505 research outputs found

    Long-term nutrient enrichment, mowing, and ditch drainage interact in the dynamics of a wetland plant community.

    Get PDF
    This work was supported by NSF grants to Carol Goodwillie (DUE 126824 and DEB 1049291) and Ariane Peralta (DEB 1845845). This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.Fertilization studies have elucidated basic principles of the role of nutrients in shaping plant communities and demonstrated the potential effects of anthropogenic nutrient deposition. Yet less is known about how these effects are mediated by interacting ecological factors, particularly in nutrient-poor wetland habitats. In a long-term experiment in a coastal plain wetland, we examined how fertilization and mowing affected the diversity and composition of a plant community as it reestablished after major disturbance. A drainage ditch in proximity to the experimental plots allowed us also to consider the influence of hydrology and its interactions with nutrient addition. Fertilization decreased species richness, with wetland specialist species showing especially great losses, and several lines of evidence suggest that the effect was mediated by competition for light. Altered hydrology via ditch drainage had effects that were similar to fertilization, with more rapidly draining plots showing lower diversity and decreased abundance of wetland species. Plant community diversity and dynamics were influenced by complex interactions between fertilization, disturbance, and hydrology. The negative effect of fertilization on species richness was initially mitigated by mowing, but in later years was more evident in mowed than in unmowed plots. In the absence of disturbance, nutrient addition increased the rate of transition to primarily woody communities. Similarly, drained plots experienced increased rates of succession compared to wetter plots. Our results suggest that these interactions need to be considered to understand the potential effects of anthropogenic nutrient addition and hydrologic alterations to wetland ecosystems.ECU Open Access Publishing Support Fun

    Are Amphipod invaders a threat to the regional biodiversity? Conservation prospects for the Loire River

    Get PDF
    The impact of invasions on local biodiversity is well established, but their impact on regional biodiversity has so far been only sketchily documented. To address this question, we studied the impact at various observation scales (ranging from the microhabitat to the whole catchment) of successive arrivals of non-native amphipods on the amphipod assemblage of the Loire River basin in France. Amphipod assemblages were studied at 225 sites covering the whole Loire catchment. Non-native species were dominant at all sites in the main channel of the Loire River, but native species were still present at most of the sites. We found that the invaders have failed to colonize most of tributaries of the Loire River. At the regional scale, we found that since the invaders first arrived 25 years ago, the global amphipod diversity has increased by 33% (from 8 to 12 species) due to the arrival of non-native species. We discuss the possibility that the lack of any loss of biodiversity may be directly linked to the presence of refuges at the microhabitat scale in the Loire channel and in the tributaries, which invasive species have been unable to colonize. The restoration of river quality could increase the number of refuges for native species, thus reducing the impact of invader

    Atomic force microscopy-based mechanobiology

    Get PDF
    Mechanobiology emerges at the crossroads of medicine, biology, biophysics and engineering and describes how the responses of proteins, cells, tissues and organs to mechanical cues contribute to development, differentiation, physiology and disease. The grand challenge in mechanobiology is to quantify how biological systems sense, transduce, respond and apply mechanical signals. Over the past three decades, atomic force microscopy (AFM) has emerged as a key platform enabling the simultaneous morphological and mechanical characterization of living biological systems. In this Review, we survey the basic principles, advantages and limitations of the most common AFM modalities used to map the dynamic mechanical properties of complex biological samples to their morphology. We discuss how mechanical properties can be directly linked to function, which has remained a poorly addressed issue. We outline the potential of combining AFM with complementary techniques, including optical microscopy and spectroscopy of mechanosensitive fluorescent constructs, super-resolution microscopy, the patch clamp technique and the use of microstructured and fluidic devices to characterize the 3D distribution of mechanical responses within biological systems and to track their morphology and functional state.Peer ReviewedPostprint (published version

    Soft-bottom fishes and spatial protection: findings from a temperate marine protected area

    Get PDF
    Numerous studies over the last decades have focused on marine protected areas (MPAs) and their effects on fish communities. However, there is a knowledge gap regarding how species that live associated with soft-substrates (e.g., sand, mud) respond to spatial protection. We analyzed abundance, biomass and total lengths of the soft-bottom fishes in a multiple-use MPA in the north-eastern Atlantic, the Luiz Saldanha Marine Park (Portugal), during and after the implementation of its management plan. Data were collected by experimental fishing in areas with three different levels of protection, during the implementation period and for three years after full implementation of the MPA. Univariate analysis detected significant biomass increases between the two periods. Fish assemblages were mainly structured by depth and substrate, followed by protection level. Community composition analyses revealed significant differences between protection levels and between the two periods. Species exhibited a broad variation in their response to protection, and we hypothesize that factors such as species habitat preferences, body size and late maturity might be underlying determinants. Overall, this study provides some evidence of protection effectiveness in soft-bottom fish communities, supported by the significant increase in biomass in the protected areas and the positive trends of some species.project LIFE-BIOMARES [LIFE06 NAT/P/000192]; project BUFFER (ERA-Net BiodivERsA); company SECIL-Companhia Geral de Cal e Cimento S.A.; FCT-Foundation for Science and Technology [CCMAR/Multi/04326/2013, SFRH/BD/80771/2011]; Foundation for Science and Technology [SFRH/BD/80771/2011]; 2012 Sesimbra Scientific Priz

    Living biointerfaces based on non-pathogenic bacteria to direct cell differentiation

    Get PDF
    Genetically modified Lactococcus lactis, non-pathogenic bacteria expressing the FNIII7-10 fibronectin fragment as a protein membrane have been used to create a living biointerface between synthetic materials and mammalian cells. This FNIII7-10 fragment comprises the RGD and PHSRN sequences of fibronectin to bind α5β1 integrins and triggers signalling for cell adhesion, spreading and differentiation. We used L. lactis strain to colonize material surfaces and produce stable biofilms presenting the FNIII7-10 fragment readily available to cells. Biofilm density is easily tunable and remains stable for several days. Murine C2C12 myoblasts seeded over mature biofilms undergo bipolar alignment and form differentiated myotubes, a process triggered by the FNIII7-10 fragment. This biointerface based on living bacteria can be further modified to express any desired biochemical signal, establishing a new paradigm in biomaterial surface functionalisation for biomedical applications

    Clumping factor B promotes adherence of <i>Staphylococcus aureus </i>to corneocytes in atopic dermatitis

    Get PDF
    Staphylococcus aureus skin infection is a frequent and recurrent problem in children with the common inflammatory skin disease atopic dermatitis (AD). S. aureus colonizes the skin of the majority of children with AD and exacerbates the disease. The first step during colonization and infection is bacterial adhesion to the cornified envelope of corneocytes in the outer layer, the stratum corneum. Corneocytes from AD skin are structurally different from corneocytes from normal healthy skin. The objective of this study was to identify bacterial proteins that promote the adherence of S. aureus to AD corneocytes. S. aureus strains from clonal complexes 1 and 8 were more frequently isolated from infected AD skin than from the nasal cavity of healthy children. AD strains had increased ClfB ligand binding activity compared to normal nasal carriage strains. Adherence of single S. aureus bacteria to corneocytes from AD patients ex vivo was studied using atomic force microscopy. Bacteria expressing ClfB recognized ligands distributed over the entire corneocyte surface. The ability of an isogenic ClfB-deficient mutant to adhere to AD corneocytes compared to that of its parent clonal complex 1 clinical strain was greatly reduced. ClfB from clonal complex 1 strains had a slightly higher binding affinity for its ligand than ClfB from strains from other clonal complexes. Our results provide new insights into the first step in the establishment of S. aureus colonization in AD patients. ClfB is a key adhesion molecule for the interaction of S. aureus with AD corneocytes and represents a target for interventio

    Plant genotype influences aquatic-terrestrial ecosystem linkages through timing and composition of insect emergence

    Get PDF
    Terrestrial leaf litter provides aquatic insects with an energy source and habitat structure,and species differences in litter can influence aquatic insect emergence. Emerging insects also provide energy to riparian predators. We hypothesized that plant genetics would influence the composition and timing of emerging insect communities among individual genotypes of Populus angustifolia varying in litter traits. We also compared the composition and timing of emerging insect communities on litter from mixed genotypes of three cross types of a hybridizing cottonwood complex: P. angustifolia, P. fremontii, and their F1 hybrids. Using litter harvested from an experimental common garden, we measured emerging insect community composition, abundance, and production for 12 weeks in large litter packs affixed with emergence traps. Five major findings emerged. (1) In support of the genetic similarity hypothesis, we found that, among P. angustifolia tree genotypes, litter from more closely related genotypes had more similar litter thickness, nitrogen concentrations, decomposition rates, and emerging insect communities. (2) Genetic similarity was not correlated with other litter traits, although the litter fungal community was a strong predictor of emerging insect communities. (3) Litter decomposition rate, which was the strongest predictor of emerging aquatic insect communities, was influenced by litter thickness, litter N, and the litter fungal community. (4) In contrast to strong community composition differences among P. angustifolia genotypes, differences in community composition between P. fremontii and P. angustifolia were only marginally significant, and communities on F1 hybrids were indistinguishable from P. angustifolia despite genetic and litter trait differences. (5) Mixed litter packs muted the genetic effects observed in litter packs con- sisting of single genotypes. These results demonstrate that the genetic structure of riparian forests can affect the composition and timing of aquatic insect emergence. Because many riparian trees are clonal, including P. angustifolia, large clone size is likely to result in patches of genetically structured leaf litter that may influence the timing and composition of insect emergence within watersheds. Riparian restoration efforts incorporating different tree genotypes could also influence the biodiversity of emerging aquatic insects. Our work illustrates the importance of plant genes for community and ecosystem processes in riparian corridors

    Sticky Dead Microbes: rapid abiotic retention of microbial necromass in soil

    Get PDF
    Microbial necromass dominates soil organic matter. Recent research on necromass and soil carbon storage has focused on necromass production and stabilization mechanisms but not on the mechanisms of necromass retention. We present evidence from soil incubations with stable-isotope labeled necromass that abiotic adsorption may be more important than biotic immobilization for short-term necromass retention. We demonstrate that necromass adsorbs not only to mineral surfaces, but may also interact with other necromass. Furthermore, necromass cell chemistry alters necromass-necromass interaction, with more bacterial tracer retained when there is yeast necromass present. These findings suggest that the adsorption and abiotic interaction of microbial necromass and its functional properties, beyond chemical stability, deserve further investigation in the context of soil carbon sequestration
    corecore