310 research outputs found

    PT-symmetry in honeycomb photonic lattices

    Full text link
    We apply gain/loss to honeycomb photonic lattices and show that the dispersion relation is identical to tachyons - particles with imaginary mass that travel faster than the speed of light. This is accompanied by PT-symmetry breaking in this structure. We further show that the PT-symmetry can be restored by deforming the lattice

    Fractoluminescence characterization of the energy dissipated during fast fracture of glass

    Full text link
    Fractoluminescence experiments are performed on two kinds of silicate glasses. All the light spectra collected during dynamic fracture reveal a black body radiator behaviour, which is interpreted as a crack velocity-dependent temperature rise close to the crack tip. Crack velocities are estimated to be of the order of 1300 m.s1^{-1} and fracture process zones are shown to extend over a few nanometers.Comment: Accepted for publication in Europhysics Letters; 5 pages; 4 figure

    Managing Injuries of the Neck Trial (MINT) : design of a randomised controlled trial of treatments for whiplash associated disorders

    Get PDF
    Background: A substantial proportion of patients with whiplash injuries develop chronic symptoms. However, the best treatment of acute injuries to prevent long-term problems is uncertain. A stepped care treatment pathway has been proposed, in which patients are given advice and education at their initial visit to the emergency department (ED), followed by review at three weeks and physiotherapy for those with persisting symptoms. MINT is a two-stage randomised controlled trial to evaluate two components of such a pathway: 1. use of The Whiplash Book versus usual advice when patients first attend the emergency department; 2. referral to physiotherapy versus reinforcement of advice for patients with continuing symptoms at three weeks. Methods: Evaluation of the Whiplash Book versus usual advice uses a cluster randomised design in emergency departments of eight NHS Trusts. Eligible patients are identified by clinicians in participating emergency departments and are sent a study questionnaire within a week of their ED attendance. Three thousand participants will be included. Patients with persisting symptoms three weeks after their ED attendance are eligible to join an individually randomised study of physiotherapy versus reinforcement of the advice given in ED. Six hundred participants will be randomised. Follow-up is at 4, 8 and 12 months after their ED attendance. Primary outcome is the Neck Disability Index (NDI), and secondary outcomes include quality of life and time to return to work and normal activities. An economic evaluation is being carried out. Conclusion: This paper describes the protocol and operational aspects of a complex intervention trial based in NHS emergency and physiotherapy departments, evaluating two components of a stepped-care approach to the treatment of whiplash injuries. The trial uses two randomisations, with the first stage being cluster randomised and the second individually randomised

    Leptogenesis from Soft Supersymmetry Breaking (Soft Leptogenesis)

    Full text link
    Soft leptogenesis is a scenario in which the cosmic baryon asymmetry is produced from a lepton asymmetry generated in the decays of heavy sneutrinos (the partners of the singlet neutrinos of the seesaw) and where the relevant sources of CP violation are the complex phases of soft supersymmetry-breaking terms. We explain the motivations for soft leptogenesis, and review its basic ingredients: the different CP-violating contributions, the crucial role played by thermal corrections, and the enhancement of the efficiency from lepton flavour effects. We also discuss the high temperature regime T>107T > 10^7 GeV in which the cosmic baryon asymmetry originates from an initial asymmetry of an anomalous RR-charge, and soft leptogenesis reembodies in RR-genesis.Comment: References updated. Some minor corrections to match the published versio

    Dirac Neutrinos, Dark Energy and Baryon Asymmetry

    Get PDF
    We explore a new origin of neutrino dark energy and baryon asymmetry in the universe. The neutrinos acquire small masses through the Dirac seesaw mechanism. The pseudo-Nambu-Goldstone boson associated with neutrino mass-generation provides a candidate for dark energy. The puzzle of cosmological baryon asymmetry is resolved via neutrinogenesis.Comment: 6 pages, 1 figure. Accepted by JCAP (only minor rewordings, refs added

    Strain-induced pseudomagnetic field and Landau levels in photonic structures

    Full text link
    Magnetic effects at optical frequencies are notoriously weak. This is evidenced by the fact that the magnetic permeability of nearly all materials is unity in the optical frequency range, and that magneto-optical devices (such as Faraday isolators) must be large in order to allow for a sufficiently strong effect. In graphene, however, it has been shown that inhomogeneous strains can induce 'pseudomagnetic fields' that behave very similarly to real fields. Here, we show experimentally and theoretically that, by properly structuring a dielectric lattice, it is possible to induce a pseudomagnetic field at optical frequencies in a photonic lattice, where the propagation dynamics is equivalent to the evolution of an electronic wavepacket in graphene. To our knowledge, this is the first realization of a pseudomagnetic field in optics. The induced field gives rise to multiple photonic Landau levels (singularities in the density of states) separated by band gaps. We show experimentally and numerically that the gaps between these Landau levels give rise to transverse confinement of the optical modes. The use of strain allows for the exploration of magnetic effects in a non-resonant way that would be otherwise inaccessible in optics. Employing inhomogeneous strain to induce pseudomagnetism suggests the possibility that aperiodic photonic crystal structures can achieve greater field-enhancement and slow-light effects than periodic structures via the high density-of-states at Landau levels. Generalizing these concepts to other systems beyond optics, for example with matter waves in optical potentials, offers new intriguing physics that is fundamentally different from that in purely periodic structures.Comment: 24 pages including supplementary information section, 4 figure

    Klein tunneling in graphene: optics with massless electrons

    Full text link
    This article provides a pedagogical review on Klein tunneling in graphene, i.e. the peculiar tunneling properties of two-dimensional massless Dirac electrons. We consider two simple situations in detail: a massless Dirac electron incident either on a potential step or on a potential barrier and use elementary quantum wave mechanics to obtain the transmission probability. We emphasize the connection to related phenomena in optics, such as the Snell-Descartes law of refraction, total internal reflection, Fabry-P\'erot resonances, negative refraction index materials (the so called meta-materials), etc. We also stress that Klein tunneling is not a genuine quantum tunneling effect as it does not necessarily involve passing through a classically forbidden region via evanescent waves. A crucial role in Klein tunneling is played by the conservation of (sublattice) pseudo-spin, which is discussed in detail. A major consequence is the absence of backscattering at normal incidence, of which we give a new shorten proof. The current experimental status is also thoroughly reviewed. The appendix contains the discussion of a one-dimensional toy model that clearly illustrates the difference in Klein tunneling between mono- and bi-layer graphene.Comment: short review article, 18 pages, 14 figures; v3: references added, several figures slightly modifie

    Protecting older patients with cardiovascular diseases from COVID-19 complications using current medications

    Get PDF
    Purpose In the pathogenesis of severe COVID-19 complications, derangements of renin-angiotensin-aldosterone system (RAAS), vascular endothelial dysfunction leading to inflammation and coagulopathy, and arrhythmias play an important role. Therefore, it is worth considering the use of currently available drugs to protect COVID-19 patients with cardiovascular diseases. Methods We review the current experience of conventional cardiovascular drugs [angiotensin-converting enzyme (ACE) inhibitors, angiotensin receptor blockers, anticoagulants, acetosalicylic acid, antiarrhythmic drugs, statins] as well as some other drug classes (antidiabetic drugs, vitamin D and NSAIDs) frequently used by older patients with cardiovascular diseases. Data were sought from clinical databases for COVID-19 and appropriate key words. Conclusions and recommendations are based on a consensus among all authors. Results Several cardiovascular drugs have a potential to protect patients with COVID-19, although evidence is largely based on retrospective, observational studies. Despite propensity score adjustments used in many analyses observational studies are not equivalent to randomised controlled trials (RCTs). Ongoing RCTs include treatment with antithrombotics, pulmonary vasodilators, RAAS-related drugs, and colchicine. RCTs in the acute phase of COVID-19 may not, however, recognise the benefits of long term anti-atherogenic therapies, such as statins. Conclusions Most current cardiovascular drugs can be safely continued during COVID-19. Some drug classes may even be protective. Age-specific data are scarce, though, and conditions which are common in older patients (frailty, comorbidities, polypharmacy) must be individually considered for each drug group. Key summary pointsAim To review current cardiovascular medications for benefits and potential harms during COVID-19. Findings Several cardiovascular drugs have a potential to protect patients with COVID-19, although evidence is largely based on observational studies and age-specific data are scarce. Message Most current cardiovascular drugs can be safely continued during COVID-19, but general conditions common in older patients must be considered.Peer reviewe
    corecore