647 research outputs found
Morphology and Nanomechanics of Sensory Neurons Growth Cones following Peripheral Nerve Injury
A prior peripheral nerve injury in vivo, promotes a rapid elongated mode of sensory neurons neurite regrowth in vitro. This in vitro model of conditioned axotomy allows analysis of the cellular and molecular mechanisms leading to an improved neurite re-growth. Our differential interference contrast microscopy and immunocytochemistry results show that conditioned axotomy, induced by sciatic nerve injury, did not increase somatic size of adult lumbar sensory neurons from mice dorsal root ganglia sensory neurons but promoted the appearance of larger neurites and growth cones. Using atomic force microscopy on live neurons, we investigated whether membrane mechanical properties of growth cones of axotomized neurons were modified following sciatic nerve injury. Our data revealed that neurons having a regenerative growth were characterized by softer growth cones, compared to control neurons. The increase of the growth cone membrane elasticity suggests a modification in the ratio and the inner framework of the main structural proteins
From DNA sequence to application: possibilities and complications
The development of sophisticated genetic tools during the past 15 years have facilitated a tremendous increase of fundamental and application-oriented knowledge of lactic acid bacteria (LAB) and their bacteriophages. This knowledge relates both to the assignments of open reading frames (ORF’s) and the function of non-coding DNA sequences. Comparison of the complete nucleotide sequences of several LAB bacteriophages has revealed that their chromosomes have a fixed, modular structure, each module having a set of genes involved in a specific phase of the bacteriophage life cycle. LAB bacteriophage genes and DNA sequences have been used for the construction of temperature-inducible gene expression systems, gene-integration systems, and bacteriophage defence systems.
The function of several LAB open reading frames and transcriptional units have been identified and characterized in detail. Many of these could find practical applications, such as induced lysis of LAB to enhance cheese ripening and re-routing of carbon fluxes for the production of a specific amino acid enantiomer. More knowledge has also become available concerning the function and structure of non-coding DNA positioned at or in the vicinity of promoters. In several cases the mRNA produced from this DNA contains a transcriptional terminator-antiterminator pair, in which the antiterminator can be stabilized either by uncharged tRNA or by interaction with a regulatory protein, thus preventing formation of the terminator so that mRNA elongation can proceed. Evidence has accumulated showing that also in LAB carbon catabolite repression in LAB is mediated by specific DNA elements in the vicinity of promoters governing the transcription of catabolic operons.
Although some biological barriers have yet to be solved, the vast body of scientific information presently available allows the construction of tailor-made genetically modified LAB. Today, it appears that societal constraints rather than biological hurdles impede the use of genetically modified LAB.
Predictors of the development of myocarditis or acute renal failure in patients with leptospirosis: An observational study
<p>Abstract</p> <p>Background</p> <p>Leptospirosis has a varied clinical presentation with complications like myocarditis and acute renal failure. There are many predictors of severity and mortality including clinical and laboratory parameters. Early detection and treatment can reduce complications. Therefore recognizing the early predictors of the complications of leptospirosis is important in patient management. This study was aimed at determining the clinical and laboratory predictors of myocarditis or acute renal failure.</p> <p>Methods</p> <p>This was a prospective descriptive study carried out in the Teaching Hospital, Kandy, from 1st July 2007 to 31st July 2008. Patients with clinical features compatible with leptospirosis case definition were confirmed using the Microscopic Agglutination Test (MAT). Clinical features and laboratory measures done on admission were recorded. Patients were observed for the development of acute renal failure or myocarditis. Chi-square statistics, Fisher's exact test and Mann-Whitney <it>U </it>test were used to compare patients with and without complications. A logistic regression model was used to select final predictor variables.</p> <p>Results</p> <p>Sixty two confirmed leptospirosis patients were included in the study. Seven patients (11.3%) developed acute renal failure and five (8.1%) developed myocarditis while three (4.8%) had both acute renal failure and myocarditis. Conjunctival suffusion - 40 (64.5%), muscle tenderness - 28 (45.1%), oliguria - 20 (32.2%), jaundice - 12 (19.3%), hepatomegaly - 10 (16.1%), arrhythmias (irregular radial pulse) - 8 (12.9%), chest pain - 6 (9.7%), bleeding - 5 (8.1%), and shortness of breath (SOB) 4 (6.4%) were the common clinical features present among the patients. Out of these, only oliguria {odds ratio (OR) = 4.14 and 95% confidence interval (CI) 1.003-17.261}, jaundice (OR = 5.13 and 95% CI 1.149-28.003), and arrhythmias (OR = 5.774 and 95% CI 1.001-34.692), were predictors of myocarditis or acute renal failure and none of the laboratory measures could predict the two complications.</p> <p>Conclusions</p> <p>This study shows that out of clinical and laboratory variables, only oliguria, jaundice and arrhythmia are strong predictors of development of acute renal failure or myocarditis in patients with leptospirosis presented to Teaching Hospital of Kandy, Sri Lanka.</p
Dengue Infection and Miscarriage: A Prospective Case Control Study
Dengue is the most prevalent mosquito-borne infection with two billion of the world's population at risk and 100 million infections every year. Dengue is increasingly important due to expansion in the vector's range, increased population density in endemic areas from urbanisation, social and environment change. Miscarriage and stillbirth is associated with dengue when the illness is severe. Dengue can also be transmitted directly from the ill mother through the placenta to the fetus in later pregnancy with variable effect to the fetus. However, dengue infection is asymptomatic to mild only in almost 90% of cases and up to 20% of pregnancies miscarry. Little is known if dengue infection in early pregnancy particularly when it is asymptomatic or mild has an effect on miscarriage. Our study explored the relationship between dengue and miscarriage by looking at recent infection rates amongst women who had miscarried and those whose pregnancies were healthy in an area were dengue is common. Our study finds a positive association between recent dengue infection and miscarriage. This finding may be important in explaining some of the miscarriages in areas where dengue is common. It is also relevant to newly pregnant women from non-dengue travelling to dengue endemic areas
The Political Economy of Non-Traditional Security: Explaining the Governance of Avian Influenza in Indonesia
Given the common association of non-traditional security (NTS) problems with globalisation, surprisingly little attention has been paid to how the political economy context of given NTS issues shape how they are securitised and managed in practice. We argue that security and its governance are always highly contested because different modes of security governance invariably privilege particular interests and normative agendas in state and society, which relate directly to the political economy. Drawing on critical political geography, we argue that, because NTS issues are perceived as at least potentially transnational, their securitisation often involves strategic attempts by actors and coalitions to ‘rescale’ their governance beyond the national political and institutional arenas, into new, expert-dominated modes of governance. Such efforts are often resisted by other coalitions, for which this rescaling is deleterious. As evidenced by a case study of avian influenza in Indonesia, particular governance outcomes depend upon the nature of the coalitions assembled for and against rescaling in specific situations, while these coalitions’ make-up and relative strength is shaped by the political economy of the industries that rescaling would affect, viewed against the broader backdrop of state-society relations
Diagnosis of invasive candidiasis in the ICU
Invasive candidiasis ranges from 5 to 10 cases per 1,000 ICU admissions and represents 5% to 10% of all ICU-acquired infections, with an overall mortality comparable to that of severe sepsis/septic shock. A large majority of them are due to Candida albicans, but the proportion of strains with decreased sensitivity or resistance to fluconazole is increasingly reported. A high proportion of ICU patients become colonized, but only 5% to 30% of them develop an invasive infection. Progressive colonization and major abdominal surgery are common risk factors, but invasive candidiasis is difficult to predict and early diagnosis remains a major challenge. Indeed, blood cultures are positive in a minority of cases and often late in the course of infection. New nonculture-based laboratory techniques may contribute to early diagnosis and management of invasive candidiasis. Both serologic (mannan, antimannan, and betaglucan) and molecular (Candida-specific PCR in blood and serum) have been applied as serial screening procedures in high-risk patients. However, although reasonably sensitive and specific, these techniques are largely investigational and their clinical usefulness remains to be established. Identification of patients susceptible to benefit from empirical antifungal treatment remains challenging, but it is mandatory to avoid antifungal overuse in critically ill patients. Growing evidence suggests that monitoring the dynamic of Candida colonization in surgical patients and prediction rules based on combined risk factors may be used to identify ICU patients at high risk of invasive candidiasis susceptible to benefit from prophylaxis or preemptive antifungal treatment
The genomes of two key bumblebee species with primitive eusocial organization
Background: The shift from solitary to social behavior is one of the major evolutionary transitions. Primitively eusocial bumblebees are uniquely placed to illuminate the evolution of highly eusocial insect societies. Bumblebees are also invaluable natural and agricultural pollinators, and there is widespread concern over recent population declines in some species. High-quality genomic data will inform key aspects of bumblebee biology, including susceptibility to implicated population viability threats. Results: We report the high quality draft genome sequences of Bombus terrestris and Bombus impatiens, two ecologically dominant bumblebees and widely utilized study species. Comparing these new genomes to those of the highly eusocial honeybee Apis mellifera and other Hymenoptera, we identify deeply conserved similarities, as well as novelties key to the biology of these organisms. Some honeybee genome features thought to underpin advanced eusociality are also present in bumblebees, indicating an earlier evolution in the bee lineage. Xenobiotic detoxification and immune genes are similarly depauperate in bumblebees and honeybees, and multiple categories of genes linked to social organization, including development and behavior, show high conservation. Key differences identified include a bias in bumblebee chemoreception towards gustation from olfaction, and striking differences in microRNAs, potentially responsible for gene regulation underlying social and other traits. Conclusions: These two bumblebee genomes provide a foundation for post-genomic research on these key pollinators and insect societies. Overall, gene repertoires suggest that the route to advanced eusociality in bees was mediated by many small changes in many genes and processes, and not by notable expansion or depauperation
- …