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We analyze two-color spatially localized nonlinear modes formed by parametrically coupled fundamental
and second-harmonic fields excited at quadratic~or x (2)) nonlinear interfaces embedded in a linear layered
structure—a quadratic nonlinear photonic crystal. For a periodic lattice of nonlinear interfaces, we derive an
effective discrete model for the amplitudes of the fundamental and second-harmonic waves at the interfaces
~the so-called discretex (2) equations! and find, numerically and analytically, the spatially localized solutions—
discrete gap solitons. For a single nonlinear interface in a linear superlattice, we study the properties of
two-color localized modes, and describe both similarities to and differences from quadratic solitons in homo-
geneous media.

DOI: 10.1103/PhysRevE.63.016615 PACS number~s!: 42.70.Qs, 42.65.Tg, 42.65.Wi, 05.45.2a

I. INTRODUCTION

The physics and applications of photonic band-gap mate-
rials ~or photonic crystals! have been an active topic of re-
search for more than a decade@1#. The next step in applica-
tion of photonic crystals is to create tunable band-gap
materials where the gap can be controlled by an external
parameter. One of the recent suggestions@2# is based on the
inverse opal structure—a microscopic lattice of spheres of air
surrounded by silicon—with a layer of liquid crystal material
that can make the transmission properties programmable by
applying an electric field. Continuous temperature tuning can
also be realized in liquid crystals@3# and in semiconductors
with sufficiently high free-carrier densities@4#.

Another important idea applicable to creating dynamically
tunable band gap materials for switches and transistors oper-
ating entirely with light is to employ their nonlinear proper-
ties, thus creating nonlinear photonic crystals. The concept
of nonlinear photonic crystals, defined as having a spatially
periodic nonlinearity, was introduced by Scaloraet al. @5# in
a numerical study of ultrafast optical switching and limiting
in cubic nonlinear Kerr materials. However, such a structure
was already investigated by Larochelleet al. four years ear-
lier @6#. Bistability and localized modes in photonic superlat-
tices with embedded layers possessing nonresonant cubic~or
Kerr-type! nonlinearities have also been discussed in the lit-
erature@7#. Recent advances in the so-called cascaded non-
linearities @8# demonstrate an effective way to lower the
switching power by employing parametric interaction and
frequency conversion in noncentrosymmetric quadratic non-
linear optical materials. Parametric interactions are also
known to support solitary waves, spatial quadratic solitons
@9#, that exist in homogeneous media where spatial localiza-
tion is induced by two-wave parametric mixing processes
between the fundamental wave and its second harmonic. The
quadratic nonlinear photonic crystal was introduced as a con-
cept by Berger@10# in a study of multiwavelength frequency
conversion in a plane geometry.

Taking into account the similarities between the localized
defect modes in linear inhomogeneous media and nonlinear

localized modes in homogeneous media@11#, we wonder if
parametric interactions can support localized modes in a va-
riety of photonic band-gap structures with quadratic~or x (2))
nonlinearities. The first step in this direction has recently
been presented in Ref.@12#, where we have analyzed second-
harmonic generation~SHG! at a thin, effectively quadratic
nonlinear layer separating two~generally different! homoge-
neous linear media, and predicted multistability of SHG for
both plane waves and localized modes, also describing two-
color localized photonic modes that can be excited at the
interface.

The main purpose of this paper is twofold. First, we gen-
eralize the results of Ref.@12# to the case of a thin quadratic
nonlinear layer embedded in an arbitrarily stratified periodic
linear medium. In particular, we consider a nonlinear defect
layer with second-order nonlinear response in a perfectly pe-
riodic dielectric structure—a one-dimensional analog of a
photonic crystal with a nonlinear impurity. Second, we de-
velop a general formalism for analyzing parametric localized
modes in multilayer structures—x (2) nonlinear
superlattices—and describe two-color localized gap modes
supported by a periodic lattice of thin layers with quadratic
nonlinearity.

The paper is structured as follows. In Sec. II we present
our model that is described by a system of two coupled non-
linear equations for the envelopes of the fundamental and
second-harmonic waves. In the stationary case, the solution
can be presented as a superposition of the forward- and
backward-traveling waves, and this makes it possible to de-
rive an effective system of discrete coupled-mode equations
for the wave amplitudes at the layers, the so-called discrete
x (2) equations~Sec. III A!. Solutions of these equations for
localized nonlinear modes are briefly discussed in Sec. III B,
and in Sec. III C we outline the connection between disper-
sion properties and band-gap structure. Finally, in Sec. IV
we consider a generalization of the results of Ref.@12# to the
case of a single quadratic nonlinear layer embedded in a
periodic linear medium, and describe a number of new fea-
tures of the localized modes that appear due to the band-gap
structure of the linear spectrum.
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II. MODEL

First, we discuss the physical motivation for our model.
Let us consider an interface between two semi-infinite bulk
optical media with inversion symmetry. The interface layer
breaks the symmetry and therefore it should possess a non-
vanishing surface quadratic response@13# that can be en-
hanced by a proper coating creating a nonlinear layer with
quadratic nonlinearity@14#. Such a layer corresponds to an
effective nonlinear defect that can support photonic modes
localized at the interface. There exists strong experimental
evidence of SHG in this a type of localized photonic mode.
For example, recent experimental results@15# reported SHG
in periodic photonic band-gap structures with embedded
nonlinear defect layers. An enhancement of the parametric
interaction in the vicinity of the defects was observed, sug-
gesting that SHG occurs in localized modes, but is sup-
pressed for propagating modes. The surface nature of SHG
was confirmed by comparison of experimental data with the
results of direct numerical simulations@14#.

To introduce an analytically solvable model for SHG in
localized waves, we follow Ref.@12# and consider a funda-
mental frequency~FF! wave propagating along theZ direc-
tion in a linear slab waveguide, as shown in Fig. 1. We
assume that the interfaces~or defect layers! possess a qua-
dratic nonlinear response, so that a FF wave can parametri-
cally couple to its second harmonic~SH! wave. The coupled-
mode equations for the complex envelope functionsEj (X,Z)
~we usej 51,2 for FF and SH, respectively! can be written in
the form

i
]E1

]Z
1D1

]2E1

]X2
1e1~X!E11G1~X!E1* E250,

~1!

i
]E2

]Z
1D2

]2E2

]x2
1e2~X!E21G2~X!E1

250,

whereD j are the diffraction coefficients (D j.0). In the ap-
proximation of infinitely thin interface layers~valid when the
width of each layer is much smaller than the characteristic
transverse scale of the FF and SH wave envelopes!, we take
« j (X)5e0 j (X)1(nk jd@(X2Xn)/D1# and G j (X)
5(ng jd@(X2Xn)/D1#, whereXn denotes the position of the

nth nonlinear interface.g j are the nonlinearity coefficients
and«0 j (X) andk j account for the phase velocity differences
in bulk and interface materials.

In order to reduce the number of physical parameters, we
normalize Eqs. ~1! as follows: E1(X,Z)5u(x,z)ei ē01Z/
(D1Ag1g2), E2(X,Z)5v(x,z)ei2ē01Z/(D1g1), where the
spatial coordinates are measured in units ofD1 , x5X/D1
andz5Z/D1. This gives the dimensionless equations

i
]u

]z
1

]2u

]x2
1n1~x!u1(

n
d~x2xn!~b1u1u* v !50,

~2!

i
]v
]z

1s
]2v

]x2
1n2~x!v1(

n
d~x2xn!~b2v1u2!50.

Heres5D2 /D1 , b j5D1k j , andn j (x)5D1@e0 j (x)2 j ē01#,
with ē01 being the average value ofe0 j (x).

At this point, it is important to note that our system@Eqs.
~1! or ~2!# describes the beam evolution in the framework of
the so-called parabolic approximation, valid for the rays
propagating mainly along theZ direction. In other words, the
characteristic length of the beam distortion due to diffraction
and refraction along theZ axis should be much larger than
the beam width in the transverse directionX. This leads to
the requirement of a shallow grating,ue0 j (x)2 ē0 j u! ē0 j . On
the other hand, to make the parametric interaction effective,
the mismatch between the phase velocities of the FF and SH
waves should be small, 2ē01. ē02. The ratio of the diffrac-
tion coefficients is then approximatelys5 1

2 , and we use this
value in the numerical simulations presented below.

For spatially localized solutions, the system~2! conserves
the Hamiltonian

H5E
2`

1` H U]u

]xU
2

1
s

2 U]v
]xU

2

2n1~x!uuu22
n2~x!

2
uvu2

2(
n

d~x2xn!Fb1uuu21
b2

2
uvu21Re~u2v* !G J dx

and the total powerP5*2`
1`(uuu21uvu2)dx.

III. PERIODIC LAYERED STRUCTURES

A. General formalism

To develop a general formalism for describing stationary,
spatially localized modes, we consider an infinite system of
uniformly spaced nonlinear interfaces located periodically at
the positionsxn5nh, which separate identical linear layers,
n j (x1nh)[n j (x). An example of such a structure is shown
in Fig. 2. This type of one-dimensional~1D! nonlinear pho-
tonic crystal~NPC! can be used to prohibit light propagation
along the transversex axis under certain conditions, resulting
in field localization, and it resembles the operation of the
so-called photonic crystal fiber in the linear regime@16#. The
fundamental properties of NPC can be understood by study-
ing nonlinear localized modes. Such modes appear in the

FIG. 1. Schematic diagram of an array of thinx (2) layers em-
bedded in a linear slab waveguide, with indication of the direction
of the input laser beam relative to the interfaces.
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frequency gap of the layered linear structure, and they can be
called discrete gap solitons or, in a broader context, intrinsic
localized modes@11#.

We search for solutions of Eqs.~2! in the form

u~x,z!5c1~x!eil1z, v~x,z!5c2~x!eil2z,

wherecj (x) describe the transverse profiles of FF and SH
waves, respectively, and the real propagation constantsl j
satisfy the phase-matching conditionl252l1. Then, since
the FF and SH fields do not interact in a linear bulk medium,
each of them can be presented as a composition of two linear
eigenmodes, corresponding to pairs of counterpropagating
waves with opposite wave vector components along thex
axis. Regardless of the internal structure of a linear layer
between nonlinear interfaces, the wave amplitudes at its
boundaries can be related by a transfer matrix@17#:

S aj
(n11,2)

bj
(n11,2)D 5T( j )~l j !S aj

(n,1)

bj
(n,1)D . ~3!

Here, indices6 stand for the waves on the right and on the
left of a given nonlinear layer, respectively, and the ampli-
tudes of counterpropagating waves are denoted byaj andbj ,
as shown in Fig. 3.

In order to calculate the dependence of the matrix ele-
ments on the propagation constants, we should solve the cor-
responding linear problem. For practical applications, NPC

can be produced by embedding nonlinear layers in an other-
wise linear Bragg grating structure; see, e.g., Ref.@14#. Thus,
we assume that each linear layer consists of several sublayers
with a constant refractive index~see Fig. 2!, i.e., n j (x)
5n j ,m for xn,m<x<xn,m11, wherem is used to number the
sublayer inside a linear slice (1<m<M ), and we have by
definition thatxn,15xn21,M115xn5nh. Then, the field in
the (n,m)th sublayer can be written as

cj~x!5aj
(n,m)e2m j ,m(x2xn,m)1bj

(n,m)em j ,m(x2xn,m). ~4!

By definition, the amplitudes from Eq.~3! are aj
(n,1)

5aj
(n,1) , aj

(n11,2)5aj
(n,M11) , with similar relations holding

for bj
(n,6) .

Transverse wave numbers can be calculated using the dis-
persion relations,l15m1,m

2 1n1,m andl25sm2,m
2 1n2,m , to-

gether with the phase-matching conditionl252l1. From
these expressions we conclude that, in general, for givenl j
the waves can be either localized~i.e., m j ,m is real! or propa-
gating ~i.e., m j ,m is imaginary!. Then we notice that the
waves in a multilayered linear medium can be determined as
linear eigenmodes localized at the sublayer boundaries. First,
from Eq. ~4! it follows that the variation of the field ampli-
tude through themth sublayer of the widthhm[xn,m11
2xn,m is characterized by the following transfer matrix:

Tp
( j ,m)5S e2m j ,mhm, 0

0, em j ,mhm
D . ~5!

Second, the variation of the wave amplitudes at the boundary
can be calculated by applying the field continuity conditions
following from the model~2!. Specifically, we equate the
amplitudescj and their derivativesdcj /dx on both sides of
the interface, and find the transfer matrix accounting for the
field localization at a boundary separating themth and (m
11)th sublayers,

Tr
( j ,m)5

1

2 S 11t r
j ,m , 12t r

j ,m

12t r
j ,m , 11t r

j ,mD , ~6!

where t r
j ,m5m j ,m /m j ,m11. To simplify further analysis, we

include all linear properties in the transfer matrix. Then,
m j ,M11[m j ,1 due to periodicity of the underlying grating,
and the lineard response is characterized by the following
matrix:

Td
( j ,m)5

1

2 S 21td
j ,m , td

j ,m

2td
j ,m , 22td

j ,mD , ~7!

where td
1,m5b1 /m1,m and td

2,m5b2 /(sm2,m), with m being
the index of the linear layer with the delta interface~in our
caseM11). The total transfer matrix can be then found as a
product,

T( j )5Td
( j ,M11)Tr

( j ,M )Tp
( j ,M ) . . . Tr

( j ,1)Tp
( j ,1) . ~8!

Note that the determinants areuuTp
( j ,m)uu5uuTd

( j ,m)uu51,
uuTr

( j ,m)uu5m j ,m /m j ,m11, and thereforeuuT( j )uu51.

FIG. 2. Slab waveguide from Fig. 1 viewed from the front with
indication of the substructure and notation of the identical linear
media~photonic crystal withM sublayers with different refractive
indices! in between thex (2) interfaces. The separation between the
nonlinear interfaces ish. A localized mode centered atx50 is also
illustrated.

FIG. 3. Transfer matrix relating the amplitudes at the boundaries
of a linear layer, independently for the FF and SH components; see
Eq. ~3!.
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After calculating the matrix elements, we express the field
in terms of the mode amplitudes defined at the nonlinear
interfaces,cj

(n)5cj (xn), combining the relation~3! with the
continuity conditions at the layers,cj

(n)5aj
(n,1)1bj

(n,1)

5aj
(n,M11)1bj

(n,M11) . Integrating Eqs.~2! over small inter-
vals including the nonlinear interfaces at the positionsxn
~note that we exclude linear responses, since they are already
accounted for in the transfer matrices!, we derive the so-
called discretex (2) equations,

h1Un1~Un211Un11!1x1Un* Vn50,
~9!

h2Vn1~Vn211Vn11!1x2Un
250,

whereUn5c1
(n)Auj1j2u andVn5c2

(n)uj1u are the normalized
FF and SH amplitudes at thenth nonlinear layer. Parameters
x j andh j are defined by the matrix elements,

j152Ts
(1)/~2m1,1!, j252Ts

(2)/~2sm2,1!,
~10!

h j52Tr~T( j )!, x j5sign~j j !,

where

Ts
( j )5T[1,1]

( j ) 1T[2,1]
( j ) 2T[1,2]

( j ) 2T[2,2]
( j ) ,

~11!
Tr~T( j )![T[1,1]

( j ) 1T[2,2]
( j ) .

Hereafter, we use the notationT[n,m]
( j ) to denote the matrix

element in rown and columnm of the matrixT( j ). It is easy
to verify that parametersh j and normalization coefficientsj j
are real for any ~real! propagation constantsl j . A proof of
this fact, together with discussion of some other properties of
the constructed transfer matrices, is given in Appendix A.

We note that some particular cases of the system~9! have
been discussed earlier~but, in fact, never derived in a con-
sistent manner! in the analysis of the nonlinear interface dy-
namics under the condition of Fermi resonance@18,19#, ar-
rays of weakly interacting quadratic waveguides@20–23#,
and beam propagation in nonlinear lattices@24#.

B. Discrete gap solitons

Now we use Eqs.~9! to find the stationary localized
modes of nonlinear superlattices, or discrete gap solitons. A
similar problem was analyzed earlier in Ref.@18# in the so-
called continuum limit, where the modes become wide and
are effectively supported by many interfaces, with the exci-
tation profiles approaching those of quadratic solitons@9#.
On the other hand, it has been demonstrated that discrete
states in a closed system of few interfaces can have different
topologies and possess quite peculiar properties@19,20#. For
the case at hand, when the number of interfaces is infinite
~e.g., much larger than the characteristic mode width!, the
different types of highly localized waves have been identi-
fied @21#, and their profiles were described by approximate
analytical solutions. However, until now the transitional case
of moderately localized modes has not been addressed. Thus,

we develop a more complete analytical description of dis-
crete gap solitons, which can predict their properties in all
the parameter regions.

In order to find approximate solutions for highly localized
modes, we use the variational method. First, we have to
choose the trial functions. We use the fact that in the high
localization limit the tails are almost linear, so that the am-
plitudes decay nearly exponentially. Then, we introduce two
sets of trial functions to account for different topologies@21#:
odd modes when the center of symmetry is located at a layer,

Un
(o)5U0s1

unue2r1unu, Vn
(o)5V0s2

unue2r2unu, ~12!

and even modes when the center of symmetry is located
between two neighboring layers,

Un
(e)5H U0s1

unue2r1unu, n>0,

U0ts1
unue2r1un11u, n,0,

~13!

Vn
(e)5H V0s2

unue2r2unu, n>0,

V0s2
un11ue2r2un11u, n,0.

Here the parameterssj561 are introduced to describe un-
staggered and staggered profiles, andt561 to produce ei-
ther untwisted or twisted modes~for the signs ‘‘1 ’’ or
‘‘ 2,’’ respectively!.

After selecting the mode topology and fixing the values of
sj and t, the unknown valuesU0 , V0 , r j (r j.0) are deter-
mined by minimizing the Lagrangian corresponding to Eqs.
~9!. Details of these calculations will be presented elsewhere
@25#. Here we give a brief summary of the main results and
discuss their physical consequences.

Since the system~9! possesses the symmetries~i! x1→
2x1 , s1→2s1 , h1→2h1, and ~ii ! x1→2x1 , x2→
2x2 , Vn→2Vn , we consider, without a lack of generality,
the casex j51. The analysis shows that localized solutions
exist only if s1h1,22. The latter condition means that the
FF component is unstaggered forh1,22, and staggered
otherwise (h1.2). Similarly, we consider only the case
uh2u.2, since for other values the localized solutions are
unstable due to resonant interaction with linear waves@21#.

Analyzing the linear problem, it is straightforward to see
that the SH mode can be staggered only ifh2.2. Then we
distinguish between two limits:~i! a strongly localized FF
mode (h1@2), when the SH consists of staggered linear tails
@21#, and~ii ! the cascading limit (h2@2), when the SH pro-
file is unstaggered and can be found asVn.Un

2/h2, resulting
in an effectively cubic nonlinearity for the FF wave@22# ~see
also @9#!. In the intermediate case, a transition of the SH
profile between staggered and unstaggered topologies should
be observed. Indeed, our variational calculations predict that
the SH is staggered for 2,h2,h22, and unstaggered for
h2.h22. Here, the critical parameter value depends onh1:
for odd modes, it is found from the quadratic equation,
Ah2211/Ah225uh1u, and a similar relation holds for even
modesAh221111/Ah22115uh1u. The topology does not
change sharply as the parameterh2 crosses the critical value
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h22(h1), but numerical calculations confirm that such a tran-
sition occurs in a region close to the separation line.

We performed numerical analysis and found that the ap-
proximate variational solutions provide close matching for
the highly localized profiles, i.e., for relatively large values
of uh j u. Examples of odd and even modes are presented in
Figs. 4 and 5, respectively. We see that the profiles of stag-
gered modes, supported by only a few interfaces, are de-
scribed very accurately. However, for wider modes the de-
viations between the exact numerical and variational
solutions are more pronounced, see Figs. 4~c! and 5~c!. The
limitation of the variational solution is due to the specific
choice of the trial functions~12!,~13!, which are not suitable
for description of ‘‘moderately’’ localized waves with
smoother profiles.

It can be demonstrated that in the continuum limit (h j

→222) untwisted modes acquire the profiles of quadratic
solitons@9#, which can be well approximated with the sech-
type functions @26#. A special quasicontinuous approach,
which allows one to determine the mode profiles as a soliton
bound state, can also be developed. The resulting approxi-
mate solutions provide very good estimates, and they are
very useful for understanding the mode scaling properties,
i.e., a change from broad solitons to narrow highly localized
states. On the other hand, it should be noted that the twisted
modes do not exist close to the continuum limit because their
profiles are intrinsically discrete due to a sharp amplitude
change between the layers at the mode center. A comprehen-
sive description of these results goes beyond the scope of the
present paper and will be presented elsewhere@25#.

C. Dispersion properties and band-gap structure

As we have demonstrated in the preceding section, spa-
tially localized modes exist under the condition that linear
waves do not propagate through a periodic structure, i.e., in
the spectrum band gaps. In our case, such band gaps appear
when the conditionuh j u.2 is satisfied. To reveal the key
features of the linear dispersion, we study the simple case of
a delta-layer array embedded in a homogeneous bulk me-
dium. In this case, after straightforward calculations, we ob-
tain the following expression for the parameterh j :

h1522 cosh~hm1!1~b1 /m1!sinh~hm1!,
~14!

h2522 cosh~hm2!1@b2 /~sm2!#sinh~hm2!.

A characteristic dependenceh1(l1) is presented in Fig. 6.
The spectrum for largel j corresponds to a total internal

FIG. 4. Different types of odd two-frequency localized modes.
~Numerical solutions: FF, triangles; SH, squares. Variational pro-
files: FF, dashed line; SH, solid.! ~a! Staggered FF and unstaggered
SH (h152.4, h254.5), ~b! both components staggered (h152.4,
h253), ~c! both unstaggered (h1522.4, h2523.5).

FIG. 5. Characteristic examples of even two-frequency localized
modes with an untwisted FF component; the notations are the same
as in Fig. 4. Parameter values are~a! h152.45, h254.5; ~b! h1

52.45,h252.5; ~c! h1522.45,h2523.

FIG. 6. Characteristic dispersion dependenceh1(l1). Shading is
used to show the spectrum bands. Dashed rectangle marks the re-
gion of applicability of the discretex (2) model and Eq.~15!. Pa-
rameters areh52, n150, andb154.
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reflection. Band gaps in the linear spectrum are created by
the Bragg-type reflection, and they appear at smaller values
of l j . Note that the width of the photonic band gaps be-
comes vanishingly small whenl j decreases.

In the earlier studies, the discretex (2) model was phe-
nomenologically introduced and analyzed@20–23#. The cor-
responding dispersion relations for the stationary localized
modes of that model are

h j5Aj~l j2l j
(0)!, ~15!

where Aj and l j
(0) are constant parameters. Although the

simplified dependence~15! does not describe the full band-
gap spectrum of a realistic layered photonic structure such as
that shown in Fig. 6, in many cases the dispersion relation
~15! has been successfully used to describe the properties of
discrete localized modes close to the edges of the total inter-
nal reflection and the first photonic band gaps, shown sche-
matically by a dashed rectangle in Fig. 6. Analyzing the
complete model of the periodic layers, we find that such an
approximation is indeed possible in the limit of weakly
coupled nonlinear layers, i.e., forhb j@1 ~note that we
should consider the caseb j.0). For this case, the effective
coefficients are found asl1

(0)5n11b1
2/4, l2

(0)5n2

1b2
2/(4s), A1522ehb1 /2/b1

2, andA2522sehb2 /(2s)/b2
2.

Note also that such an approximation should be valid for
both FF and SH waves simultaneously, i.e., the relation
ul2

(0)22l1
(0)u!l j

(0) should be satisfied. In general, the nor-
malization coefficients for the wave amplitudes,j j , also de-
pend on the propagation constantsl j . However, in the limit
hb j@1 the change of these coefficients on the scale of varia-
tion of the dispersion parameters is negligible,
u(dj1 /dh1)/j1u;e2hb1/2!1 and u(dj2 /dh2)/j2u
;e2hb2 /(2s)!1. These results, on one hand, provide the
conditions for the applicability of the so-called discretex (2)

model and, on the other hand, illustrate the serious limita-
tions of the use of such a simplified model.

IV. A SINGLE x „2… NONLINEAR LAYER EMBEDDED
IN A PERIODIC STRUCTURE

Let us now consider a special case in which there exists
only a single nonlinear layer~located atx050) embedded in
a linear periodic structure. A similar problem has been con-
sidered in our recent paper@12# for the other case where the
linear media on both sides of the nonlinear interface are uni-
form. In this section, we generalize those results to the case
of nonuniform linear media, considering a nonlinear layer
with quadratic nonlinearity embedded in a linear periodic
structure. To do so, we modify the model~2! as follows:~i!
nonlinear coupling terms are taken into account only forn
50, and~ii ! a linear response of the central layer is assumed
to be different from that of other layers, i.e., we changeb j
→a j1b j at n50. In connection with the preceding problem
~see Secs. II and III!, the case witha j50 corresponds to the
limit of a highly localized mode, when the mode width is
much smaller than the distance between the nonlinear layers
~see Fig. 2!.

Following the general approach outlined in the preceding

section, we first analyze the linear properties of such a lay-
ered structure. We also use similar notations, but for a single
nonlinear interface we omit the indexn50. From the theory
of wave propagation in linear periodic media, it follows that
a link between the linear-wave amplitudes can be character-
ized by the reflection coefficients,r j

15bj
1/aj

1 and r j
2

5aj
2/bj

2 . We do not assume that the linear structure is sym-
metric @in general,n j (x)Þn j (2x)# and denote with1 and
2 the wave characteristics at the right and left boundaries of
the nonlinear layer, i.e.,n j (x)5n j

1(uxu) for x.0 andn j (x)
5n j

2(uxu) for x,0. If the linear structure is periodic, the
coefficientsr j

6 can be found by solving the following eigen-
value problems:

T( j ,6)S 1

r j
6D 5t ( j ,6)S 1

r j
6D . ~16!

Here,T( j ,6) is the transfer matrix of one linear segment in a
periodic lattice, starting on the right (1) or the left (2) side
of a nonlinear interface, and it can be calculated according to
Eqs.~5!–~8!. Using the fact thatuuT( j ,6)uu[1, we solve Eq.
~16! and find the reflection coefficients in the form

r j
65T[2,1]

( j ,6)~t ( j ,6)2T[2,2]
( j ,6)!21, ~17!

where

t ( j ,6)52~h j
6/2!@12A12~2/h j

6!2#.

It can be proven that allh j
6 are real~see Appendix A!. Then

we see that the modes decay at infinity, i.e.,ut ( j ,6)u,1, only
if uh j

6u.2. This condition, which has already been obtained
in Sec. III, defines the spectrum band gaps, where the wave
propagation is prohibited for a specific range of the propaga-
tion constantl j ~see an example in Fig. 7!.

By applying the continuity conditions,cj5aj
61bj

6 , we
obtain the expressions for the amplitudes at the nonlinear
layer: uc1u25ã1ã2 , c252ã1, where ã15a12z1

12z1
2 ,

FIG. 7. The band structure for~a! FF and~b! SH modes, and~c!
combined band gap~additional narrow gaps in FF and SH spectra
exist for smallerl1, not shown!. Areas without shading correspond
to band gaps. Parameters areh650.6, n1,150, n1,2526, n2,15

28, n2,25213, andb j
650.
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ã25a22sz2
12sz2

2 , and z j
65m j

6(12r j
6)/(11r j

6) are
the effective transverse wave numbers at the right (1) and
left (2) boundaries of the nonlinear layer; their values are
determined by the dispersion relation of the periodic linear
gratings. As has been demonstrated in the preceding section,
the wave numbersm j

6 , the linear transfer matrices, and, ac-
cording to Eq.~17!, the reflection coefficientsr j

6 depend on
the propagation constantsl j , which in turn are related by
the phase-matching conditionl252l1. Thus, for fixed
physical characteristics, the localized modes constitute a
one-parameter family, and we choosel1 as a free parameter.
We note that inside the band gaps the coefficientsz1

6 are real
~see Appendix B!.

In order to illustrate the features of nonlinear modes, we
consider a structure similar to that used in experiments on
the SH generation in localized modes@15#. In the experimen-
tal setup, a periodic linear structure was built of two materi-
als with different refractive indices, characterized by the pa-
rametersn j ,65n j (x506), with corresponding finite widths
of the layers,h6 . The nonlinear interface was created by
cutting the grating in two parts and coating the interface to
enhance the effective quadratic nonlinearity. Characteristics
of the defect layer were controlled by adjusting the gap. An
example of the band gap for such a photonic structure is
presented in Fig. 7. Note that because the linear structures on
either sides of the nonlinear layer are chosen to be the same
@up to a constant shift, in our notationn j

2(x)5n j
1(x1h1)#,

the corresponding gaps coincide.
Many of the properties of the localized modes can be

understood by analyzing the power diagramP(l1). Charac-
teristic examples of such a dependence are shown in Figs.
8~a!–8~c!. Similarly to the case of a thin layer separating two
homogeneous linear media@12#, there always exists a branch
in the parameter region unbounded from above, forl1 larger
than some critical value. Quite remarkably, the correspond-
ing mode properties are very similar to those of quadratic
solitons@9#. In particular, for large values of the propagation
constantl1 the power dependenceP(l1) always has a posi-
tive slope, while for smallerl1 the slope can become nega-
tive, resulting in bistability. Such a case is demonstrated in
Fig. 8~a!. We found that stability of the corresponding modes
can be determined by the Vakhitov-Kolokolov criterion, i.e.,
the localized modes are stable provideddP/dl1.0, and un-
stable, otherwise.

On the other hand, the spectrum of a linear periodic struc-
ture consists of several bands. Moreover, even inside a band
gap the modes cannot exist if the conditionã1ã2.0 is not
satisfied. Thus, in sharp contrast with two-color parametric
solitons in homogeneous media, other branches can appear
for smaller values ofl1. We find that the localized mode
properties can be very different compared to the modes cor-
responding to the right branch. For example, in Figs. 8~b!
and 8~c!, the left branches at higher intensities correspond to
smallerl1 and wider profiles. This happens because the SH
amplitude is negative,c2,0, which results in effectively
self-defocusing nonlinear response. It is interesting to note
that similar types of power dependencies occur for a local-
ized impurity possessing a self-defocusing Kerr-type nonlin-

earity @27#, in which case the corresponding localized modes
are stable. We have performed a linear stability analysis and
have found that, similarly to the case of the Kerr-type non-
linearity, the Vakhitov-Kolokolov-type criterion cannot be
applied to determine stability of such modes, which exist in
an effectively defocusing medium. However, our calcula-
tions demonstrate that parametric resonances can lead to os-
cillatory instability of such modes, as illustrated in Figs. 8~b!
and 8~c!. A comprehensive analysis of the mode stability
will be presented elsewhere.

The two-color parametric localized modes can be gener-
ated by launching a localized FF wave at the interface, as
shown in Fig. 9~a!. We have also studied the evolution of a
perturbed unstable mode, which can evolve toward a stable

FIG. 8. Three types of the power dependences for two-color
stationary localized modes, for different linear mismatches:~a! a1

521 anda2521; ~b! a1510 anda258; ~c! a154 anda256.
Solid line, stable; dashed line, unstable, dotted line, oscillatory un-
stable. Parameters of the linear structure correspond to those in Fig.
7.
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state. The example in Fig. 9~b! demonstrates the develop-
ment of an oscillatory instability with the subsequent switch-
ing to a stable state.

V. CONCLUSIONS

We have developed a general formalism for analyzing
spatially localized nonlinear modes~two-color discrete gap
solitons! in periodic photonic structures with embedded qua-
dratic ~or x (2)) nonlinear interfaces—nonlinear quadratic su-
perlattices. Our approach can be applied to different types of
periodic linear media with isolated or periodic nonlinear in-
terfaces, where nonlinearity can support parametric wave
coupling and generation of the second-harmonic field. In the
case of a nonlinear superlattice, i.e., periodically spaced thin
layers possessing a quadratic nonlinear response, we have
derived an effective discrete model and found two-mode dis-
crete gap solitons of different topologies in the form of fun-
damental and second-harmonic fields coupled parametrically
at the nonlinear interfaces.

For a single nonlinear layer embedded in a linear periodic
medium, we have described a novel class of nonlinear local-
ized defect modes—two-color photonic modes. Some of the
properties of these two-color localized modes, such as stabil-
ity, generation, and switching, have been shown to be re-
markably similar to those of quadratic parametric solitons in
homogeneous media. However, we have also discussed a
number of specific properties of such modes, and demon-
strated the possibility of their generation from a localized
beam of the fundamental frequency, as well as switching

from an unstable to a stable state.
We believe our results are important, on one hand for the

theory of nonlinear photonic crystals where nonlinearities
appear due to phase-matched harmonic generation, and, on
the other hand for creating tunable band-gap materials where
gaps could be open or closed, depending on the input inten-
sity and phase matching.
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APPENDIX A: PROPERTIES OF THE TRANSFER
MATRIX

In order to demonstrate some features of linear modes
existing in periodic structures, we consider the properties of
the corresponding transfer matrices. First, we see that a ma-
trix describing changes of the wave amplitudes at the bound-
ary between linear layers,Tr , depends only on the wave
numbers on either side of the interface, as follows from Eq.
~6!. It is also easy to check that the following relation holds:

Tr
( j ,m)[Tr~m j ,m11 ,m j ,m!5Tr~m j ,m11 ,m̃ !Tr~m̃,m j ,m!,

~A1!

where m̃ is arbitrary, and we assume that it is real. Let us
introduce a new matrix,T̃( j )5Tr(m̃,m j ,M11)T( j )Tr(m j ,1 ,m̃),
and use Eq.~A1! to present it in a special form:

T̃( j )5T̃d
( j ,M11)T̃p

( j ,M ) . . . T̃p
( j ,1) .

Here, T̃p
( j ,n)[Tr(m̃,m j ,n)Tp

( j ,n)Tr(m j ,n ,m̃) and T̃d
( j ,n)

[Tr(m̃,m j ,n)Td
( j ,n)Tr(m j ,n ,m̃). It can be verified by direct

substitution that these matrices are real~we use the fact that,
for stationary modes,m j ,n are real or purely imaginary! and
thereforeT̃( j ) is real as well. Finally, we find that Tr(T( j ))
[Tr(T̃( j )) and Ts

( j )/m j ,1[T̃s
( j )/m̃, which proves that coeffi-

cientsj j andh j in Eq. ~9! are real.

APPENDIX B: REFLECTION COEFFICIENTS
FOR THE BAND-GAP MODES

Although it is possible to extend the technique presented
in Appendix A to prove the properties of the reflection coef-
ficients in the case of an infinite linear grating~introduced in
Sec. IV!, here we employ a different approach. We note that

FIG. 9. ~a! Generation of a stable localized mode from an input
FF beam with a Gaussian transverse profile~initial power P.8).
~b! Switching from a perturbed unstable~corresponding tol15
21) to a stable mode. Left: the field intensities of the FF~dashed!
and SH~solid! components at the interface. Right: evolution of the
SH field. Parameters correspond to those in Fig. 8~c!.
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for stationary waves in a band gap there should be no energy
flow along thex axis. The corresponding restrictions follow
from Eq. ~2!:

ImS u
]u*

]x D50, ImS v
]v*

]x D50. ~B1!

These conditions are satisfied when the amplitudes of the
counter-propagating waves coincide, i.e.ur j

6u51 provided
m j

6 is imaginary. On the other hand, for the layers with real
m j

6 the linear modes should be in phase, i.e., Im(r j
6)[0.

Then, it immediately follows that in a band gap the coeffi-
cientsz j

6 are real.
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