326 research outputs found

    Rights, Duties, and the Future

    Get PDF
    Since we appear to be fairly comfortable using rights language in general discourse, the rights approach to ensuring a quality existence for future individuals is one that deserves serious consideration. This paper’s author begins his theory by analyzing concepts such as “right,” “claim,” “correct,” and “association.” He then examines the status of natural rights and the one absolute claim that seems to be valid on that front: “each human [who does or who will exist] has a right to survive to the best of his or her abilities.” Okay, but what duties and obligations are entailed? What is the correlation between rights and duties? The author believes the proposed absolute right logically requires an absolute duty, i.e., humans are obliged to adopt social practices that work to best ensure each individual’s absolute right. The author believes a few claims follow: we must have responsible procreation, we must bring humans into a constructed social world that is pleasant but not filled with destructive sources, and we must responsibly investigate future consequences

    Kekkon5 is an extracellular regulator of BMP signaling

    Get PDF
    AbstractPrecise spatial and temporal control of Drosophila Bone Morphogenetic Protein (BMP) signaling is achieved by a host of extracellular factors that modulate ligand distribution and activity. Here we describe Kekkon5 (Kek5), a transmembrane protein containing leucine-rich repeats (LRRs), as a novel regulator of BMP signaling in Drosophila. We find that loss or gain of kek5 disrupts crossvein development and alters the early profile of phosphorylated Mad and dSRF in presumptive crossvein cells. kek5 phenotypic effects closely mimic those observed with Short gastrulation (Sog), but do not completely recapitulate the effects of dominant negative BMP receptors. We further demonstrate that Kek5 is able to antagonize the BMP ligand Glass bottom boat (Gbb) and that the Kek5 LRRs are required for BMP inhibitory activity, while the Ig domain is dispensable in this context. Our identification of Kek5 as a modulator of BMP signaling supports the emerging notion that LIG proteins function as diverse regulators of cellular communication

    Discontinuous metric programming in liquid crystalline elastomers

    Full text link
    Liquid crystalline elastomers (LCEs) are shape-changing materials that exhibit large deformations in response to applied stimuli. Local control of the orientation of LCEs spatially directs the deformation of these materials to realize spontaneous shape change in response to stimuli. Prior approaches to shape programming in LCEs utilize patterning techniques that involve the detailed inscription of spatially varying nematic fields to produce sheets. These patterned sheets deform into elaborate geometries with complex Gaussian curvatures. Here, we present an alternative approach to realize shape-morphing in LCEs where spatial patterning of the crosslink density locally regulates the material deformation magnitude on either side of a prescribed interface curve. We also present a simple mathematical model describing the behavior of these materials. Further experiments coupled with the mathematical model demonstrate the control of the sign of Gaussian curvature, which is used in combination with heat transfer effects to design LCEs that self-clean as a result of temperature-dependent actuation properties

    Whole-genome epidemiology links phage-mediated acquisition of a virulence gene to the clonal expansion of a pandemic Salmonella enterica serovar Typhimurium clone

    Get PDF
    Epidemic and pandemic clones of bacterial pathogens with distinct characteristics continually emerge, replacing those previously dominant through mechanisms that remain poorly characterized. Here, whole-genome-sequencing-powered epidemiology linked horizontal transfer of a virulence gene, sopE, to the emergence and clonal expansion of a new epidemic Salmonella enterica serovar Typhimurium (S. Typhimurium) clone. The sopE gene is sporadically distributed within the genus Salmonella and rare in S. enterica Typhimurium lineages, but was acquired multiple times during clonal expansion of the currently dominant pandemic monophasic S. Typhimurium sequence type (ST) 34 clone. Ancestral state reconstruction and time-scaled phylogenetic analysis indicated that sopE was not present in the common ancestor of the epidemic clade, but later acquisition resulted in increased clonal expansion of sopE-containing clones that was temporally associated with emergence of the epidemic, consistent with increased fitness. The sopE gene was mainly associated with a temperate bacteriophage mTmV, but recombination with other bacteriophage and apparent horizontal gene transfer of the sopE gene cassette resulted in distribution among at least four mobile genetic elements within the monophasic S. enterica Typhimurium ST34 epidemic clade. The mTmV prophage lysogenic transfer to other S. enterica serovars in vitro was limited, but included the common pig-associated S. enterica Derby (S. Derby). This may explain mTmV in S. Derby co-circulating on farms with monophasic S. Typhimurium ST34, highlighting the potential for further transfer of the sopE virulence gene in nature. We conclude that whole-genome epidemiology pinpoints potential drivers of evolutionary and epidemiological dynamics during pathogen emergence, and identifies targets for subsequent research in epidemiology and bacterial pathogenesis

    Azithromycin Failure in Mycoplasma genitalium Urethritis

    Get PDF
    We report significant failure rates (28%, 95% confidence interval 15%–45%) after administering 1 g azithromycin to men with Mycoplasma genitalium–positive nongonococcal urethritis. In vitro evidence supported reduced susceptibility of M. genitalium to macrolides. Moxifloxacin administration resulted in rapid symptom resolution and eradication of infection in all cases. These findings have implications for management of urethritis

    A systematic variation of the stellar initial mass function in early-type galaxies

    Get PDF
    Much of our knowledge of galaxies comes from analysing the radiation emitted by their stars. It depends on the stellar initial mass function (IMF) describing the distribution of stellar masses when the population formed. Consequently knowledge of the IMF is critical to virtually every aspect of galaxy evolution. More than half a century after the first IMF determination, no consensus has emerged on whether it is universal in different galaxies. Previous studies indicated that the IMF and the dark matter fraction in galaxy centres cannot be both universal, but they could not break the degeneracy between the two effects. Only recently indications were found that massive elliptical galaxies may not have the same IMF as our Milky Way. Here we report unambiguous evidence for a strong systematic variation of the IMF in early-type galaxies as a function of their stellar mass-to-light ratio, producing differences up to a factor of three in mass. This was inferred from detailed dynamical models of the two-dimensional stellar kinematics for the large Atlas3D representative sample of nearby early-type galaxies spanning two orders of magnitude in stellar mass. Our finding indicates that the IMF depends intimately on a galaxy's formation history.Comment: 4 pages, 2 figures, LaTeX. Accepted for publication as a Nature Letter. More information about our Atlas3D project is available at http://purl.org/atlas3

    Chromosome 9: linkage for borderline personality disorder features.

    Get PDF
    Objective A large-scale twin study implicated genetic influences on borderline personality disorder (BPO) features, with a heritability estimate of 42%. To date, no genome-wide linkage study has been conducted to identify the genomic region(s) containing the quantitative trait loci that influence the manifestation of BPD features. Methods We conducted a family-based linkage study using Merlin regress. The participating families were drawn from the community-based Netherlands Twin Register. The sample consisted of 711 sibling pairs with phenotype and genotype data, and 561 additional parents with genotype data. BPD features were assessed on a quantitative scale. Results Evidence for linkage was found on chromosomes 1, 4, 9, and 18. The highest linkage peak was found on chromosome 9p at marker D9S286 with a logarithm of odds score of 3.548 (empirical P= 0.0001). Conclusion To our knowledge, this is the first linkage study on BPD features and shows that chromosome 9 is the richest candidate for genes influencing BPD. The results of this study will move the field closer to determining the genetic etiology of BPD and may have important implications for treatment programs in the future. Association studies in this region are, however, warranted to detect the actual genes. © 2008 Wolters Kluwer Health|Lippincott Williams & Wilkins

    Low-Altitude UAV Imaging Accurately Quantifies Eelgrass Wasting Disease From Alaska to California

    Get PDF
    Declines in eelgrass, an important and widespread coastal habitat, are associated with wasting disease in recent outbreaks on the Pacific coast of North America. This study presents a novel method for mapping and predicting wasting disease using Unoccupied Aerial Vehicle (UAV) with low-altitude autonomous imaging of visible bands. We conducted UAV mapping and sampling in intertidal eelgrass beds across multiple sites in Alaska, British Columbia, and California. We designed and implemented a UAV low-altitude mapping protocol to detect disease prevalence and validated against in situ results. Our analysis revealed that green leaf area index derived from UAV imagery was a strong and significant (inverse) predictor of spatial distribution and severity of wasting disease measured on the ground, especially for regions with extensive disease infection. This study highlights a novel, efficient, and portable method to investigate seagrass disease at landscape scales across geographic regions and conditions
    corecore