204 research outputs found

    Revamping Carmilla: The Neo-Victorian Transmedia Vlog Adaptation

    Get PDF
    Plusieurs adaptations transmédiatiques de classiques du XIXe siècle ont cherché à imiter le succès de The Lizzie Bennet Diaries (2012-2013). Malgré l’obstacle que les vampires représentent pour un style de vlog pseudo-réaliste avec caméra fixe, Carmilla (2014-2026) sort du lot, se distinguant comme l’une des adaptations les plus progressives sur le plan stylistique et idéologique. Librement adaptée du court roman de 1872 de Joseph Sheridan Le Fanu, l’œuvre des créatrices Jordan Hall et Ellen Simpson réinvente le lien entre vampirisme et lesbianisme pour libérer les personnages féminins du voyeurisme masculin. Quasiment toutes les adaptations depuis LBD sont féministes, et certaines adaptent leurs histoires originelles hors du cadre hétéronormatif, mais aucune ne se concentre sur l’expérience LGBTQ+ autant que Carmilla, que ce soit pour le produit fini ou pour le processus de création. Les sexualités et les identités de genre queer sont placées au premier plan, parfaitement naturelles sur le fond de cabbale surnaturelle à la Buffy qui chamboule Silas University. Drôle, prenante et parfois ironique, cette web-série néo-gothique rassemble de nombreuses fans qui ont porté une suite sur le grand écran. C’est un exemple-type de la façon dont ces nouvelles formes réfléchies de narration transmédiatique utilisent l’interactivité pour mettre en lumière des questions d’agentivité féminines et queer, critiquant de façon ludique nos limites sociales et esthétiques.Several transmedia literary adaptations of nineteenth-century classics followed in the wake of the success of The Lizzie Bennet Diaries (created by Bernie Su and Hank Green and aired in 2012-2013). Despite the fact that vampires do not exactly fit into the verisimilitude of the single-frame vlog filming style, Carmilla (2014-2016) stands out as one of the most stylistically and ideologically progressive. Freely adapted from Joseph Sheridan Le Fanu’s 1872 novella, the work of creators Jordan Hall and Ellen Simpson subverts the clichéd association of vampirism and lesbianism to free the female characters from the male gaze. Feminism has been a given in the transmedia literary adaptation since LBD, and some shows have taken the stories they adapt out of their heteronormative frame, but no other centers queer experience as radically as Carmilla – both behind and in front of the camera. Queer sexualities and gender identities are front-and-center, and appear perfectly natural against the background of the Buffy-inspired supernatural kabbala which plays out at Silas University. Fun, engaging and sometimes camp, the neo-Gothic webseries has garnered an extensive fandom and a continuation in movie form. As such, it embodies the way these new, self-reflexive possibilities of transmedia storytelling build on the audience’s involvement to promote issues of female (and queer) agency which reflect upon and playfully challenge social and aesthetic limits

    Proteolytic Processing of OPA1 Links Mitochondrial Dysfunction to Alterations in Mitochondrial Morphology

    Get PDF
    Many muscular and neurological disorders are associated with mitochondrial dysfunction and are often accompanied by changes in mitochondrial morphology. Mutations in the gene encoding OPA1, a protein required for fusion of mitochondria, are associated with hereditary autosomal dominant optic atrophy type I. Here we show that mitochondrial fragmentation correlates with processing of large isoforms of OPA1 in cybrid cells from a patient with myoclonus epilepsy and ragged-red fibers syndrome and in mouse embryonic fibroblasts harboring an error-prone mitochondrial mtDNA polymerase {gamma}. Furthermore, processed OPA1 was observed in heart tissue derived from heart-specific TFAM knock-out mice suffering from mitochondrial cardiomyopathy and in skeletal muscles from patients suffering from mitochondrial myopathies such as myopathy encephalopathy lactic acidosis and stroke-like episodes. Dissipation of the mitochondrial membrane potential leads to fast induction of proteolytic processing of OPA1 and concomitant fragmentation of mitochondria. Recovery of mitochondrial fusion depended on protein synthesis and was accompanied by resynthesis of large isoforms of OPA1. Fragmentation of mitochondria was prevented by overexpressing OPA1. Taken together, our data indicate that proteolytic processing of OPA1 has a key role in inducing fragmentation of energetically compromised mitochondria. We present the hypothesis that this pathway regulates mitochondrial morphology and serves as an early response to prevent fusion of dysfunctional mitochondria with the functional mitochondrial network

    Reversible optic neuropathy with OPA1 exon 5b mutation

    Get PDF
    A new c.740G>A (R247H) mutation in OPA1 alternate spliced exon 5b was found in a patient presenting with bilateral optic neuropathy followed by partial, spontaneous visual recovery. R247H fibroblasts from the patient and his unaffected father presented unusual highly tubular mitochondrial network, significant increased susceptibility to apoptosis, oxidative phosphorylation uncoupling, and altered OPA1 protein profile, supporting the pathogenicity of this mutation. These results suggest that the clinical spectrum of the OPA1-associated optic neuropathies may be larger than previously described, and that spontaneous recovery may occur in cases harboring an exon 5b mutation. Ann Neurol 200

    Inducible proteolytic inactivation of OPA1 mediated by the OMA1 protease in mammalian cells

    Get PDF
    A proteolytic cascade ensures that OMA1 cleaves and inactivates mitochondrial fusion protein OPA1 in times of stress, preventing damaged mitochondria from fusing with healthy organelles. (See also companion paper from Ehses et al. in this issue.

    Heterozygous Mutation of Drosophila Opa1 Causes the Development of Multiple Organ Abnormalities in an Age-Dependent and Organ-Specific Manner

    Get PDF
    Optic Atrophy 1 (OPA1) is a ubiquitously expressed dynamin-like GTPase in the inner mitochondrial membrane. It plays important roles in mitochondrial fusion, apoptosis, reactive oxygen species (ROS) and ATP production. Mutations of OPA1 result in autosomal dominant optic atrophy (DOA). The molecular mechanisms by which link OPA1 mutations and DOA are not fully understood. Recently, we created a Drosophila model to study the pathogenesis of optic atrophy. Heterozygous mutation of Drosophila OPA1 (dOpa1) by P-element insertion results in no obvious morphological abnormalities, whereas homozygous mutation is embryonic lethal. In eye-specific somatic clones, homozygous mutation of dOpa1 causes rough (mispatterning) and glossy (decreased lens deposition) eye phenotypes in adult Drosophila. In humans, heterozygous mutations in OPA1 have been associated with mitochondrial dysfunction, which is predicted to affect multiple organs. In this study, we demonstrated that heterozygous dOpa1 mutation perturbs the visual function and an ERG profile of the Drosophila compound eye. We independently showed that antioxidants delayed the onset of mutant phenotypes in ERG and improved larval vision function in phototaxis assay. Furthermore, heterozygous dOpa1 mutation also caused decreased heart rate, increased heart arrhythmia, and poor tolerance to stress induced by electrical pacing. However, antioxidants had no effects on the dysfunctional heart of heterozygous dOpa1 mutants. Under stress, heterozygous dOpa1 mutations caused reduced escape response, suggesting abnormal function of the skeletal muscles. Our results suggest that heterozygous mutation of dOpa1 shows organ-specific pathogenesis and is associated with multiple organ abnormalities in an age-dependent and organ-specific manner

    Vital function of PRELI and essential requirement of its LEA motif

    Get PDF
    Proteins containing the late embryogenesis abundant (LEA) motif comprise a conserved family, postulated to act as cell protectors. However, their function and mechanisms of action remain unclear. Here we show that PRELI, a mammalian LEA-containing homolog of yeast Ups1p, can associate with dynamin-like GTPase Optic Atrophy-1 (OPA1) and contribute to the maintenance of mitochondrial morphology. Accordingly, PRELI can uphold mitochondrial membrane potential (ΔΨm) and enhance respiratory chain (RC) function, shown by its capacity to induce complex-I/NADH dehydrogenase and ATP synthase expression, increase oxygen consumption and reduce reactive oxygen species (ROS) production. PRELI can also inhibit cell death induced by STS, TNF-α or UV irradiation. Moreover, in vitro and in vivo dominant-negative overexpression of mutant PRELI/LEA− (lacking the LEA motif) and transient in vitro PRELI-specific knockdown can render lymphocytes vulnerable to apoptosis, cause mouse embryo lethality and revert the resistance of lymphoma cells to induced death. Collectively, these data support the long-presumed notion of LEA protein-dependent mechanisms of cytoprotection and suggest that PRELI interacts with OPA1 to maintain mitochondria structures intact, sustain balanced ion−/proton+ gradients, promote oxidative phosphorylation reactions, regulate pro- and antiapoptotic protein traffic and enable cell responses to induced death. These findings may help to understand how bioenergetics is mechanistically connected with cell survival cues

    Evaluation of nine candidate genes in patients with normal tension glaucoma: a case control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Normal tension glaucoma is a major subtype of glaucoma, associated with intraocular pressures that are within the statistically normal range of the population. Monogenic forms following classical inheritance patterns are rare in this glaucoma subtype. Instead, multigenic inheritance is proposed for the majority of cases. The present study tested common sequence variants in candidate genes for association with normal tension glaucoma in the German population.</p> <p>Methods</p> <p>Ninety-eight SNPs were selected to tag the common genetic variation in nine genes, namely OPTN (optineurin), RDX (radixin), SNX16 (sorting nexin 16), OPA1 (optic atrophy 1), MFN1 (mitofusin 1), MFN2 (mitofusin 2), PARL (presenilin associated, rhomboid-like), SOD2 (superoxide dismutase 2, mitochondrial) and CYP1B1 (cytochrome P450, family 1, subfamily B, polypeptide 1). These SNPs were genotyped in 285 cases and 282 fully evaluated matched controls. Statistical analyses comprised single polymorphism association as well as haplogroup based association testing.</p> <p>Results</p> <p>Results suggested that genetic variation in five of the candidate genes (RDX, SNX16, OPA1, SOD2 and CYP1B1) is unlikely to confer major risk to develop normal tension glaucoma in the German population. In contrast, we observed a trend towards association of single SNPs in OPTN, MFN1, MFN2 and PARL. The SNPs of OPTN, MFN2 and PARL were further analysed by multimarker haplotype-based association testing. We identified a risk haplotype being more frequent in patients and a vice versa situation for the complementary protective haplotype in each of the three genes.</p> <p>Conclusion</p> <p>Common variants of OPTN, PARL, MFN1 and MFN2 should be analysed in other cohorts to confirm their involvement in normal tension glaucoma.</p
    • …
    corecore