579 research outputs found

    Mapping the optical properties of slab-type two-dimensional photonic crystal waveguides

    Full text link
    We report on systematic experimental mapping of the transmission properties of two-dimensional silicon-on-insulator photonic crystal waveguides for a broad range of hole radii, slab thicknesses and waveguide lengths for both TE and TM polarizations. Detailed analysis of numerous spectral features allows a direct comparison of experimental data with 3D plane wave and finite-difference time-domain calculations. We find, counter-intuitively, that the bandwidth for low-loss propagation completely vanishes for structural parameters where the photonic band gap is maximized. Our results demonstrate that, in order to maximize the bandwidth of low-loss waveguiding, the hole radius must be significantly reduced. While the photonic band gap considerably narrows, the bandwidth of low-loss propagation in PhC waveguides is increased up to 125nm with losses as low as 8±\pm2dB/cm.Comment: 10 pages, 8 figure

    Optische Charakterisierung von Hybridsystemen aus Gold Nanopartikeln und Farbstoffmolekülen

    Get PDF
    Im Rahmen dieser Arbeit wurde die Fluoreszenz von Hybridsystemen aus Gold Nanopartikeln und Farbstoffen zeitlich und spektral aufgelöst untersucht. Neben einer ultraschnellen Fluoreszenzemission, welche direkt von den Gold Nanopartikeln stammt, wurde insbesondere die dipolinduzierte Auslöschung der Fluoreszenz von Farbstoffen, welche auf der Partikeloberfläche chemisch gebunden sind, als Funktion der Partikelgröße und des Molekülabstandes untersucht. Hierzu wurden für drei verschiedene Farbstoffe Serien von Hybridsystemen hergestellt, in denen stets nur ein Parameter, nämlich die Nanopartikelgröße oder der Abstand des Farbstoffes, systematisch über eine Größenordnung geändert wird. Die experimentell bestimmten Transienten der Hybridsysteme zeigen, dass bereits die kleinsten Nanopartikel mit einem Radius von nur 1 nm die Quanteneffizienz bei einem Farbstoffabstand von 1 nm um 99,8 % verringern können. Des Weiteren wird nachgewiesen, dass die Quanteneffizienz der Farbstoffe sogar bis zu Abständen von 16 nm noch um über 50 % gesenkt ist. Eine derart hohe Auslöschungseffizienz wird in Energie-Transfer Systemen, welche nur aus organischen Farbstoffen bestehen, nicht erreicht. Gold Nanopartikel sind damit in der Tat viel versprechende Energieakzeptoren für eine zukünftige Generation von Nanosensoren. In dieser Arbeit kann zum ersten Mal die Ursache der effizienten Fluoreszenzauslöschung durch Gold Nanopartikel anhand der experimentellen Bestimmung der strahlenden und nichtstrahlenden Zerfallskanäle des Hybridsystems nachgewiesen werden. Sie resultiert aus einem strahlungslosen Energie-Transfer zum Partikel und einer gleichzeitigen Absenkung der strahlenden Rate des Farbstoffs. Die experimentell ermittelten strahlenden und nichtstrahlenden Raten der Hybridsysteme werden mit Modellrechnungen nach Gersten und Nitzan verglichen. Es zeigt sich, dass bei konstantem Molekülabstand, aber unterschiedlichen Partikelgrößen, eine qualitative Übereinstimmung der Messergebnisse mit den Modellvorhersagen vorliegt, die absoluten Energie-Transfer Raten sich jedoch um zwei Größenordnungen unterscheiden. Die Abweichung von den experimentellen Ergebnissen wird auf das Vorhandensein nichtlokaler Effekte zurückgeführt, welche im Modell nicht berücksichtigt, aber von aufwendigeren Modellierungen vorhergesagt werden. Bereits ohne oberflächengebundene Farbstoffe zeigen die experimentellen Ergebnisse eine Photonenemission aus Gold Nanopartikeln. Die Emission ist in ihrer spektralen Form der Plasmonresonanz sehr ähnlich und weist ebenfalls eine mit zunehmender Partikelgröße charakteristische Rotverschiebung auf. Gold Nanopartikel mit Radien von 1 – 30 nm zeigen, dass die Quanteneffizienz der Emission unabhängig von der Partikelgröße ist. Die quantitative sehr gute Übereinstimmung der Messergebnisse mit Modellrechnungen nach Shabhazyan et al. erlaubt zum ersten Mal eine mikroskopische Erklärung der verantwortlichen physikalischen Prozesse für die beobachtete Fluoreszenz. Sie wird als der strahlende Zerfall eines Partikelplasmons identifiziert: In den Gold Nanopartikeln rekombinieren optisch generierte d-Bandlöcher strahlungslos mit sp-Bandelektronen und emittieren dabei ein Partikelplasmon. Die Rate der Plasmonemission sinkt mit dem Volumen des Nanopartikels. Die Wahrscheinlichkeit dieser generierten Plasmonoszillation, strahlend via Photonenemission zu zerfallen, steigt wiederum mit dem Partikelvolumen. Die Quanteneffizienz des gesamten Prozesses ist daher unabhängig von der Partikelgröße. Sie ist um vier Größenordnungen über derjenigen einer direkten Aussendung eines Photons durch Rekombination von d-Bandlöchern mit sp-Bandelektronen an Goldfilmen. Der Grund liegt in der weitaus stärkeren Polarisierbarkeit und entsprechend höheren strahlenden Rate des Partikelplasmons gegenüber einzelnen Elektron-Loch Paaren

    Transmission of Slow Light through Photonic Crystal Waveguide Bends

    Full text link
    The spectral dependence of a bending loss of cascaded 60-degree bends in photonic crystal (PhC) waveguides is explored in a slab-type silicon-on-insulator system. Ultra-low bending loss of (0.05+/-0.03)dB/bend is measured at wavelengths corresponding to the nearly dispersionless transmission regime. In contrast, the PhC bend is found to become completely opaque for wavelengths range corresponding to the slow light regime. A general strategy is presented and experimentally verified to optimize the bend design for improved slow light transmission.Comment: 4 pages, 3 figures; submitted to Optics Letter

    On the use of Purcell factors for plasmon antennas

    Full text link
    The Purcell factor is the standard figure of merit for spontaneous emission enhancement in microcavities, that has also been proposed to describe emission enhancements for plasmonic resonances. A comparison is made of quality factor, mode volume and Purcell factor for single and coupled plasmon spheres to exact calculations of emission rates. The paper explains why the Purcell factor is not appropriate for plasmon antennas.Comment: 3 pages, 2 figure

    Spectral tunability of a plasmonic antenna with a dielectric nanocrystal

    Full text link
    We show that the positioning of a nanometer length scale dielectric object, such as a diamond nanocrystal, in the vicinity of a gold bowtie nanoantenna can be used to tune the plasmonic mode spectrum on the order of a linewidth. We further show that the intrinsic luminescence of gold enhanced in the presence of nanometer-scale roughness couples efficiently to the plasmon mode and carries the same polarization anisotropy. Our findings have direct implications for cavity quantum electrodynamics related applications of hybrid antenna-emitter complexes.Comment: 10 pages, 3 figure

    A Silicon-Based Monolithic Optical Frequency Comb Source

    Full text link
    Recently developed techniques for generating precisely equidistant optical frequencies over broad wavelength ranges are revolutionizing precision physical measurement [1-3]. These frequency "combs" are produced primarily using relatively large, ultrafast laser systems. However, recent research has shown that broad-bandwidth combs can be produced using highly-nonlinear interactions in microresonator optical parametric oscillators [4-11]. Such devices not only offer the potential for developing extremely compact optical atomic clocks but are also promising for astronomical spectroscopy [12-14], ultrashort pulse shaping [15], and ultrahigh-speed communications systems. Here we demonstrate the generation of broad-bandwidth optical frequency combs from a CMOS-compatible integrated microresonator [16,17], which is a fully-monolithic and sealed chip-scale device making it insensitive to the surrounding environment. We characterize the comb quality using a novel self-referencing method and verify that the comb line frequencies are equidistant over a bandwidth that is nearly an order of magnitude larger than previous measurements. In addition, we investigate the ultrafast temporal properties of the comb and demonstrate its potential to serve as a chip-scale source of ultrafast (sub-ps) pulses

    Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides

    Full text link
    All-optical signal processing is envisioned as an approach to dramatically decrease power consumption and speed up performance of next-generation optical telecommunications networks. Nonlinear optical effects, such as four-wave mixing (FWM) and parametric gain, have long been explored to realize all-optical functions in glass fibers. An alternative approach is to employ nanoscale engineering of silicon waveguides to enhance the optical nonlinearities by up to five orders of magnitude, enabling integrated chip-scale all-optical signal processing. Previously, strong two-photon absorption (TPA) of the telecom-band pump has been a fundamental and unavoidable obstacle, limiting parametric gain to values on the order of a few dB. Here we demonstrate a silicon nanophotonic optical parametric amplifier exhibiting gain as large as 25.4 dB, by operating the pump in the mid-IR near one-half the band-gap energy (E~0.55eV, lambda~2200nm), at which parasitic TPA-related absorption vanishes. This gain is high enough to compensate all insertion losses, resulting in 13 dB net off-chip amplification. Furthermore, dispersion engineering dramatically increases the gain bandwidth to more than 220 nm, all realized using an ultra-compact 4 mm silicon chip. Beyond its significant relevance to all-optical signal processing, the broadband parametric gain also facilitates the simultaneous generation of multiple on-chip mid-IR sources through cascaded FWM, covering a 500 nm spectral range. Together, these results provide a foundation for the construction of silicon-based room-temperature mid-IR light sources including tunable chip-scale parametric oscillators, optical frequency combs, and supercontinuum generators

    Spectroscopic properties of a two-level atom interacting with a complex spherical nanoshell

    Full text link
    Frequency shifts, radiative decay rates, the Ohmic loss contribution to the nonradiative decay rates, fluorescence yields, and photobleaching of a two-level atom radiating anywhere inside or outside a complex spherical nanoshell, i.e. a stratified sphere consisting of alternating silica and gold concentric spherical shells, are studied. The changes in the spectroscopic properties of an atom interacting with complex nanoshells are significantly enhanced, often more than two orders of magnitude, compared to the same atom interacting with a homogeneous dielectric sphere. The detected fluorescence intensity can be enhanced by 5 or more orders of magnitude. The changes strongly depend on the nanoshell parameters and the atom position. When an atom approaches a metal shell, decay rates are strongly enhanced yet fluorescence exhibits a well-known quenching. Rather contra-intuitively, the Ohmic loss contribution to the nonradiative decay rates for an atomic dipole within the silica core of larger nanoshells may be decreasing when the silica core - inner gold shell interface is approached. The quasistatic result that the radial frequency shift in a close proximity of a spherical shell interface is approximately twice as large as the tangential frequency shift appears to apply also for complex nanoshells. Significantly modified spectroscopic properties (see computer program (pending publication of this manuscript) freely available at http://www.wave-scattering.com) can be observed in a broad band comprising all (nonresonant) optical and near-infrared wavelengths.Comment: 20 pages plus 63 references and 11 figures, plain LaTex, for more information see http://www.wave-scattering.com (color of D sphere in figures 2-6 altered, minor typos corrected.
    corecore