364 research outputs found

    Letter to the Editor Re: McClure et al. Nutrients 2017, 9, 95

    Get PDF
    Dear Editor, We read with interest the recently published paper by McClure et al. [1] that reports trends in intake and primary sources of dietary phosphorus in the NHANES data for the period 2001–2014.[...]Non peer reviewe

    Vitamin D Fortification of Fluid Milk Products and Their Contribution to Vitamin D Intake and Vitamin D Status in Observational Studies—A Review

    Get PDF
    Fluid milk products are systematically, either mandatorily or voluntarily, fortified with vitamin D in some countries but their overall contribution to vitamin D intake and status worldwide is not fully understood. We searched the PubMed database to evaluate the contribution of vitamin D-fortified fluid milk products (regular milk and fermented products) to vitamin D intake and serum or plasma 25-hydroxyvitamin D (25(OH)D) status in observational studies during 1993-2017. Twenty studies provided data on 25(OH)D status (n = 19,744), and 22 provided data on vitamin D intake (n = 99,023). Studies showed positive associations between the consumption of vitamin D-fortified milk and 25(OH)D status in different population groups. In countries with a national vitamin D fortification policy covering various fluid milk products (Finland, Canada, United States), milk products contributed 28-63% to vitamin D intake, while in countries without a fortification policy, or when the fortification covered only some dairy products (Sweden, Norway), the contribution was much lower or negligible. To conclude, based on the reviewed observational studies, vitamin D-fortified fluid milk products contribute to vitamin D intake and 25(OH)D status. However, their impact on vitamin D intake at the population level depends on whether vitamin D fortification is systematic and policy-based.Peer reviewe

    Poor bioavailability of vitamin D2 from ultraviolet-irradiated D2-rich yeast in rats

    Get PDF
    Ultraviolet-irradiated yeast (Saccharomyces cerevisiae) can be used to biofortify bakery products with vitamin D, but in bread, it was not effective in increasing serum 25-hydroxyvitamin D [25(OH)D] in humans, possibly because of the low digestibility of the yeast matrix. We investigated the effects of vitamin D-2-rich intact yeast cells and their separated fraction, yeast cell walls, which we hypothesized to provide vitamin D-2 in a more bioavailable form, on serum 25(OH)D and its metabolites in growing female Sprague-Dawley rats (n = 54) compared to vitamin D-2 and D-3 supplements (8 treatment groups: 300 or 600 IU vitamin D/d, and a control group, 8-week intervention). The D-3 supplement groups had the highest 25(OH)D concentrations, and the vitamin D-2 supplement at the 600-IU dose increased 25(OH)D better than any yeast form (P .05). Serum 24,25-dihydroxyvitamin D (a vitamin D catabolite) concentrations and the trend in the differences between the groups were in line with 25 (OH)D (P .05). These findings do not support the hypothesis: the ability of the different ultraviolet-treated vitamin D-2-containing yeast forms to increase 25(OH)D did not differ, and the poor bioavailability of vitamin D-2 in the yeasts compared D-3 or D-2 supplements could not be explained by the increased vitamin D catabolism in the yeast-treated groups. (C) 2018 Elsevier Inc. All rights reserved.Peer reviewe

    Time since onset of walking predicts tibial bone strength in early childhood

    Get PDF
    Bone strength in adulthood is known to be affected by health at birth and early childhood. Habitual bone loading is a primary determinant of bone strength in later childhood and adulthood. However, the effects of physical activity in early childhood (e.g. crawling, standing and walking) on bone strength are unknown. Fifty-three children (twenty-seven males) were included in a longitudinal study in their early infancy. Shortly after birth (0.3 ± 0.3 months), details of mass and height were obtained along with a pQCT scan at 20% distal–proximal tibia length. At 14.8 ± 0.5 months of age the same data were collected, along with details of age at onset of standing, crawling, supported and unsupported walking. Time since onset of walking unsupported was associated with greater bone mass, cortical bone area, pericortical circumference and polar moment of inertia of both total and cortical bone (all P < 0.05). There were no significant associations between other physical activity timepoints and bone measures. Age at onset of walking was not significantly related to mass, length or bone measures at birth. The results suggest that time since attainment of independent walking — representing exposure of the tibia to the large reaction and muscular forces associated with locomotion — is a primary determinant of bone strength in early childhood. This finding raises the possible opportunity of physical activity interventions at young age in paediatric populations associated with low childhood bone strength and late walking (e.g. low birth weight, cerebral palsy and Down's Syndrome, etc.)

    Genetic Risk Score for Serum 25-Hydroxyvitamin D Concentration Helps to Guide Personalized Vitamin D Supplementation in Healthy Finnish Adults

    Get PDF
    Background Genetic factors modify serum 25-hydroxyvitamin D [25(OH)D] concentration and can affect the optimal intake of vitamin D. Objectives We aimed to personalize vitamin D supplementation by applying knowledge of genetic factors affecting serum 25(OH)D concentration. Methods We performed a genome-wide association study of serum 25(OH)D concentration in the Finnish Health 2011 cohort (n = 3339) using linear regression and applied the results to develop a population-matched genetic risk score (GRS) for serum 25(OH)D. This GRS was used to tailor vitamin D supplementation for 96 participants of a longitudinal Digital Health Revolution (DHR) Study. The GRS, serum 25(OH)D concentrations, and personalized supplementation and dietary advice were electronically returned to participants. Serum 25(OH)D concentrations were assessed using immunoassays and vitamin D intake using FFQs. In data analyses, cross-sectional and repeated-measures statistical tests and models were applied as described in detail elsewhere. Results GC vitamin D-binding protein and cytochrome P450 family 2 subfamily R polypeptide 1 genes showed genome-wide significant associations with serum 25(OH)D concentration. One single nucleotide polymorphism from each locus (rs4588 and rs10741657) was used to develop the GRS. After returning data to the DHR Study participants, daily vitamin D supplement users increased from 32.6% to 60.2% (P = 6.5 x 10(-6)) and serum 25(OH)D concentration from 64.4 +/- 20.9 nmol/L to 68.5 +/- 19.2 nmol/L (P = 0.006) between August and November. Notably, the difference in serum 25(OH)D concentrations between participants with no risk alleles and those with 3 or 4 risk alleles decreased from 20.7 nmol/L to 8.0 nmol/L (P = 0.0063). Conclusions We developed and applied a population-matched GRS to identify individuals genetically predisposed to low serum 25(OH)D concentration. We show how the electronic return of individual genetic risk, serum 25(OH)D concentrations, and factors affecting vitamin D status can be used to tailor vitamin D supplementation. This model could be applied to other populations and countries.Peer reviewe

    Genetic Risk Score for Serum 25-Hydroxyvitamin D Concentration Helps to Guide Personalized Vitamin D Supplementation in Healthy Finnish Adults

    Get PDF
    Background Genetic factors modify serum 25-hydroxyvitamin D [25(OH)D] concentration and can affect the optimal intake of vitamin D. Objectives We aimed to personalize vitamin D supplementation by applying knowledge of genetic factors affecting serum 25(OH)D concentration. Methods We performed a genome-wide association study of serum 25(OH)D concentration in the Finnish Health 2011 cohort (n = 3339) using linear regression and applied the results to develop a population-matched genetic risk score (GRS) for serum 25(OH)D. This GRS was used to tailor vitamin D supplementation for 96 participants of a longitudinal Digital Health Revolution (DHR) Study. The GRS, serum 25(OH)D concentrations, and personalized supplementation and dietary advice were electronically returned to participants. Serum 25(OH)D concentrations were assessed using immunoassays and vitamin D intake using FFQs. In data analyses, cross-sectional and repeated-measures statistical tests and models were applied as described in detail elsewhere. Results GC vitamin D-binding protein and cytochrome P450 family 2 subfamily R polypeptide 1 genes showed genome-wide significant associations with serum 25(OH)D concentration. One single nucleotide polymorphism from each locus (rs4588 and rs10741657) was used to develop the GRS. After returning data to the DHR Study participants, daily vitamin D supplement users increased from 32.6% to 60.2% (P = 6.5 x 10(-6)) and serum 25(OH)D concentration from 64.4 +/- 20.9 nmol/L to 68.5 +/- 19.2 nmol/L (P = 0.006) between August and November. Notably, the difference in serum 25(OH)D concentrations between participants with no risk alleles and those with 3 or 4 risk alleles decreased from 20.7 nmol/L to 8.0 nmol/L (P = 0.0063). Conclusions We developed and applied a population-matched GRS to identify individuals genetically predisposed to low serum 25(OH)D concentration. We show how the electronic return of individual genetic risk, serum 25(OH)D concentrations, and factors affecting vitamin D status can be used to tailor vitamin D supplementation. This model could be applied to other populations and countries.Peer reviewe

    Vitamin D supplementation and prevention of cardiovascular disease and cancer in the Finnish Vitamin D Trial : a randomized controlled trial

    Get PDF
    Background Vitamin D insufficiency is associated with risks of cardiovascular diseases (CVD) and cancer in observational studies, but evidence for benefits with vitamin D supplementation is limited. Objectives To investigate the effects of vitamin D-3 supplementation on CVD and cancer incidences. Methods The study was a 5-year, randomized, placebo-controlled trial among 2495 male participants >= 60 years and post-menopausal female participants >= 65 years from a general Finnish population who were free of prior CVD or cancer. The study had 3 arms: placebo, 1600 IU/day, or 3200 IU/day vitamin D-3. Follow-up was by annual study questionnaires and national registry data. A representative subcohort of 551 participants had more detailed in-person investigations. The primary endpoints were incident major CVD and invasive cancer. Secondary endpoints included the individual components of the primary CVD endpoint (myocardial infarction, stroke, and CVD mortality), site-specific cancers, and cancer death. Results During the follow-up, there were 41 (4.9%), 42 (5.0%), and 36 (4.3%) major CVD events in the placebo, 1600 IU/d (compared with placebo: HR: 0.97; 95% CI: 0.63-1.49; P = 0.89), and 3200 IU/d (HR: 0.84; 95% CI: 0.54-1.31; P = 0.44) arms, respectively. Invasive cancer was diagnosed in 41 (4.9%), 48 (5.8%), and 40 (4.8%) participants in the placebo, 1600 IU/d (HR: 1.14; 95% CI: 0.75-1.72; P = 0.55), and 3200 IU/d (HR: 0.95; 95% CI: 0.61-1.47; P = 0.81) arms, respectively. There were no significant differences in the secondary endpoints or total mortality. In the subcohort, the mean baseline serum 25-hydroxyvitamin D concentration was 75 nmol/L (SD, 18 nmol/L). After 12 months, the concentrations were 73 nmol/L (SD, 18 nmol/L), 100 nmol/L (SD, 21 nmol/L), and 120 nmol/L (SD, 22 nmol/L) in the placebo, 1600 IU/d, and 3200 IU/d arms, respectively. Conclusions Vitamin D-3 supplementation did not lower the incidences of major CVD events or invasive cancer among older adults, possibly due to sufficient vitamin D status in most participants at baseline.Peer reviewe
    • …
    corecore