960 research outputs found

    The variable radio-to-X-ray spectrum of the magnetar XTE J1810-197

    Full text link
    We have observed the 5.54s anomalous X-ray pulsar XTE J1810-197 at radio, millimeter, and infrared (IR) wavelengths, with the aim of learning about its broad-band spectrum. At the IRAM 30m telescope, we have detected the magnetar at 88 and 144GHz, the highest radio-frequency emission ever seen from a pulsar. At 88GHz we detected numerous individual pulses, with typical widths ~2ms and peak flux densities up to 45Jy. Together with nearly contemporaneous observations with the Parkes, Nancay, and Green Bank telescopes, we find that in late 2006 July the spectral index of the pulsar was -0.5<alpha<0 over the range 1.4-144GHz. Nine dual-frequency Very Large Array and Australia Telescope Compact Array observations in 2006 May-September are consistent with this finding, while showing variability of alpha with time. We infer from the IRAM observations that XTE J1810-197 remains highly linearly polarized at millimeter wavelengths. Also, toward this pulsar, the transition frequency between strong and weak scattering in the interstellar medium may be near 50GHz. At Gemini, we detected the pulsar at 2.2um in 2006 September, at the faintest level yet observed, K_s=21.89+-0.15. We have also analyzed four archival IR Very Large Telescope observations (two unpublished), finding that the brightness fluctuated within a factor of 2-3 over a span of 3 years, unlike the monotonic decay of the X-ray flux. Thus, there is no correlation between IR and X-ray flux, and it remains uncertain whether there is any correlation between IR and radio flux.Comment: Accepted for publication in ApJ; contains improved discussion of infrared uncertaintie

    The magnetar emission in the IR band: the role of magnetospheric currents

    Full text link
    There is a general consensus about the fact that the magnetar scenario provides a convincing explanation for several of the observed properties of the Anomalous X-ray Pulsars and the Soft Gamma Repeaters. However, the origin of the emission observed at low energies is still an open issue. We present a quantitative model for the emission in the optical/infrared band produced by curvature radiation from magnetospheric charges, and compare results with current magnetars observations.Comment: 6 Pages, 2 Figures. Astrophysics and Space Science, in press. Proceedings of the ICREA Workshop on The High-Energy Emission from Pulsars and their Systems, Sant Cugat, April 12-16 201

    Quiet but still bright: XMM-Newton observations of the soft gamma-ray repeater SGR 0526-66

    Get PDF
    SGR 0526-66 was the first soft gamma-ray repeater (SGR) from which a giant flare was detected in March 1979, suggesting the existence of magnetars, i.e. neutron stars powered by the decay of their extremely strong magnetic field. Since then, very little information has been obtained on this object, mainly because it has been burst-inactive since 1983 and the study of its persistent X-ray emission has been hampered by its large distance and its location in a X-ray bright supernova remnant in the Large Magellanic Cloud. Here we report on a comprehensive analysis of all the available XMM-Newton observations of SGR 0526-66. In particular, thanks to a deep observation taken in 2007, we measured its pulsation period (P = 8.0544 +/- 0.0002 s) 6 years after its latest detection by Chandra. This allowed us to detect for the first time a significant reduction of its spin-down rate. From a comparison with two shorter XMM-Newton observations performed in 2000 and 2001, we found no significant changes in the spectrum, which is well modelled by an absorbed power-law with nH = 4.6E+21 cm^-2 and photon index = 3.27. The high luminosity (about 4E+35 erg/s, in the 1-10 keV energy band) still observed about 25 years after the latest detection of bursting activity places SGR 0526-66 in the group of bright and persistent magnetar candidates.Comment: 5 pages, 3 figures (1 color) and 2 tables; Accepted for publication in MNRAS Letter

    Herbivore-driven disruption of arbuscular mycorrhizal carbon-for-nutrient exchange is ameliorated by neighboring plants

    Get PDF
    Arbuscular mycorrhizal fungi colonize the roots of most plants, forming a near-ubiquitous symbiosis1 that is typically characterized by the bi-directional exchange of fungal-acquired nutrients for plant-fixed carbon.2 Mycorrhizal fungi can form below-ground networks3,4,5,6 with potential to facilitate the movement of carbon, nutrients, and defense signals across plant communities.7,8,9 The importance of neighbors in mediating carbon-for-nutrient exchange between mycorrhizal fungi and their plant hosts remains equivocal, particularly when other competing pressures for plant resources are present. We manipulated carbon source and sink strengths of neighboring pairs of host plants through exposure to aphids and tracked the movement of carbon and nutrients through mycorrhizal fungal networks with isotope tracers. When carbon sink strengths of both neighboring plants were increased by aphid herbivory, plant carbon supply to extraradical mycorrhizal fungal hyphae was reduced, but mycorrhizal phosphorus supply to both plants was maintained, albeit variably, across treatments. However, when the sink strength of only one plant in a pair was increased, carbon supply to mycorrhizal fungi was restored. Our results show that loss of carbon inputs into mycorrhizal fungal hyphae from one plant may be ameliorated through inputs of a neighbor, demonstrating the responsiveness and resilience of mycorrhizal plant communities to biological stressors. Furthermore, our results indicate that mycorrhizal nutrient exchange dynamics are better understood as community-wide interactions between multiple players rather than as strict exchanges between individual plants and their symbionts, suggesting that mycorrhizal C-for-nutrient exchange is likely based more on unequal terms of trade than the β€œfair trade” model for symbiosis

    Recent Progress on Anomalous X-ray Pulsars

    Get PDF
    I review recent observational progress on Anomalous X-ray Pulsars, with an emphasis on timing, variability, and spectra. Highlighted results include the recent timing and flux stabilization of the notoriously unstable AXP 1E 1048.1-5937, the remarkable glitches seen in two AXPs, the newly recognized variety of AXP variability types, including outbursts, bursts, flares, and pulse profile changes, as well as recent discoveries regarding AXP spectra, including their surprising hard X-ray and far-infrared emission, as well as the pulsed radio emission seen in one source. Much has been learned about these enigmatic objects over the past few years, with the pace of discoveries remaining steady. However additional work on both observational and theoretical fronts is needed before we have a comprehensive understanding of AXPs and their place in the zoo of manifestations of young neutron stars.Comment: 10 pages, 6 figures; to appear in proceedings of the conference "Isolated Neutron Stars: From the Interior to the Surface" eds. S. Zane, R. Turolla, D. Page; Astrophysics & Space Science in pres

    Deep Chandra observations of TeV binaries II: LS 5039

    Get PDF
    We report on Chandra observations of the TeV emitting High Mass X-ray Binary LS 5039, for a total exposure of ~70ks, using the ACIS-S camera in Continuos Clocking mode to search for a possible X-ray pulsar in this system. We did not find any periodic or quasi-periodic signal in the 0.3-0.4 and 0.75-0.9 orbital phases, and in a frequency range of 0.005-175 Hz. We derived an average pulsed fraction 3sigma upper limit for the presence of a periodic signal of ~15% (depending on the frequency and the energy band), the deepest limit ever reached for this object. If the X-ray emission of LS 5039 is due (at least in part) to a rotational powered pulsar, the latter is either spinning faster than ~5.6 ms, or having a beam pointing away from our line of sight, or contributing to ~15% of the total X-ray emission of the system in the orbital phases we observed.Comment: 9 pages, 5 figures, MNRAS in pres

    Developing fencing policies in dryland ecosystems

    Get PDF
    The daily energy requirements of animals are determined by a combination of physical and physiological factors, but food availability may challenge the capacity to meet nutritional needs. Western gorillas (Gorilla gorilla) are an interesting model for investigating this topic because they are folivore-frugivores that adjust their diet and activities to seasonal variation in fruit availability. Observations of one habituated group of western gorillas in Bai-Hokou, Central African Republic (December 2004-December 2005) were used to examine seasonal variation in diet quality and nutritional intake. We tested if during the high fruit season the food consumed by western gorillas was higher in quality (higher in energy, sugar, fat but lower in fibre and antifeedants) than during the low fruit season. Food consumed during the high fruit season was higher in digestible energy, but not any other macronutrients. Second, we investigated whether the gorillas increased their daily intake of carbohydrates, metabolizable energy (KCal/g OM), or other nutrients during the high fruit season. Intake of dry matter, fibers, fat, protein and the majority of minerals and phenols decreased with increased frugivory and there was some indication of seasonal variation in intake of energy (KCal/g OM), tannins, protein/fiber ratio, and iron. Intake of non-structural carbohydrates and sugars was not influenced by fruit availability. Gorillas are probably able to extract large quantities of energy via fermentation since they rely on proteinaceous leaves during the low fruit season. Macronutrients and micronutrients, but not digestible energy, may be limited for them during times of low fruit availability because they are hind-gut fermenters. We discuss the advantages of seasonal frugivores having large dietary breath and flexibility, significant characteristics to consider in the conservation strategies of endangered species

    Unintended Consequences of Conservation Actions: Managing Disease in Complex Ecosystems

    Get PDF
    Infectious diseases are increasingly recognised to be a major threat to biodiversity. Disease management tools such as control of animal movements and vaccination can be used to mitigate the impact and spread of diseases in targeted species. They can reduce the risk of epidemics and in turn the risks of population decline and extinction. However, all species are embedded in communities and interactions between species can be complex, hence increasing the chance of survival of one species can have repercussions on the whole community structure. In this study, we use an example from the Serengeti ecosystem in Tanzania to explore how a vaccination campaign against Canine Distemper Virus (CDV) targeted at conserving the African lion (Panthera leo), could affect the viability of a coexisting threatened species, the cheetah (Acinonyx jubatus). Assuming that CDV plays a role in lion regulation, our results suggest that a vaccination programme, if successful, risks destabilising the simple two-species system considered, as simulations show that vaccination interventions could almost double the probability of extinction of an isolated cheetah population over the next 60 years. This work uses a simple example to illustrate how predictive modelling can be a useful tool in examining the consequence of vaccination interventions on non-target species. It also highlights the importance of carefully considering linkages between human-intervention, species viability and community structure when planning species-based conservation actions

    Mathematical model of a telomerase transcriptional regulatory network developed by cell-based screening: analysis of inhibitor effects and telomerase expression mechanisms

    Get PDF
    Cancer cells depend on transcription of telomerase reverse transcriptase (TERT). Many transcription factors affect TERT, though regulation occurs in context of a broader network. Network effects on telomerase regulation have not been investigated, though deeper understanding of TERT transcription requires a systems view. However, control over individual interactions in complex networks is not easily achievable. Mathematical modelling provides an attractive approach for analysis of complex systems and some models may prove useful in systems pharmacology approaches to drug discovery. In this report, we used transfection screening to test interactions among 14 TERT regulatory transcription factors and their respective promoters in ovarian cancer cells. The results were used to generate a network model of TERT transcription and to implement a dynamic Boolean model whose steady states were analysed. Modelled effects of signal transduction inhibitors successfully predicted TERT repression by Src-family inhibitor SU6656 and lack of repression by ERK inhibitor FR180204, results confirmed by RT-QPCR analysis of endogenous TERT expression in treated cells. Modelled effects of GSK3 inhibitor 6-bromoindirubin-3β€²-oxime (BIO) predicted unstable TERT repression dependent on noise and expression of JUN, corresponding with observations from a previous study. MYC expression is critical in TERT activation in the model, consistent with its well known function in endogenous TERT regulation. Loss of MYC caused complete TERT suppression in our model, substantially rescued only by co-suppression of AR. Interestingly expression was easily rescued under modelled Ets-factor gain of function, as occurs in TERT promoter mutation. RNAi targeting AR, JUN, MXD1, SP3, or TP53, showed that AR suppression does rescue endogenous TERT expression following MYC knockdown in these cells and SP3 or TP53 siRNA also cause partial recovery. The model therefore successfully predicted several aspects of TERT regulation including previously unknown mechanisms. An extrapolation suggests that a dominant stimulatory system may programme TERT for transcriptional stability
    • …
    corecore