 0.12 0.35 0.51* 0.13 

San Francisco 
Bay 

0.79* 0.18 0.61 0.29 

Antarctic 
Peninsula 

Area 

0.25 0.67* 0.44 0.37 

 



Supplementary Table 6 | Correlations (normalized eigenvectors, EV) between long-term 

changes in the first three principal components (‘global’ Obs-PC1-3 and Pred-PC1-3) originating 

from a ‘global’ PCA performed on observed communities (14 Obs-PC1-2 = 28 variables) and a 

‘global’ PCA performed on pseudo-communities (14 Pred-PC1-2 = 28 variables) and 

corresponding long-term changes in all first 2 Obs-PC1-2 and Pred-PC1-2, respectively. 

Values in bold are higher than 0.5. PC: Principal Component. EV: normalised eigenvectors 

that are correlations between each variable and the corresponding principal components 

(EV1-3: correlation with the first, second and third PC). 

 

 PCA on observations PCA on predictions 

Ecoregions PC EV 1 EV 2 EV 3 EV 1 EV 2 EV 3 
Baltic Sea PC 1 0.91 -0.13 -0.11 0.85 -0.23 -0.13 

 PC 2 -0.14 -0.67 0.34 0.07 -0.14 0.70 

Ligurian Sea PC 1 -0.49 -0.45 -0.71 0.83 -0.10 0.07 

 PC 2 -0.31 0.02 -0.05 0.40 0.38 -0.57 

CALCOFI PC 1 -0.80 -0.12 0.02 -0.29 -0.32 -0.08 

 PC 2 0.12 -0.10 0.40 -0.19 0.00 0.65 

Adriatic Sea PC 1 0.89 -0.04 -0.29 -0.77 0.16 -0.32 

 PC 2 -0.17 0.55 -0.73 0.33 0.03 -0.52 

Oyashio PC 1 0.59 0.43 -0.36 -0.65 0.31 0.02 

 PC 2 -0.02 0.62 -0.80 0.39 0.67 -0.37 

Transition PC 1 0.23 0.67 -0.67 -0.72 0.43 0.52 

 PC 2 -0.07 -0.57 0.49 0.20 0.08 -0.35 

East Pacific PC 1 0.48 0.49 -0.79 0.38 0.31 0.50 

 PC 2 -0.73 -0.25 -0.23 -0.30 -0.11 -0.18 

West Pacific PC 1 0.58 -0.26 -0.10 0.74 0.46 -0.18 

 PC 2 0.84 0.28 0.23 0.41 0.43 0.22 

Northwest Atlantic (North) PC 1 0.70 -0.57 0.13 0.23 -0.78 0.22 

 PC 2 0.52 0.54 0.59 0.58 0.32 0.37 

Northwest Atlantic (South) PC 1 -0.83 -0.08 -0.73 0.20 -0.81 0.31 

 PC 2 -0.19 0.52 0.49 -0.45 -0.51 -0.26 

North Sea PC 1 -0.78 0.04 0.46 -0.85 0.16 -0.02 

 PC 2 0.03 -0.25 0.12 0.01 0.13 -0.81 

San Francisco PC 1 0.52 -0.72 0.10 -0.07 0.84 -0.21 

 PC 2 0.73 0.29 0.30 -0.33 -0.03 0.65 

HOT PC 1 -0.38 -0.97 -0.50 -0.23 0.70 0.55 

 PC 2 -0.67 -0.46 -0.52 0.54 -0.34 0.17 

Antarctic Peninsula Area PC 1 -0.15 -0.37 0.23 0.33 0.47 -0.75 

 PC 2 0.60 0.31 0.29 0.22 0.03 0.14 

 



Supplementary Table 7 | Linear correlations between the spatial extent of predicted abrupt 

community shifts from 1960 to 2015 (degree of freedom = 51) and the spatial extent of 

significant abrupt climatic shifts based on six climatic parameters. pACF: probability of 

significance with correction for temporal autocorrelation. 

 

 

Climatic parameters Correlations Probability pACF 

Annual sea level pressure 0.69 0.0000 
Annual zonal wind 0.54 0.0008 
Annual meridional wind 0.57 0.0004 
Wind intensity 0.54 0.0008 
Cloudiness 0.02 0.8866 
Mean SST 0.97 0.0000 

 

 

 
  



Supplementary Figures 

 

Supplementary Figure 1 | Geographical location of the marine ecological time series 

analysed in this study. 1: North Sea (CPR collection); 2: Central Baltic Sea (Gotland basin, 

Latvian time series); 3: Ligurian Sea, Western Mediterranean (Point B time series); 4: 

Northern Adriatic Sea, Eastern Mediterranean (Gulf of Trieste time series); 5: Western 

Atlantic - Northern area (Gulf of Maine and Georges Bank regions); 6: Western Atlantic - 

Southern area (New England and Mid-Atlantic regions); 7: Eastern Pacific – California Current 

(CalCOFI data); 8: Eastern Pacific (Pacific Rim salmon data); 9: Western Pacific (Pacific Rim 

salmon data); 10: Western Pacific – Oyashio Current (ODATE collection); 11: Western Pacific 

– Transition zone (south of the Oyashio Current) (ODATE collection); 12: HOT (Hawaiian 

Ocean Time-series); 13: San Francisco Bay; 14: Antarctic Peninsula area (KRILLBASE 

database). Biological variables that are considered in each site are indicated by the letters D 

(benthic decapods), Z (zooplankton), and F (Fish). Biological variables are indicated in 

Methods. 

 

 
 
  



Supplementary Figure 2 | Predicted (grey) and observed (red) long-term community 
changes for 14 systems using a null model based on randomly generated time series with 
order-1 autocorrelation. Principal components were standardised between -1 and 1. Pred-PC: 
10000 Principal Components (grey) based on 10000 simulated communities. Obs-PC: Principal 
Component based on observed communities (red). a. North Sea (Pred-PC1s and Obs-PC2), b. 
Baltic Sea (Pred-PC1s and Obs-PC1), c. Adriatic Sea (Pred-PC1s and Obs-PC2), d. Ligurian Sea 
(Pred-PC1s and Obs-PC1), e. Northwest Atlantic, southern area (Pred-PC1s and Obs-PC2), f. 
Northwest Atlantic, northern area (Pred-PC1s and Obs-PC1), g. West Pacific Transition zone 
(Pred-PC1s and Obs-PC1), h. Oyashio (Pred-PC1s and Obs-PC1), i. CALCOFI (Pred-PC2s and 
Obs-PC1), j. San Francisco Bay (Pred-PC1s and Obs-PC2), k. East Pacific region (Pred-PC1s and 
Obs-PC1), l. West Pacific region (Pred-PC1s and Obs-PC2), m. HOT (Pred-PC2s and Obs-PC1), 
n. Antarctic Peninsula area (Pred-PC1s and Obs-PC2). The mean correlation is indicated.  
 
 
 



 
 



Supplementary Figure 3 | Percentage of missing data in all 28 time series (14 ObsPC1-2) 

from 1952 to 2014. The dashed red line shows the cut-off (≤50% of missing data) applied to 

select the time period 1960-2007 (vertical black arrows) to perform the standardised PCA on 

observed and theoretical communities.  

 
 
 
 
 

 
 

  



Supplementary Figure 4 | Spatial distribution of predicted Abrupt Community Shifts (ACSs) 

from 1960 to 2015. Maps are from 1960-1963 to 2012-2015 and originate from the application 

of a weighted three-order difference applied individually on each pseudo-species for every 

geographical cell. Values above 3 are considered to be significant and each map therefore 

reveals the percentage of pseudo-species that shifted in each pseudo-community. White 

regions are areas where no significant shifts were observed (i.e. percentage of pseudo-species’ 

shift strictly = 0). When the percentage of pseudo-species’ shifts is >0, the percentage is 

indicated by a colour (blue and red for low and high percentage, respectively).  

 
 
 
 
 
 

File available to https://figshare.com/s/fe36622e33d291996ca4   

https://figshare.com/s/fe36622e33d291996ca4


Supplementary Figure 5 | Spatial distribution of predicted abrupt climatic shifts from 1960 

to 2015. Maps are from 1960-1963 to 2012-2015 and originate from the application of a 

weighted three-order difference applied individually on each climatic parameter for every 

geographical cell. Values above 3 are considered to be significant and each map therefore 

reveals the percentage of climatic parameters (total = 6) that shifted in geographical cell. 

White regions are areas where no significant shifts were observed (i.e. percentage of shift 

strictly = 0). Climatic parameters were annual sea level pressure, meridional and zonal wind, 

wind intensity, cloudiness and annual sea surface temperature.  

 
 
 
 
 

File available to https://figshare.com/s/af7069bb9e83d893522c  

https://figshare.com/s/af7069bb9e83d893522c


Supplementary Figure 6 | Spatial patterns in abrupt shifts of six climatic parameters 

centred on the period 2010-2014. a. Annual Sea Level Pressure (SLP). b. Annual wind 

intensity. c. Annual zonal (U) wind. d. Annual meridional (V) wind. e. Cloudiness. f. Annual 

Sea Surface Temperature (SST). Values above 3 show significant acceleration phases. The 

centred period 2010-2014 integrates years ranging from 2008 to 2015 to calculate 

acceleration phases. 

 
 
 
 
 
 

 
 
 



 
Supplementary Figure 7 | Summary of the procedure used to build pseudo-communities in 

the ocean from the METAL theory, test the framework against observed data and forecast 

ACSs at a global scale. Step 1. A pool of pseudo-species is created, each pseudo-species being 

characterized by a unique thermal niche. A total of 19609 pseudo-species was randomly 

chosen. Step 2. Sea Surface Temperature (SST) were organized for a grid of 2° latitude x 2° 

longitude for each month and year of the period 1960-2015. Step 3. The interaction between 

the species’ thermal niche and year-to-year monthly SST determine the species richness 

locally. Changes in the local abundance of a pseudo-species were assessed by linear 

interpolation of SSTs from pseudo-species’ thermal niche. Step 4. Long-term changes were 

estimated by averaging the expected monthly abundance of each pseudo-species, the type of 

averaging depending upon observed biological data (monthly, 2-, 3-, and 4-month periods or 

annual averaging). Testing of the framework with observed long-term time series. Step 5. 

Long-term changes in the state of each local pseudo-community were assessed from 

standardised principal components analyses. Step 6. Use of the algorithm of abrupt shift 

detection on principal components. Prediction of abrupt community shifts. Step 7. Detection 

of abrupt shifts for each pseudo-species and in each geographical cell. Step 8. Maps of ACSs, 

defined as the percentage of pseudo-species showing a shift, for each geographical cell and 

time period. 

 



 
 



 
Supplementary Figure 8 | Application of the abrupt shift detection algorithm to a fictive 

time series with a white noise (maximum amplitude of 1). a. Simulated time series (in black) 

and application of an order-1 symmetrical moving average (red dashed line). b-c. Index of 

abruptness based on order-1-5 weighted differences with (b) no or (c) an application of an 

order-1 symmetrical moving average prior to the use of the abrupt shift detection algorithm. 

The red dashed line represents the threshold of 3 of significance.  

 
 

 
 

 

 

  



Supplementary Figure 9 | Application of the abrupt shift detection algorithm to a fictive 

time series with a linear trend (amplitude = 0.5) and a white noise (maximum amplitude of 

1). a. Simulated time series (in black) and application of an order-1 symmetrical moving 

average (red dashed line). The blue dashed line shows the linear trend. b-c. Index of 

abruptness based on order-1-5 weighted differences with (b) no or (c) an application of an 

order-1 symmetrical moving average prior to the use of the abrupt shift detection algorithm. 

The red dashed line represents the threshold of 3 of significance.  

 
 
 

 
  



Supplementary Figure 10 | Application of the abrupt shift detection algorithm to a fictive 

time series with a linear trend (amplitude = 0.5), a cycle (amplitude = 1) and a white noise 

(maximum amplitude of 1). a. Simulated time series (in black) and application of an order-1 

symmetrical moving average (red dashed line). The blue dashed curve highlights the cycle. b-

c. Index of abruptness based on order-1-5 weighted differences with (b) no or (c) an 

application of an order-1 symmetrical moving average prior to the use of the abrupt shift 

detection algorithm. The red dashed line represents the threshold of 3 of significance.  

 
 

 

  



Supplementary Figure 11 | Application of the abrupt shift detection algorithm to a fictive 

time series with a linear trend (amplitude = 0.5), a cycle (amplitude = 1), an abrupt shift 

(amplitude = 1) and a white noise (maximum amplitude of 1). a. Simulated time series (in 

black) and application of an order-1 symmetrical moving average (red dashed line). The blue 

dashed lines highlight the abrupt shift. b-c. Index of abruptness based on order-1-5 weighted 

differences with (b) no or (c) an application of an order-1 symmetrical moving average prior 

to the use of the abrupt shift detection algorithm. The red dashed line represents the 

threshold of 3 of significance. The black arrow shows the position of the abrupt shift.  

 
 

 

  



Supplementary Figure 12 | Application of the abrupt shift detection algorithm to a fictive 

time series with a linear trend (amplitude = 0.5), a cycle (amplitude = 1), an abrupt shift 

(amplitude = 1), an episodic event (amplitude of 1) and a white noise (maximum amplitude 

of 1). a. Simulated time series (in black) and application of an order-1 symmetrical moving 

average (red dashed line). The blue dashed lines highlight the abrupt shift and the episodic 

event. b-c. Index of abruptness based on order-1-5 weighted differences with (b) no or (c) an 

application of an order-1 symmetrical moving average prior to the use of the abrupt shift 

detection algorithm. The red dashed line represents the threshold of 3 of significance. The 

black arrows highlight the position of the abrupt shift and the episodic event. 

 
 

 
 

 



Supplementary Figure 13 | Autocorrelograms of time series used in Supplementary Figure 

8 (top) and 9 (bottom). On the left, autocorrelograms are calculated on original time series 

(no moving average) and on the right autocorrelograms are calculated after the application 

of a first-order symmetrical moving average to reduce the influence of white noise. The 95% 

confidence interval is included by a dashed curve (here we consider the removal of the 

degree of freedom for each lag). It should be noted that the linear trend is also included in 

Supplementary Figure 10-12. 

 
 

 

 

  



Supplementary Figure 14 | Schematic diagram summarizing the numerical procedures used 

to compare observed long-term biological changes with those expected from the null and 

METAL models (see Figures 2 and 3). We performed standardized Principal Components 

Analyses (PCAs) to summarize the long-term observed biological changes in each system (14 

systems), using the first two Principal Components (PCs). The same procedure was applied for 

the two null and the METAL models; the building of the pseudo-communities and the 

calculation of the corresponding standardised PCA was repeated 10000 times for each system.  

All data were subsequently aggregated into a matrix (Tables D-G) to examine (i) the 

correlations between observed biological changes and those expected from the null and 

METAL models using one PC (10000 simulations), (ii) the relationships between observed 

biological changes and the first two expected PCs (10000 simulations) and (iii) the examination 

of the first three PCs originating from a global PCA performed on aggregated data (10000 

simulations, Tables D-F, see text).   

 



 



Supplementary Figure 15 | Histogram showing the number of geographical cells covered by our 

framework according to each category of depth from 5000 to 0m (every 100 m). 

 

 

 

 

 

 

  



Supplementary Figure 16 | Correlation between observed and predicted principal components (PCs 

of Figures 2a-n) as a function of the surface area (km²) and the mean bathymetry (m) of each region. 

The size and colour of the circles are proportional to the value of the correlation. Because of the 

relatively low spatial resolution of our framework, some time series (e.g. Ligurian Sea, Point B) were 

considered as representative of a larger area (last column in Supplementary Table 3). 

 

 

 

 

 

 

 



Supplementary Figure 17 | Predicted (black) and observed (red) long-term community changes for 

5 offshore areas sampled by the Continuous Plankton Recorder (CPR) survey. First Principal 

Components (PCs) were standardised between -1 and 1. The 10,000 Principal Components (black) 

were based on 10,000 simulated communities. Left panels show predicted (black) and observed (red) 

community changes. rm: mean correlation between predicted and observed changes. Inner panels 

show the spatial distribution of CPR samples (red dot) in the North Atlantic Ocean. Middle and right 

panels show the cumulative frequency histograms of the bathymetry (middle) and distance to land 

(right) of each selected CPR sample. (a) Bay of Biscay (75 species or taxa, 8-4°W and 44-48°N, 

observed PC1: 15.16% of the total variance), (b) Western oceanic part of the United Kingdom (60 

species or taxa, 19-14°W and 48-54°N, observed PC1: 12.19% of the total variance), (c) Faroe-Iceland 

Rise (51 species or taxa, 15-5°W and 60-65°N, observed PC1: 14.28% of the total variance), (d) 

Denmark Strait (49 species or taxa, 40-20°W and 60-65°N, observed PC1: 17.79% of the total 

variance), (e) Labrador Basin (52 species or taxa, 60-40°W and 50-55°N, observed PC1: 17.43% of the 

total variance). All changes were significant at p<0.001 and p≤0.1 when temporal autocorrelation 

was taken into account. n is the number of CPR samples. All first PCs were significant after the use of 

a broken-stick distribution (Methods). 

 



 

 

  



Supplementary Figure 18 | Effect of the reduction of the number of years on the correlation between 

observed (red) and predicted (blue) principal components (see Figure 2g). The correlation was 

calculated by removing progressively years at the beginning of the time series from 1 to 31 years (upper 

panel). Left lower panel: correlations based on year 8 (1967) to end (2000). Right lower panel:  

correlations based on years 24 (1983) to end (2000). The probability of the correlation was adjusted to 

account for temporal autocorrelation. 
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Six climatic parameters were used: Annual sea level pressure, wind intensity, 
meridional and zonal wind, cloudiness, sea surface temperature. 
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White area: no significant species’ shift (threshold>3) 
 
Six climatic parameters were used: Annual sea level pressure, wind intensity, 
meridional and zonal wind, cloudiness, sea surface temperature. 
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Black arrow: direction and strengh of mean annual wind (1960-2015) 
Red line: isobar based on annual SLP for the period 1960-2015 
White area: no significant species’ shift (threshold>3) 
 
Six climatic parameters were used: Annual sea level pressure, wind intensity, 
meridional and zonal wind, cloudiness, sea surface temperature. 
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Black arrow: direction and strengh of mean annual wind (1960-2015) 
Red line: isobar based on annual SLP for the period 1960-2015 
White area: no significant species’ shift (threshold>3) 
 
Six climatic parameters were used: Annual sea level pressure, wind intensity, 
meridional and zonal wind, cloudiness, sea surface temperature. 
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Black arrow: direction and strengh of mean annual wind (1960-2015) 
Red line: isobar based on annual SLP for the period 1960-2015 
White area: no significant species’ shift (threshold>3) 
 
Six climatic parameters were used: Annual sea level pressure, wind intensity, 
meridional and zonal wind, cloudiness, sea surface temperature. 
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Black arrow: direction and strengh of mean annual wind (1960-2015) 
Red line: isobar based on annual SLP for the period 1960-2015 
White area: no significant species’ shift (threshold>3) 
 
Six climatic parameters were used: Annual sea level pressure, wind intensity, 
meridional and zonal wind, cloudiness, sea surface temperature. 
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Black arrow: direction and strengh of mean annual wind (1960-2015) 
Red line: isobar based on annual SLP for the period 1960-2015 
White area: no significant species’ shift (threshold>3) 
 
Six climatic parameters were used: Annual sea level pressure, wind intensity, 
meridional and zonal wind, cloudiness, sea surface temperature. 
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Black arrow: direction and strengh of mean annual wind (1960-2015) 
Red line: isobar based on annual SLP for the period 1960-2015 
White area: no significant species’ shift (threshold>3) 
 
Six climatic parameters were used: Annual sea level pressure, wind intensity, 
meridional and zonal wind, cloudiness, sea surface temperature. 
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Black arrow: direction and strengh of mean annual wind (1960-2015) 
Red line: isobar based on annual SLP for the period 1960-2015 
White area: no significant species’ shift (threshold>3) 
 
Six climatic parameters were used: Annual sea level pressure, wind intensity, 
meridional and zonal wind, cloudiness, sea surface temperature. 
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Black arrow: direction and strengh of mean annual wind (1960-2015) 
Red line: isobar based on annual SLP for the period 1960-2015 
White area: no significant species’ shift (threshold>3) 
 
Six climatic parameters were used: Annual sea level pressure, wind intensity, 
meridional and zonal wind, cloudiness, sea surface temperature. 
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Black arrow: direction and strengh of mean annual wind (1960-2015) 
Red line: isobar based on annual SLP for the period 1960-2015 
White area: no significant species’ shift (threshold>3) 
 
Six climatic parameters were used: Annual sea level pressure, wind intensity, 
meridional and zonal wind, cloudiness, sea surface temperature. 
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Black arrow: direction and strengh of mean annual wind (1960-2015) 
Red line: isobar based on annual SLP for the period 1960-2015 
White area: no significant species’ shift (threshold>3) 
 
Six climatic parameters were used: Annual sea level pressure, wind intensity, 
meridional and zonal wind, cloudiness, sea surface temperature. 
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Black arrow: direction and strengh of mean annual wind (1960-2015) 
Red line: isobar based on annual SLP for the period 1960-2015 
White area: no significant species’ shift (threshold>3) 
 
Six climatic parameters were used: Annual sea level pressure, wind intensity, 
meridional and zonal wind, cloudiness, sea surface temperature. 
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Black arrow: direction and strengh of mean annual wind (1960-2015) 
Red line: isobar based on annual SLP for the period 1960-2015 
White area: no significant species’ shift (threshold>3) 
 
Six climatic parameters were used: Annual sea level pressure, wind intensity, 
meridional and zonal wind, cloudiness, sea surface temperature. 
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Black arrow: direction and strengh of mean annual wind (1960-2015) 
Red line: isobar based on annual SLP for the period 1960-2015 
White area: no significant species’ shift (threshold>3) 
 
Six climatic parameters were used: Annual sea level pressure, wind intensity, 
meridional and zonal wind, cloudiness, sea surface temperature. 
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Black arrow: direction and strengh of mean annual wind (1960-2015) 
Red line: isobar based on annual SLP for the period 1960-2015 
White area: no significant species’ shift (threshold>3) 
 
Six climatic parameters were used: Annual sea level pressure, wind intensity, 
meridional and zonal wind, cloudiness, sea surface temperature. 
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Black arrow: direction and strengh of mean annual wind (1960-2015) 
Red line: isobar based on annual SLP for the period 1960-2015 
White area: no significant species’ shift (threshold>3) 
 
Six climatic parameters were used: Annual sea level pressure, wind intensity, 
meridional and zonal wind, cloudiness, sea surface temperature. 
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Black arrow: direction and strengh of mean annual wind (1960-2015) 
Red line: isobar based on annual SLP for the period 1960-2015 
White area: no significant species’ shift (threshold>3) 
 
Six climatic parameters were used: Annual sea level pressure, wind intensity, 
meridional and zonal wind, cloudiness, sea surface temperature. 
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Black arrow: direction and strengh of mean annual wind (1960-2015) 
Red line: isobar based on annual SLP for the period 1960-2015 
White area: no significant species’ shift (threshold>3) 
 
Six climatic parameters were used: Annual sea level pressure, wind intensity, 
meridional and zonal wind, cloudiness, sea surface temperature. 
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Black arrow: direction and strengh of mean annual wind (1960-2015) 
Red line: isobar based on annual SLP for the period 1960-2015 
White area: no significant species’ shift (threshold>3) 
 
Six climatic parameters were used: Annual sea level pressure, wind intensity, 
meridional and zonal wind, cloudiness, sea surface temperature. 
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Black arrow: direction and strengh of mean annual wind (1960-2015) 
Red line: isobar based on annual SLP for the period 1960-2015 
White area: no significant species’ shift (threshold>3) 
 
Six climatic parameters were used: Annual sea level pressure, wind intensity, 
meridional and zonal wind, cloudiness, sea surface temperature. 
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Black arrow: direction and strengh of mean annual wind (1960-2015) 
Red line: isobar based on annual SLP for the period 1960-2015 
White area: no significant species’ shift (threshold>3) 
 
Six climatic parameters were used: Annual sea level pressure, wind intensity, 
meridional and zonal wind, cloudiness, sea surface temperature. 
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Black arrow: direction and strengh of mean annual wind (1960-2015) 
Red line: isobar based on annual SLP for the period 1960-2015 
White area: no significant species’ shift (threshold>3) 
 
Six climatic parameters were used: Annual sea level pressure, wind intensity, 
meridional and zonal wind, cloudiness, sea surface temperature. 
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Black arrow: direction and strengh of mean annual wind (1960-2015) 
Red line: isobar based on annual SLP for the period 1960-2015 
White area: no significant species’ shift (threshold>3) 
 
Six climatic parameters were used: Annual sea level pressure, wind intensity, 
meridional and zonal wind, cloudiness, sea surface temperature. 
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Black arrow: direction and strengh of mean annual wind (1960-2015) 
Red line: isobar based on annual SLP for the period 1960-2015 
White area: no significant species’ shift (threshold>3) 
 
Six climatic parameters were used: Annual sea level pressure, wind intensity, 
meridional and zonal wind, cloudiness, sea surface temperature. 
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Black arrow: direction and strengh of mean annual wind (1960-2015) 
Red line: isobar based on annual SLP for the period 1960-2015 
White area: no significant species’ shift (threshold>3) 
 
Six climatic parameters were used: Annual sea level pressure, wind intensity, 
meridional and zonal wind, cloudiness, sea surface temperature. 
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Black arrow: direction and strengh of mean annual wind (1960-2015) 
Red line: isobar based on annual SLP for the period 1960-2015 
White area: no significant species’ shift (threshold>3) 
 
Six climatic parameters were used: Annual sea level pressure, wind intensity, 
meridional and zonal wind, cloudiness, sea surface temperature. 
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Black arrow: direction and strengh of mean annual wind (1960-2015) 
Red line: isobar based on annual SLP for the period 1960-2015 
White area: no significant species’ shift (threshold>3) 
 
Six climatic parameters were used: Annual sea level pressure, wind intensity, 
meridional and zonal wind, cloudiness, sea surface temperature. 
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Black arrow: direction and strengh of mean annual wind (1960-2015) 
Red line: isobar based on annual SLP for the period 1960-2015 
White area: no significant species’ shift (threshold>3) 
 
Six climatic parameters were used: Annual sea level pressure, wind intensity, 
meridional and zonal wind, cloudiness, sea surface temperature. 
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Black arrow: direction and strengh of mean annual wind (1960-2015) 
Red line: isobar based on annual SLP for the period 1960-2015 
White area: no significant species’ shift (threshold>3) 
 
Six climatic parameters were used: Annual sea level pressure, wind intensity, 
meridional and zonal wind, cloudiness, sea surface temperature. 
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Black arrow: direction and strengh of mean annual wind (1960-2015) 
Red line: isobar based on annual SLP for the period 1960-2015 
White area: no significant species’ shift (threshold>3) 
 
Six climatic parameters were used: Annual sea level pressure, wind intensity, 
meridional and zonal wind, cloudiness, sea surface temperature. 
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Black arrow: direction and strengh of mean annual wind (1960-2015) 
Red line: isobar based on annual SLP for the period 1960-2015 
White area: no significant species’ shift (threshold>3) 
 
Six climatic parameters were used: Annual sea level pressure, wind intensity, 
meridional and zonal wind, cloudiness, sea surface temperature. 
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Black arrow: direction and strengh of mean annual wind (1960-2015) 
Red line: isobar based on annual SLP for the period 1960-2015 
White area: no significant species’ shift (threshold>3) 
 
Six climatic parameters were used: Annual sea level pressure, wind intensity, 
meridional and zonal wind, cloudiness, sea surface temperature. 
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Black arrow: direction and strengh of mean annual wind (1960-2015) 
Red line: isobar based on annual SLP for the period 1960-2015 
White area: no significant species’ shift (threshold>3) 
 
Six climatic parameters were used: Annual sea level pressure, wind intensity, 
meridional and zonal wind, cloudiness, sea surface temperature. 
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Black arrow: direction and strengh of mean annual wind (1960-2015) 
Red line: isobar based on annual SLP for the period 1960-2015 
White area: no significant species’ shift (threshold>3) 
 
Six climatic parameters were used: Annual sea level pressure, wind intensity, 
meridional and zonal wind, cloudiness, sea surface temperature. 
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Black arrow: direction and strengh of mean annual wind (1960-2015) 
Red line: isobar based on annual SLP for the period 1960-2015 
White area: no significant species’ shift (threshold>3) 
 
Six climatic parameters were used: Annual sea level pressure, wind intensity, 
meridional and zonal wind, cloudiness, sea surface temperature. 
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Black arrow: direction and strengh of mean annual wind (1960-2015) 
Red line: isobar based on annual SLP for the period 1960-2015 
White area: no significant species’ shift (threshold>3) 
 
Six climatic parameters were used: Annual sea level pressure, wind intensity, 
meridional and zonal wind, cloudiness, sea surface temperature. 
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Black arrow: direction and strengh of mean annual wind (1960-2015) 
Red line: isobar based on annual SLP for the period 1960-2015 
White area: no significant species’ shift (threshold>3) 
 
Six climatic parameters were used: Annual sea level pressure, wind intensity, 
meridional and zonal wind, cloudiness, sea surface temperature. 
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Black arrow: direction and strengh of mean annual wind (1960-2015) 
Red line: isobar based on annual SLP for the period 1960-2015 
White area: no significant species’ shift (threshold>3) 
 
Six climatic parameters were used: Annual sea level pressure, wind intensity, 
meridional and zonal wind, cloudiness, sea surface temperature. 
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Black arrow: direction and strengh of mean annual wind (1960-2015) 
Red line: isobar based on annual SLP for the period 1960-2015 
White area: no significant species’ shift (threshold>3) 
 
Six climatic parameters were used: Annual sea level pressure, wind intensity, 
meridional and zonal wind, cloudiness, sea surface temperature. 
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Black arrow: direction and strengh of mean annual wind (1960-2015) 
Red line: isobar based on annual SLP for the period 1960-2015 
White area: no significant species’ shift (threshold>3) 
 
Six climatic parameters were used: Annual sea level pressure, wind intensity, 
meridional and zonal wind, cloudiness, sea surface temperature. 
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Black arrow: direction and strengh of mean annual wind (1960-2015) 
Red line: isobar based on annual SLP for the period 1960-2015 
White area: no significant species’ shift (threshold>3) 
 
Six climatic parameters were used: Annual sea level pressure, wind intensity, 
meridional and zonal wind, cloudiness, sea surface temperature. 
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Black arrow: direction and strengh of mean annual wind (1960-2015) 
Red line: isobar based on annual SLP for the period 1960-2015 
White area: no significant species’ shift (threshold>3) 
 
Six climatic parameters were used: Annual sea level pressure, wind intensity, 
meridional and zonal wind, cloudiness, sea surface temperature. 
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Black arrow: direction and strengh of mean annual wind (1960-2015) 
Red line: isobar based on annual SLP for the period 1960-2015 
White area: no significant species’ shift (threshold>3) 
 
Six climatic parameters were used: Annual sea level pressure, wind intensity, 
meridional and zonal wind, cloudiness, sea surface temperature. 
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Black arrow: direction and strengh of mean annual wind (1960-2015) 
Red line: isobar based on annual SLP for the period 1960-2015 
White area: no significant species’ shift (threshold>3) 
 
Six climatic parameters were used: Annual sea level pressure, wind intensity, 
meridional and zonal wind, cloudiness, sea surface temperature. 
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2004-2007 
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Black arrow: direction and strengh of mean annual wind (1960-2015) 
Red line: isobar based on annual SLP for the period 1960-2015 
White area: no significant species’ shift (threshold>3) 
 
Six climatic parameters were used: Annual sea level pressure, wind intensity, 
meridional and zonal wind, cloudiness, sea surface temperature. 
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2005-2008 
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Black arrow: direction and strengh of mean annual wind (1960-2015) 
Red line: isobar based on annual SLP for the period 1960-2015 
White area: no significant species’ shift (threshold>3) 
 
Six climatic parameters were used: Annual sea level pressure, wind intensity, 
meridional and zonal wind, cloudiness, sea surface temperature. 
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Black arrow: direction and strengh of mean annual wind (1960-2015) 
Red line: isobar based on annual SLP for the period 1960-2015 
White area: no significant species’ shift (threshold>3) 
 
Six climatic parameters were used: Annual sea level pressure, wind intensity, 
meridional and zonal wind, cloudiness, sea surface temperature. 
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2007-2010 
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Black arrow: direction and strengh of mean annual wind (1960-2015) 
Red line: isobar based on annual SLP for the period 1960-2015 
White area: no significant species’ shift (threshold>3) 
 
Six climatic parameters were used: Annual sea level pressure, wind intensity, 
meridional and zonal wind, cloudiness, sea surface temperature. 
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2008-2011 
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Black arrow: direction and strengh of mean annual wind (1960-2015) 
Red line: isobar based on annual SLP for the period 1960-2015 
White area: no significant species’ shift (threshold>3) 
 
Six climatic parameters were used: Annual sea level pressure, wind intensity, 
meridional and zonal wind, cloudiness, sea surface temperature. 
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2009-2012 
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Black arrow: direction and strengh of mean annual wind (1960-2015) 
Red line: isobar based on annual SLP for the period 1960-2015 
White area: no significant species’ shift (threshold>3) 
 
Six climatic parameters were used: Annual sea level pressure, wind intensity, 
meridional and zonal wind, cloudiness, sea surface temperature. 

Supplementary Figure 5 
 

Number of climatic shifts in each geographical cell 

2010-2013 
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Black arrow: direction and strengh of mean annual wind (1960-2015) 
Red line: isobar based on annual SLP for the period 1960-2015 
White area: no significant species’ shift (threshold>3) 
 
Six climatic parameters were used: Annual sea level pressure, wind intensity, 
meridional and zonal wind, cloudiness, sea surface temperature. 

Supplementary Figure 5 
 

Number of climatic shifts in each geographical cell 

2011-2014 
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Black arrow: direction and strengh of mean annual wind (1960-2015) 
Red line: isobar based on annual SLP for the period 1960-2015 
White area: no significant species’ shift (threshold>3) 
 
Six climatic parameters were used: Annual sea level pressure, wind intensity, 
meridional and zonal wind, cloudiness, sea surface temperature. 
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