155 research outputs found

    Amplitude equations for Rayleigh-Benard convective rolls far from threshold

    Full text link
    An extension of the amplitude method is proposed. An iterative algorithm is developed to build an amplitude equation model that is shown to provide precise quantitative results even far from the linear instability threshold. The method is applied to the study of stationary Rayleigh-Benard thermoconvective rolls in the nonlinear regime. In particular, the generation of second and third spatial harmonics is analyzed. Comparison with experimental results and direct numerical calculations is also made and a very good agreement is found.Peer reviewe

    How do changes in the mtDNA and mitochondrial dysfunction influence cancer and cancer therapy? Challenges, opportunities and models

    Get PDF
    Several mutations in nuclear genes encoding for mitochondrial components have been associated with an increased cancer risk or are even causative, e.g. succinate dehydrogenase (SDHB, SDHC and SDHD genes) and iso-citrate dehydrogenase (IDH1 and IDH2 genes). Recently, studies have suggested an eminent role for mitochondrial DNA (mtDNA) mutations in the development of a wide variety of cancers. Various studies associated mtDNA abnormalities, including mutations, deletions, inversions and copy number alterations, with mitochondrial dysfunction. This might, explain the hampered cellular bioenergetics in many cancer cell types. Germline (e.g. m.10398A>G; m.6253T>C) and somatic mtDNA mutations as well as differences in mtDNA copy number seem to be associated with cancer risk. It seems that mtDNA can contribute as driver or as complementary gene mutation according to the multiple-hit model. This can enhance the mutagenic/clonogenic potential of the cell as observed for m.8993T>G or influences the metastatic potential in later stages of cancer progression. Alternatively, other mtDNA variations will be innocent passenger mutations in a tumor and therefore do not contribute to the tumorigenic or metastatic potential. In this review, we discuss how reported mtDNA variations interfere with cancer treatment and what implications this has on current successful pharmaceutical interventions. Mutations in MT-ND4 and mtDNA depletion have been reported to be involved in cisplatin resistance. Pharmaceutical impairment of OXPHOS by metformin can increase the efficiency of radiotherapy. To study mitochondrial dysfunction in cancer, different cellular models (like ρ0 cells or cybrids), in vivo murine models (xenografts and specific mtDNA mouse models in combination with a spontaneous cancer mouse model) and small animal models (e.g. Danio rerio) could be potentially interesting to use. For future research, we foresee that unraveling mtDNA variations can contribute to personalized therapy for specific cancer types and improve the outcome of the disease

    Spin Injection and Detection in Magnetic Nanostructures

    Full text link
    We study theoretically the spin transport in a nonmagnetic metal connected to ferromagnetic injector and detector electrodes. We derive a general expression for the spin accumulation signal which covers from the metallic to the tunneling regime. This enables us to discuss recent controversy on spin injection and detection experiments. Extending the result to a superconducting device, we find that the spin accumulation signal is strongly enhanced by opening of the superconducting gap since a gapped superconductor is a low carrier system for spin transport but not for charge. The enhancement is also expected in semiconductor devices.Comment: 4 pages, 3 figure

    Renormalized kinetic theory of classical fluids in and out of equilibrium

    Full text link
    We present a theory for the construction of renormalized kinetic equations to describe the dynamics of classical systems of particles in or out of equilibrium. A closed, self-consistent set of evolution equations is derived for the single-particle phase-space distribution function ff, the correlation function C=C=, the retarded and advanced density response functions χR,A=δf/δϕ\chi^{R,A}=\delta f/\delta\phi to an external potential ϕ\phi, and the associated memory functions ΣR,A,C\Sigma^{R,A,C}. The basis of the theory is an effective action functional Ω\Omega of external potentials ϕ\phi that contains all information about the dynamical properties of the system. In particular, its functional derivatives generate successively the single-particle phase-space density ff and all the correlation and density response functions, which are coupled through an infinite hierarchy of evolution equations. Traditional renormalization techniques are then used to perform the closure of the hierarchy through memory functions. The latter satisfy functional equations that can be used to devise systematic approximations. The present formulation can be equally regarded as (i) a generalization to dynamical problems of the density functional theory of fluids in equilibrium and (ii) as the classical mechanical counterpart of the theory of non-equilibrium Green's functions in quantum field theory. It unifies and encompasses previous results for classical Hamiltonian systems with any initial conditions. For equilibrium states, the theory reduces to the equilibrium memory function approach. For non-equilibrium fluids, popular closures (e.g. Landau, Boltzmann, Lenard-Balescu) are simply recovered and we discuss the correspondence with the seminal approaches of Martin-Siggia-Rose and of Rose.and we discuss the correspondence with the seminal approaches of Martin-Siggia-Rose and of Rose.Comment: 63 pages, 10 figure

    Dynamics of Higher Spin Fields and Tensorial Space

    Full text link
    The structure and the dynamics of massless higher spin fields in various dimensions are reviewed with an emphasis on conformally invariant higher spin fields. We show that in D=3,4,6 and 10 dimensional space-time the conformal higher spin fields constitute the quantum spectrum of a twistor-like particle propagating in tensorial spaces of corresponding dimensions. We give a detailed analysis of the field equations of the model and establish their relation with known formulations of free higher spin field theory.Comment: JHEP3 style, 40 pages; v2 typos corrected, comments and references added; v3 published versio

    Measurement of the Charged Multiplicities in b, c and Light Quark Events from Z0 Decays

    Full text link
    Average charged multiplicities have been measured separately in bb, cc and light quark (u,d,su,d,s) events from Z0Z^0 decays measured in the SLD experiment. Impact parameters of charged tracks were used to select enriched samples of bb and light quark events, and reconstructed charmed mesons were used to select cc quark events. We measured the charged multiplicities: nˉuds=20.21±0.10(stat.)±0.22(syst.)\bar{n}_{uds} = 20.21 \pm 0.10 (\rm{stat.})\pm 0.22(\rm{syst.}), nˉc=21.28±0.46(stat.)0.36+0.41(syst.)\bar{n}_{c} = 21.28 \pm 0.46(\rm{stat.}) ^{+0.41}_{-0.36}(\rm{syst.}) nˉb=23.14±0.10(stat.)0.37+0.38(syst.)\bar{n}_{b} = 23.14 \pm 0.10(\rm{stat.}) ^{+0.38}_{-0.37}(\rm{syst.}), from which we derived the differences between the total average charged multiplicities of cc or bb quark events and light quark events: Δnˉc=1.07±0.47(stat.)0.30+0.36(syst.)\Delta \bar{n}_c = 1.07 \pm 0.47(\rm{stat.})^{+0.36}_{-0.30}(\rm{syst.}) and Δnˉb=2.93±0.14(stat.)0.29+0.30(syst.)\Delta \bar{n}_b = 2.93 \pm 0.14(\rm{stat.})^{+0.30}_{-0.29}(\rm{syst.}). We compared these measurements with those at lower center-of-mass energies and with perturbative QCD predictions. These combined results are in agreement with the QCD expectations and disfavor the hypothesis of flavor-independent fragmentation.Comment: 19 pages LaTex, 4 EPS figures, to appear in Physics Letters

    Time-integrated luminosity recorded by the BABAR detector at the PEP-II e+e- collider

    Get PDF
    This article is the Preprint version of the final published artcile which can be accessed at the link below.We describe a measurement of the time-integrated luminosity of the data collected by the BABAR experiment at the PEP-II asymmetric-energy e+e- collider at the ϒ(4S), ϒ(3S), and ϒ(2S) resonances and in a continuum region below each resonance. We measure the time-integrated luminosity by counting e+e-→e+e- and (for the ϒ(4S) only) e+e-→μ+μ- candidate events, allowing additional photons in the final state. We use data-corrected simulation to determine the cross-sections and reconstruction efficiencies for these processes, as well as the major backgrounds. Due to the large cross-sections of e+e-→e+e- and e+e-→μ+μ-, the statistical uncertainties of the measurement are substantially smaller than the systematic uncertainties. The dominant systematic uncertainties are due to observed differences between data and simulation, as well as uncertainties on the cross-sections. For data collected on the ϒ(3S) and ϒ(2S) resonances, an additional uncertainty arises due to ϒ→e+e-X background. For data collected off the ϒ resonances, we estimate an additional uncertainty due to time dependent efficiency variations, which can affect the short off-resonance runs. The relative uncertainties on the luminosities of the on-resonance (off-resonance) samples are 0.43% (0.43%) for the ϒ(4S), 0.58% (0.72%) for the ϒ(3S), and 0.68% (0.88%) for the ϒ(2S).This work is supported by the US Department of Energy and National Science Foundation, the Natural Sciences and Engineering Research Council (Canada), the Commissariat à l’Energie Atomique and Institut National de Physique Nucléaire et de Physiquedes Particules (France), the Bundesministerium für Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany), the Istituto Nazionale di Fisica Nucleare (Italy), the Foundation for Fundamental Research on Matter (The Netherlands), the Research Council of Norway, the Ministry of Education and Science of the Russian Federation, Ministerio de Ciencia e Innovación (Spain), and the Science and Technology Facilities Council (United Kingdom). Individuals have received support from the Marie-Curie IEF program (European Union) and the A.P. Sloan Foundation (USA)

    e-Transmission of ECGs for expert consultation results in improved triage and treatment of patients with acute ischaemic chest pain by ambulance paramedics

    Get PDF
    Aims: In pre-hospital settings handled by paramedics, identification of patients with myocardial infarction (MI) remains challenging when automated electrocardiogram (ECG) interpretation is inconclusive. We aimed to identify those patients and to get them on the right track to primary percutaneous coronary intervention (PCI). Methods and results: In the Rotterdam-Rijnmond region, automated ECG devices on all ambulances were supplemented with a modem, enabling transmission of ECGs for online expert interpretation. The diagnostic protocol for acute chest pain was modified and monitored for 1 year. Patients with an ECG that met the criteria for ST-elevation myocardial infarction (STEMI) were immediately transported to a PCI hospital. ECGs that did not meet the STEMI criteria, but showed total ST deviation ≥800 µv were transmitted for online interpretation by the ECG expert. Online supervision was offered as a service if ECGs showed conduction disorders, or had an otherwise ‘suspicious’ pattern according to the ambulance paramedics. We enrolled 1,076 patients with acute ischaemic chest pain who did not meet the automated STEMI criteria. Their mean age was 63 years; 64% were men. After online consultation, 735 (68%) patients were directly transported to a PCI hospital for further treatment. PCI within 90 min was performed in 115 patients. Conclusion: During a 1-year evaluation of the modified pre-hospital triage protocol for patients with acute ischaemic chest pain, over 100 acute MI patients with an initially inconclusive ECG received primary PCI within 90 min. Because of these results, we decided to continue the operation of the modified protocol
    corecore