38 research outputs found

    Classification of p-branes, NUTs, Waves and Intersections

    Get PDF
    We give a full classification of the multi-charge supersymmetric pp-brane solutions in the massless and massive maximal supergravities in dimensions D2D\ge2 obtained from the toroidal reduction of eleven-dimensional supergravity. We derive simple universal rules for determining the fractions of supersymmetry that they preserve. By reversing the steps of dimensional reduction, the pp-brane solutions become intersections of pp-branes, NUTs and waves in D=10 or D=11. Having classified the lower-dimensional pp-branes, this provides a classification of all the intersections in D=10 and D=11 where the harmonic functions depend on the space transverse to all the individual objects. We also discuss the structure of U-duality multiplets of pp-brane solutions, and show how these translate into multiplets of harmonic and non-harmonic intersections.Comment: Latex, 67 pages, minor correction

    Consistent SO(6) Reduction Of Type IIB Supergravity on S^5

    Get PDF
    Type IIB supergravity can be consistently truncated to the metric and the self-dual 5-form. We obtain the complete non-linear Kaluza-Klein S^5 reduction Ansatz for this theory, giving rise to gravity coupled to the fifteen Yang-Mills gauge fields of SO(6) and the twenty scalars of the coset SL(6,R)/SO(6). This provides a consistent embedding of this subsector of N=8, D=5 gauged supergravity in type IIB in D=10. We demonstrate that the self-duality of the 5-form plays a crucial role in the consistency of the reduction. We also discuss certain necessary conditions for a theory of gravity and an antisymmetric tensor in an arbitrary dimension D to admit a consistent sphere reduction, keeping all the massless fields. We find that it is only possible for D=11, with a 4-form field, and D=10, with a 5-form. Furthermore, in D=11 the full bosonic structure of eleven-dimensional supergravity is required, while in D=10 the 5-form must be self-dual. It is remarkable that just from the consistency requirement alone one would discover D=11 and type IIB supergravities, and that D=11 is an upper bound on the dimension.Comment: Latex, 14 pages, typos corrected and comments adde

    Five-dimensional N=4, SU(2) X U(1) Gauged Supergravity from Type IIB

    Get PDF
    We construct the complete and explicit non-linear Kaluza-Klein ansatz for deriving the bosonic sector of N=4 SU(2)\times U(1) gauged five-dimensional supergravity from the reduction of type IIB supergravity on S^5. This provides the first complete example of such an S^5 reduction that includes non-abelian gauge fields, and it allows any bosonic solution of the five-dimensional N=4 gauged theory to be embedded in D=10.Comment: latex, 12 page

    Explicit Orbit Classification of Reducible Jordan Algebras and Freudenthal Triple Systems

    Full text link
    We determine explicit orbit representatives of reducible Jordan algebras and of their corresponding Freudenthal triple systems. This work has direct application to the classification of extremal black hole solutions of N = 2, 4 locally supersymmetric theories of gravity coupled to an arbitrary number of Abelian vector multiplets in D = 4, 5 space-time dimensions.Comment: 18 pages. Updated to match published versio

    RG flows from Spin(7), CY 4-fold and HK manifolds to AdS, Penrose limits and pp waves

    Get PDF
    We obtain explicit realizations of holographic renormalization group (RG) flows from M-theory, from E^{2,1} \times Spin(7) at UV to AdS_4 \times \tilde{S^7} (squashed S^7) at IR, from E^{2,1} \times CY4 at UV to AdS_4 \times Q^{1,1,1} at IR, and from E^{2,1} \times HK (hyperKahler) at UV to AdS_4 \times N^{0,1,0} at IR. The dual type IIA string theory configurations correspond to D2-D6 brane systems where D6 branes wrap supersymmetric four-cycles. We also study the Penrose limits and obtain the pp-wave backgrounds for the above configurations. Besides, we study some examples of non-supersymmetric and supersymmetric flows in five-dimensional gauge theories.Comment: 42 pages, 6 eps figures, typos and misprints correcte

    Neutrino Propagation in a Strongly Magnetized Medium

    Full text link
    We derive general expressions at the one-loop level for the coefficients of the covariant structure of the neutrino self-energy in the presence of a constant magnetic field. The neutrino energy spectrum and index of refraction are obtained for neutral and charged media in the strong-field limit (MWBme,T,μ,pM_{W}\gg \sqrt{B}\gg m_{e},T,\mu ,| \mathbf{p}| ) using the lowest Landau level approximation. The results found within the lowest Landau level approximation are numerically validated, summing in all Landau levels, for strong BT2B\gg T^{2} and weakly-strong BT2B \gtrsim T^{2} fields. The neutrino energy in leading order of the Fermi coupling constant is expressed as the sum of three terms: a kinetic-energy term, a term of interaction between the magnetic field and an induced neutrino magnetic moment, and a rest-energy term. The leading radiative correction to the kinetic-energy term depends linearly on the magnetic field strength and is independent of the chemical potential. The other two terms are only present in a charged medium. For strong and weakly-strong fields, it is found that the field-dependent correction to the neutrino energy in a neutral medium is much larger than the thermal one. Possible applications to cosmology and astrophysics are considered.Comment: 23 pages, 4 figures. Corrected misprints in reference

    The Atacama Cosmology Telescope: A Catalog of >4000 Sunyaev–Zel’dovich Galaxy Clusters

    Get PDF
    We present a catalog of 4195 optically confirmed Sunyaev–Zel'dovich (SZ) selected galaxy clusters detected with signal-to-noise ratio >4 in 13,211 deg2 of sky surveyed by the Atacama Cosmology Telescope (ACT). Cluster candidates were selected by applying a multifrequency matched filter to 98 and 150 GHz maps constructed from ACT observations obtained from 2008 to 2018 and confirmed using deep, wide-area optical surveys. The clusters span the redshift range 0.04 1 clusters, and a total of 868 systems are new discoveries. Assuming an SZ signal versus mass-scaling relation calibrated from X-ray observations, the sample has a 90% completeness mass limit of M500c > 3.8 × 1014 M⊙, evaluated at z = 0.5, for clusters detected at signal-to-noise ratio >5 in maps filtered at an angular scale of 2farcm4. The survey has a large overlap with deep optical weak-lensing surveys that are being used to calibrate the SZ signal mass-scaling relation, such as the Dark Energy Survey (4566 deg2), the Hyper Suprime-Cam Subaru Strategic Program (469 deg2), and the Kilo Degree Survey (825 deg2). We highlight some noteworthy objects in the sample, including potentially projected systems, clusters with strong lensing features, clusters with active central galaxies or star formation, and systems of multiple clusters that may be physically associated. The cluster catalog will be a useful resource for future cosmological analyses and studying the evolution of the intracluster medium and galaxies in massive clusters over the past 10 Gyr

    Unsymmetric-pattern multifrontal methods for parallel sparse LU factorization

    No full text
    Sparse matrix factorization algorithms are typically characterized by irregular memory access patterns that limit their performance on parallel-vector supercomputers. For symmetric problems, methods such as the multifrontal method replace irregular operations with dense matrix kernels. However, no efficient method based primarily on dense matrix kernels exists for matrices whose pattern is very unsymmetric. A new unsymmetric-pattern multifrontal method based on dense matrix kernels is presented. Frontal matrices are rectangular instead of square, and the elimination tree is replaced with a directed acyclic graph. As in the classical multifrontal method, advantage is taken of repetitive structure in the matrix by amalgamating nodes in the directed acyclic graph, potentially giving it high performance on parallel-vector supercomputers. Performance of a sequential version is compared with the classical multifrontal method and a standard unsymmetric solver on an Alliant FX/80 computer. C..
    corecore