123 research outputs found

    Fostering children's relationship with nature : exploring the potential of Forest school

    Get PDF
    Forest School offers children opportunities to explore the natural environment regularly over an extended period of time. It is based on six key principles, one of which states Forest School fosters a relationship with nature and develops long-term pro-environment attitudes through regular personal experiences in nature. We consider to what extent this aim is achieved by exploring the published evidence. We identify that a relationship with nature could be demonstrated under six themes although there is little robust evidence to support this. We suggest further research is carried out directly linked to this aim of Forest School

    Assessing sampling of the fossil record in a geographically and stratigraphically constrained dataset: the Chalk Group of Hampshire, southern UK

    Get PDF
    Taphonomic, geological and sampling processes have been cited as biasing richness measurements in the fossil record, and sampling proxies have been widely used to assess this. However, the link between sampling and taxonomic richness is poorly understood, and there has been much debate over the equivalence and relevance of proxies. We approach this question by combining both historical and novel data: a historical fossil occurrence dataset with uniquely high spatial resolution from the Upper Cretaceous Chalk Group of Hampshire, UK, and a newly-compiled 3D geological model which maps subsurface extent. The geological model provides rock volumes, and these are compared with exposure and outcrop area, sampling proxies that have often been conflated in previous studies. The extent to which exposure area (true rock availability) has changed over research time is also tested. We find a trend of low Cenomanian to high Turonian to Campanian raw richness, which correlates with, and is possibly driven by the number of specimens found. After sampling standardisation, an unexpected mid-Turonian peak diversity is recovered, and sampling-standardised genus richness is best predicted by rock volume, suggesting a species-area (or, a “genus-area”) effect. Additionally, total exposure area has changed over time, but relative exposure remains the same

    Decoupled taxonomic and ecological recoveries from the Permo-Triassic extinction

    Get PDF
    The Permian-Triassic mass extinction was the worst crisis faced by life; it killed >90% of marine species in less than 0.1 million years (Ma). However, knowledge of its macroecological impact over prolonged time scales is limited. We show that marine ecosystems dominated by non-motile animals shifted to ones dominated by nektonic groups after the extinction. In Triassic oceans, animals at high trophic levels recovered faster than those at lower levels. The top-down rebuilding of marine ecosystems was still underway in the latest Triassic, ~50 Ma after the extinction, and contrasts with the ~5-Ma recovery required for taxonomic diversity. The decoupling between taxonomic and ecological recoveries suggests that a process of vacant niche filling before reaching the maximum environmental carrying capacity is independent of ecosystem structure building

    Assessing sampling of the fossil record in a geographically and stratigraphically constrained dataset: the Chalk Group of Hampshire, southern UK

    Get PDF
    Taphonomic, geological and sampling processes have been cited as biasing richness measurements in the fossil record, and sampling proxies have been widely used to assess this. However, the link between sampling and taxonomic richness is poorly understood, and there has been much debate on the equivalence and relevance of proxies. We approach this question by combining both historical and novel data: a historical fossil occurrence dataset with uniquely high spatial resolution from the Upper Cretaceous Chalk Group of Hampshire, UK, and a newly compiled 3D geological model that maps subsurface extent. The geological model provides rock volumes, and these are compared with exposure and outcrop area, sampling proxies that have often been conflated in previous studies. The extent to which exposure area (true rock availability) has changed over research time is also tested. We find a trend of low Cenomanian to high Turonian to Campanian raw richness, which correlates with, and is possibly driven by, the number of specimens found. After sampling standardization, an unexpected mid-Turonian peak diversity is recovered, and sampling-standardized genus richness is best predicted by rock volume, suggesting a species–area (or ‘genus–area’) effect. Additionally, total exposure area has changed over time, but relative exposure remains the same. Supplementary materials: A locality list, abundance matrix and all correlation and modelling results are available at https://doi.org/10.6084/m9.figshare.c.3592208

    Assessing sampling of the fossil record in a geographically and stratigraphically constrained dataset: the Chalk Group of Hampshire, southern UK

    Get PDF
    Taphonomic, geological and sampling processes have been cited as biasing richness measurements in the fossil record, and sampling proxies have been widely used to assess this. However, the link between sampling and taxonomic richness is poorly understood, and there has been much debate on the equivalence and relevance of proxies. We approach this question by combining both historical and novel data: a historical fossil occurrence dataset with uniquely high spatial resolution from the Upper Cretaceous Chalk Group of Hampshire, UK, and a newly compiled 3D geological model that maps subsurface extent. The geological model provides rock volumes, and these are compared with exposure and outcrop area, sampling proxies that have often been conflated in previous studies. The extent to which exposure area (true rock availability) has changed over research time is also tested. We find a trend of low Cenomanian to high Turonian to Campanian raw richness, which correlates with, and is possibly driven by, the number of specimens found. After sampling standardization, an unexpected mid-Turonian peak diversity is recovered, and sampling-standardized genus richness is best predicted by rock volume, suggesting a species–area (or ‘genus–area’) effect. Additionally, total exposure area has changed over time, but relative exposure remains the same. Supplementary materials: A locality list, abundance matrix and all correlation and modelling results are available at https://doi.org/10.6084/m9.figshare.c.3592208

    Anthropogenic-scale CO2 degassing from the Central Atlantic Magmatic Province as a driver of the end-Triassic mass extinction

    Get PDF
    The climatic and environmental impact of exclusively volcanic CO2 emissions is assessed during the main effusive phase of the Central Atlantic Magmatic Province (CAMP), which is synchronous with the end-Triassic mass extinction. CAMP volcanism occurred in brief and intense eruptive pulses each producing extensive basaltic lava flows. Here, CAMP volcanic CO2 injections into the surface system are modelled using a biogeochemical box model for the carbon cycle. Our modelling shows that, even if positive feedback phenomena may be invoked to explain the carbon isotope excursions preserved in end-Triassic sedimentary records, intense and pulsed volcanic activity alone may have caused repeated temperature increases and pH drops, up to 5 °C and about 0.2 log units respectively. Hence, rapid and massive volcanic CO2 emissions from CAMP, on a similar scale to current anthropogenic emissions, severely impacted on climate and environment at a global scale, leading to catastrophic biotic consequences

    Triton, a new species-level database of Cenozoic planktonic foraminiferal occurrences

    Get PDF
    Planktonic foraminifera are a major constituent of ocean floor sediments, and thus have one of the most complete fossil records of any organism. Expeditions to sample these sediments have produced large amounts of spatiotemporal occurrence records throughout the Cenozoic, but no single source exists to house these data. We have therefore created a comprehensive dataset that integrates numerous sources for spatiotemporal records of planktonic foraminifera. This new dataset, Triton, contains >500,000 records and is four times larger than the previous largest database, Neptune. To ensure comparability among data sources, we have cleaned all records using a unified set of taxonomic concepts and have converted age data to the GTS 2020 timescale. Where ages were not absolute (e.g. based on biostratigraphic or magnetostratigraphic zones), we have used generalised additive models to produce continuous estimates. This dataset is an excellent resource for macroecological and macroevolutionary studies, particularly for investigating how species responded to past climatic changes

    Giant planet migration during FU Orionis outbursts: 1D disc models

    Get PDF
    I present the results of semi-analytic calculations of migrating planets in young, outbursting circumstellar discs. Formed far out in the disc via gravitational fragmentation early on in its lifetime, these planets typically migrate at very slow rates and are therefore mostly expected to remain at large radii (such as is the case in HR 8799). I show that changes in the disc structure during FUor outbursts affect the planet’s ability to maintain a gap and can allow a massive giant planet’s semimajor axis to reduce by almost 5 per cent in a single outburst under the most optimistic conditions. Given that a single disc will likely undergo ∼ 10 such outbursts this process can significantly alter the expected radial distribution for GI-formed planets

    Climate change research and action must look beyond 2100

    Get PDF
    Anthropogenic activity is changing Earth's climate and ecosystems in ways that are potentially dangerous and disruptive to humans. Greenhouse gas concentrations in the atmosphere continue to rise, ensuring that these changes will be felt for centuries beyond 2100, the current benchmark for projection. Estimating the effects of past, current, and potential future emissions to only 2100 is therefore short-sighted. Critical problems for food production and climate-forced human migration are projected to arise well before 2100, raising questions regarding the habitability of some regions of the Earth after the turn of the century. To highlight the need for more distant horizon scanning, we model climate change to 2500 under a suite of emission scenarios and quantify associated projections of crop viability and heat stress. Together, our projections show global climate impacts increase significantly after 2100 without rapid mitigation. As a result, we argue that projections of climate and its effects on human well-being and associated governance and policy must be framed beyond 2100

    Egr-1 Regulates Autophagy in Cigarette Smoke-Induced Chronic Obstructive Pulmonary Disease

    Get PDF
    Background: Chronic obstructive pulmonary disease (COPD) is a progressive lung disease characterized by abnormal cellular responses to cigarette smoke, resulting in tissue destruction and airflow limitation. Autophagy is a degradative process involving lysosomal turnover of cellular components, though its role in human diseases remains unclear. Methodology and Principal Findings: Increased autophagy was observed in lung tissue from COPD patients, as indicated by electron microscopic analysis, as well as by increased activation of autophagic proteins (microtubule-associated protein-1 light chain-3b, LC3B, Atg4, Atg5/12, Atg.7). Cigarette smoke extract (CSE) is an established model for studying the effects of cigarette smoke exposure in vitro. In human pulmonary epithelial cells, exposure to CSE or histone deacetylase (HDAC) inhibitor rapidly induced autophagy. CSE decreased HDAC activity, resulting in increased binding of early growth response-1 (Egr-1) and E2F factors to the autophagy gene LC3B promoter, and increased LC3B expression. Knockdown of E2F-4 or Egr-1 inhibited CSE-induced LC3B expression. Knockdown of Egr-1 also inhibited the expression of Atg4B, a critical factor for LC3B conversion. Inhibition of autophagy by LC3B-knockdown protected epithelial cells from CSE-induced apoptosis. Egr-1-1- mice, which displayed basal airspace enlargement, resisted cigarette-smoke induced autophagy, apoptosis, and emphysema. Conclusions: We demonstrate a critical role for Egr-1 in promoting autophagy and apoptosis in response to cigarette smoke exposure in vitro and in vivo. The induction of autophagy at early stages of COPD progression suggests novel therapeutic targets for the treatment of cigarette smoke induced lung injury. © 2008 Chen et al
    corecore