7 research outputs found
Factors Limiting the Spread of the Protective Symbiont \u3cem\u3eHamiltonella defensa\u3c/em\u3e in \u3cem\u3eAphis craccivora\u3c/em\u3e Aphids
Many insects are associated with heritable symbionts that mediate ecological interactions, including host protection against natural enemies. The cowpea aphid, Aphis craccivora, is a polyphagous pest that harbors Hamiltonella defensa, which defends against parasitic wasps. Despite this protective benefit, this symbiont occurs only at intermediate frequencies in field populations. To identify factors constraining H. defensa invasion in Ap. craccivora, we estimated symbiont transmission rates, performed fitness assays, and measured infection dynamics in population cages to evaluate effects of infection. Similar to results with the pea aphid, Acyrthosiphon pisum, we found no consistent costs to infection using component fitness assays, but we did identify clear costs to infection in population cages when no enemies were present. Maternal transmission rates of H. defensa in Ap. craccivora were high (ca. 99%) but not perfect. Transmission failures and infection costs likely limit the spread of protective H. defensa in Ap. craccivora. We also characterized several parameters of H. defensa infection potentially relevant to the protective phenotype. We confirmed the presence of H. defensa in aphid hemolymph, where it potentially interacts with endoparasites, and performed real-time quantitative PCR (qPCR) to estimate symbiont and phage abundance during aphid development. We also examined strain variation of H. defensa and its bacteriophage at multiple loci, and despite our lines being collected in different regions of North America, they were infected with a nearly identical strains of H. defensa and APSE4 phage. The limited strain diversity observed for these defensive elements may result in relatively static protection profile for this defensive symbiosis
Characterization of transcriptional networks in blood stem and progenitor cells using high-throughput single-cell gene expression analysis
Cellular decision-making is mediated by a complex interplay of external stimuli with the intracellular environment, in particular transcription factor regulatory networks. Here we have determined the expression of a network of 18 key haematopoietic transcription factors in 597 single primary blood stem and progenitor cells isolated from mouse bone marrow. We demonstrate that different stem/progenitor populations are characterized by distinctive transcription factor expression states, and through comprehensive bioinformatic analysis reveal positively and negatively correlated transcription factor pairings, including previously unrecognized relationships between Gata2, Gfi1 and Gfi1b. Validation using transcriptional and transgenic assays confirmed direct regulatory interactions consistent with a regulatory triad in immature blood stem cells, where Gata2 may function to modulate cross-inhibition between Gfi1 and Gfi1b. Single-cell expression profiling therefore identifies network states and allows reconstruction of network hierarchies involved in controlling stem cell fate choices, and provides a blueprint for studying both normal development and human disease
A Roadmap for HEP Software and Computing R&D for the 2020s
Particle physics has an ambitious and broad experimental programme for the coming decades. This programme requires large investments in detector hardware, either to build new facilities and experiments, or to upgrade existing ones. Similarly, it requires commensurate investment in the R&D of software to acquire, manage, process, and analyse the shear amounts of data to be recorded. In planning for the HL-LHC in particular, it is critical that all of the collaborating stakeholders agree on the software goals and priorities, and that the efforts complement each other. In this spirit, this white paper describes the R&D activities required to prepare for this software upgrade.Peer reviewe
Factors Limiting the Spread of the Protective Symbiont Hamiltonella defensa in Aphis craccivora Aphids
Many insects are associated with heritable symbionts that mediate ecological interactions, including host protection against natural enemies. The cowpea aphid, Aphis craccivora, is a polyphagous pest that harbors Hamiltonella defensa, which defends against parasitic wasps. Despite this protective benefit, this symbiont occurs only at intermediate frequencies in field populations. To identify factors constraining H. defensa invasion in Ap. craccivora, we estimated symbiont transmission rates, performed fitness assays, and measured infection dynamics in population cages to evaluate effects of infection. Similar to results with the pea aphid, Acyrthosiphon pisum, we found no consistent costs to infection using component fitness assays, but we did identify clear costs to infection in population cages when no enemies were present. Maternal transmission rates of H. defensa in Ap. craccivora were high (ca. 99%) but not perfect. Transmission failures and infection costs likely limit the spread of protective H. defensa in Ap. craccivora. We also characterized several parameters of H. defensa infection potentially relevant to the protective phenotype. We confirmed the presence of H. defensa in aphid hemolymph, where it potentially interacts with endoparasites, and performed real-time quantitative PCR (qPCR) to estimate symbiont and phage abundance during aphid development. We also examined strain variation of H. defensa and its bacteriophage at multiple loci, and despite our lines being collected in different regions of North America, they were infected with a nearly identical strains of H. defensa and APSE4 phage. The limited strain diversity observed for these defensive elements may result in relatively static protection profile for this defensive symbiosis
Development of in silico models to predict viscosity and mouse clearance using a comprehensive analytical data set collected on 83 scaffold-consistent monoclonal antibodies
ABSTRACTBiologic drug discovery pipelines are designed to deliver protein therapeutics that have exquisite functional potency and selectivity while also manifesting biophysical characteristics suitable for manufacturing, storage, and convenient administration to patients. The ability to use computational methods to predict biophysical properties from protein sequence, potentially in combination with high throughput assays, could decrease timelines and increase the success rates for therapeutic developability engineering by eliminating lengthy and expensive cycles of recombinant protein production and testing. To support development of high-quality predictive models for antibody developability, we designed a sequence-diverse panel of 83 effector functionless IgG1 antibodies displaying a range of biophysical properties, produced and formulated each protein under standard platform conditions, and collected a comprehensive package of analytical data, including in vitro assays and in vivo mouse pharmacokinetics. We used this robust training data set to build machine learning classifier models that can predict complex protein behavior from these data and features derived from predicted and/or experimental structures. Our models predict with 87% accuracy whether viscosity at 150 mg/mL is above or below a threshold of 15 centipoise (cP) and with 75% accuracy whether the area under the plasma drug concentration–time curve (AUC0–672 h) in normal mouse is above or below a threshold of 3.9 × 106 h x ng/mL
A Roadmap for HEP Software and Computing R&D for the 2020s
Particle physics has an ambitious and broad experimental programme for the coming decades. This programme requires large investments in detector hardware, either to build new facilities and experiments, or to upgrade existing ones. Similarly, it requires commensurate investment in the R&D of software to acquire, manage, process, and analyse the shear amounts of data to be recorded. In planning for the HL-LHC in particular, it is critical that all of the collaborating stakeholders agree on the software goals and priorities, and that the efforts complement each other. In this spirit, this white paper describes the R&D activities required to prepare for this software upgrade