117 research outputs found

    Growth of self-catalyzed inas/insb axial heterostructured nanowires: Experiment and theory

    Get PDF
    The growth mechanisms of self-catalyzed InAs/InSb axial nanowire heterostructures are thoroughly investigated as a function of the In and Sb line pressures and growth time. Some interesting phenomena are observed and analyzed. In particular, the presence of In droplet on top of InSb segment is shown to be essential for forming axial heterostructures in the self-catalyzed vapor-liquid-solid mode. Axial versus radial growth rates of InSb segment are investigated under different growth conditions and described within a dedicated model containing no free parameters. It is shown that widening of InSb segment with respect to InAs stem is controlled by the vapor-solid growth on the nanowire sidewalls rather than by the droplet swelling. The In droplet can even shrink smaller than the nanowire facet under Sb-rich conditions. These results shed more light on the growth mechanisms of self-catalyzed heterostructures and give clear route for engineering the morphology of InAs/InSb axial nanowire heterostructures for different applications

    Parametric localized modes in quadratic nonlinear photonic structures

    Get PDF
    We analyze two-color spatially localized modes formed by parametrically coupled fundamental and second-harmonic fields excited at quadratic (or chi-2) nonlinear interfaces embedded into a linear layered structure --- a quasi-one-dimensional quadratic nonlinear photonic crystal. For a periodic lattice of nonlinear interfaces, we derive an effective discrete model for the amplitudes of the fundamental and second-harmonic waves at the interfaces (the so-called discrete chi-2 equations), and find, numerically and analytically, the spatially localized solutions --- discrete gap solitons. For a single nonlinear interface in a linear superlattice, we study the properties of two-color localized modes, and describe both similarities and differences with quadratic solitons in homogeneous media.Comment: 9 pages, 8 figure

    Magnetic-field-dependent zero-bias diffusive anomaly in Pb oxide-n-InAs structures: Coexistence of two- and three-dimensional states

    Full text link
    The results of experimental and theoretical studies of zero-bias anomaly (ZBA) in the Pb-oxide-n-InAs tunnel structures in magnetic field up to 6T are presented. A specific feature of the structures is a coexistence of the 2D and 3D states at the Fermi energy near the semiconductor surface. The dependence of the measured ZBA amplitude on the strength and orientation of the applied magnetic field is in agreement with the proposed theoretical model. According to this model, electrons tunnel into 2D states, and move diffusively in the 2D layer, whereas the main contribution to the screening comes from 3D electrons.Comment: 8 double-column pages, REVTeX, 9 eps figures embedded with epsf, published versio

    Realization of vertically aligned, ultra-high aspect ratio InAsSb nanowires on graphite

    Get PDF
    The monolithic integration of InAs1–xSbx semiconductor nanowires on graphitic substrates holds enormous promise for cost-effective, high-performance, and flexible devices in optoelectronics and high-speed electronics. However, the growth of InAs1–xSbx nanowires with high aspect ratio essential for device applications is extremely challenging due to Sb-induced suppression of axial growth and enhancement in radial growth. We report the realization of high quality, vertically aligned, nontapered and ultrahigh aspect ratio InAs1–xSbx nanowires with Sb composition (xSb(%)) up to ∼12% grown by indium-droplet assisted molecular beam epitaxy on graphite substrate. Low temperature photoluminescence measurements show that the InAs1–xSbx nanowires exhibit bright band-to-band related emission with a distinct redshift as a function of Sb composition providing further confirmation of successful Sb incorporation in as-grown nanowires. This study reveals that the graphite substrate is a more favorable platform for InAs1–xSbx nanowires that could lead to hybrid heterostructures possessing potential device applications in optoelectronics

    Template-Assisted Scalable Nanowire Networks

    Get PDF
    This is an open access article published under an ACS AuthorChoice License. See Standard ACS AuthorChoice/Editors' Choice Usage Agreement - https://pubs.acs.org/page/policy/authorchoice_termsofuse.htmlTopological qubits based on Majorana Fermions have the potential to revolutionize the emerging field of quantum computing by making information processing significantly more robust to decoherence. Nanowires are a promising medium for hosting these kinds of qubits, though branched nanowires are needed to perform qubit manipulations. Here we report a gold-free templated growth of III-V nanowires by molecular beam epitaxy using an approach that enables patternable and highly regular branched nanowire arrays on a far greater scale than what has been reported thus far. Our approach relies on the lattice-mismatched growth of InAs on top of defect-free GaAs nanomembranes yielding laterally oriented, low-defect InAs and InGaAs nanowires whose shapes are determined by surface and strain energy minimization. By controlling nanomembrane width and growth time, we demonstrate the formation of compositionally graded nanowires with cross-sections less than 50 nm. Scaling the nanowires below 20 nm leads to the formation of homogeneous InGaAs nanowires, which exhibit phase-coherent, quasi-1D quantum transport as shown by magnetoconductance measurements. These results are an important advance toward scalable topological quantum computing

    Two-Dimensional Antiferromagnetic Correlations in an La<sub>1.4</sub>Sr<sub>1.6</sub>(Mn<sub>0.9</sub>Co<sub>0.1</sub>)<sub>2</sub>O<sub>7</sub> Single Crystal

    No full text
    The temperature and field dependences of the magnetization, the electrical resistivity, and the magnetostriction of bilayer lanthanum manganite La1.4Sr1.6Mn2O7 single crystals and cobalt-doped La1.4Sr1.6(Mn0.9Cu0.1)(2)O-7 are measured. The magnetostriction of the cobalt-doped compound increases as compared to the initial La1.4Sr1.6Mn2O7 compound, and the magnetization and the magnetoresistance of the former compound change substantially. Powder and single-crystal neutron diffraction patterns are used to detect ferromagnetic ordering in La1.4Sr1.6(Mn0.9Co0.1)(2)O-7 at a temperature below T (C) similar to 45(2) K, and this ordering coexists with antiferromagnetic correlations, which develop at temperatures below T (C) similar to 80(5) K
    corecore