177 research outputs found
Movement Demands of Elite U20 International Rugby Union Players
The purpose of this study was to quantify movement demands of elite international age grade (U20) rugby union players during competitive tournament match play. Forty elite professional players from an U20 international performance squad were monitored using 10 Hz global positioning systems (GPS) during 15 international tournament matches during the 2014/15 and 2015/16 seasons. Data on distances, velocities, accelerations, decelerations, high metabolic load (HML) distance and efforts, and number of sprints were derived. Data files from players who played over 60 min (n = 161) were separated firstly into Forwards and Backs, and more specifically into six positional groups; FR--Front Row (prop & hooker), SR--Second Row, BR--Back Row (Flankers & No.8), HB--Half Backs (scrum half & outside half), MF--Midfield (centres), B3--Back Three (wings & full back) for match analysis. Analysis revealed significant differences between forwards and backs positions. Backs scored higher on all variables measured with the exception of number of moderate accelerations, decelerations (no difference). The centres covered the greatest total distance with the front row covering the least (6.51 ± 0.71 vs 4.97 ± 0.75 km, p < 0.001). The front row also covered the least high speed running (HSR) distance compared to the back three (211.6 ± 112.7 vs 728.4 ± 150.2 m, p < 0.001) who covered the most HSR distance, affirming that backs cover greater distances but forwards have greater contact loads. These findings highlight for the first time differences in the movement characteristics of elite age grade rugby union players specific to positional roles
WIMU instrumentation of skeleton "ASSASSIN" trainer & sled
Skeleton is a high‐speed Winter Olympic sport performed on the same twisting, downhill ice tracks used for Bobsleigh & Luge. The single rider sprints and pushes their sled for 20‐30m on a level start section before loading and going through a twisting course of over 1km, at speeds up to 140km/h, experiencing up to 5g. In competition, the top athletes can be within a fraction of a second of each other. The initial short pushing period is believed to be critical to overall performance but it is not well understood. A collaborative project between University of Bath, UK Sport and Tyndall National Institute is instrumenting skeleton athletes, training equipment and test tracks with Tyndall’s Wireless Inertial Measurement Unit technology in order to investigate and improve understanding of this phase of a skeleton run. It is hoped this will lead to improved training regimes and better performance of such elite, Olympic level athletes. This work presents an initial look at the system as implemented and data recorded
Movement Demands of Elite Under-20s and Senior International Rugby Union Players
This study compared the movement demands of elite international Under-20 age grade (U20s) and senior international rugby union players during competitive tournament match play. Forty elite professional players from an U20 and 27 elite professional senior players from international performance squads were monitored using 10Hz global positioning systems (GPS) during 15 (U20s) and 8 (senior) international tournament matches during the 2014 and 2015 seasons. Data on distances, velocities, accelerations, decelerations, high metabolic load (HML) distance and efforts, and number of sprints were derived. Data files from players who played over 60 min (n = 258) were separated firstly into Forwards and Backs, and more specifically into six positional groups; FR–Front Row (prop & hooker), SR–Second Row, BR–Back Row (Flankers & No.8), HB–Half Backs (scrum half & outside half), MF–Midfield (centres), B3 –Back Three (wings & full back) for match analysis. Linear mixed models revealed significant differences between U20 and senior teams in both the forwards and backs. In the forwards the seniors covered greater HML distance (736.4 ± 280.3 vs 701.3 ± 198.7m, p = 0.01) and severe decelerations (2.38 ± 2.2 vs 2.28 ± 1.65, p = 0.05) compared to the U20s, but performed less relative HSR (3.1 ± 1.6 vs 3.2 ± 1.5, p < 0.01), moderate (19.4 ± 10.5 vs 23.6 ± 10.5, p = 0.01) and high accelerations (2.2 ± 1.9 vs 4.3 ± 2.7, p < 0.01) and sprint•min-1 (0.11 ± 0.06 vs 0.11 ± 0.05, p < 0.01). Senior backs covered a greater relative distance (73.3 ± 8.1 vs 69.1 ± 7.6 m•min-1, p < 0.01), greater High Metabolic Load (HML) distance (1138.0 ± 233.5 vs 1060.4 ± 218.1m, p < 0.01), HML efforts (112.7 ± 22.2 vs 98.8 ± 21.7, p < 0.01) and heavy decelerations (9.9 ± 4.3 vs 9.5 ± 4.4, p = 0.04) than the U20s backs. However, the U20s backs performed more relative HSR (7.3 ± 2.1 vs 7.2 ± 2.1, p <0.01) and sprint•min-1 (0.26 ± 0.07 vs 0.25 ± 0.07, p < 0.01). Further investigation highlighted differences between the 6 positional groups of the teams. The positional groups that differed the most on the variables measured were the FR and MF groups, with the U20s FR having higher outputs on HSR, moderate & high accelerations, moderate, high & severe decelerations, HML distance, HML efforts, and sprints•min-1. For the MF group the senior players produced greater values for relative distance covered, HSR, moderate decelerations, HML distance and sprint•min-1. The BR position group was most similar with the only differences seen on heavy accelerations (U20s higher) and moderate decelerations (seniors higher). Findings demonstrate that U20s internationals appear to be an adequate ‘stepping stone’ for preparing players for movement characteristics found senior International rugby, however, the current study highlight for the first time that certain positional groups may require more time to be able to match the movement demands required at a higher playing level than others. Conditioning staff must also bear in mind that the U20s players whilst maintaining or improving match movement capabilities may require to gain substantial mass in some positions to match their senior counterparts
Injury prevention strategies at the FIFA 2014 World Cup: perceptions and practices of the physicians from the 32 participating national teams
Purpose The available scientific research regarding injury prevention practices in international football is sparse. The purpose of this study was to quantify current practice with regard to (1) injury prevention of top-level footballers competing in an international tournament, and (2) determine the main challenges and issues faced by practitioners in these national teams.
Methods A survey was administered to physicians of the 32 competing national teams at the FIFA 2014 World Cup. The survey included 4 sections regarding perceptions and practices concerning non-contact injuries: (1) risk factors, (2) screening tests and monitoring tools, (3) preventative strategies and (4) reflection on their experience at the World Cup.
Results Following responses from all teams (100%), the present study revealed the most important intrinsic (previous injury, accumulated fatigue, agonist:antagonist muscle imbalance) and extrinsic (reduced recovery time, training load prior to and during World Cup, congested fixtures) risk factors during the FIFA 2014 World Cup. The 5 most commonly used tests for risk factors were:
flexibility, fitness, joint mobility, balance and strength; monitoring tools commonly used were: medical screen, minutes/matches played, subjective and objective wellness, heart rate and biochemical markers. The 5 most important preventative exercises were: flexibility,
core, combined contractions, balance and eccentric.
Conclusions The present study showed that many of the National football (soccer) teams’ injury prevention perceptions and practices follow a coherent approach. There remains, however, a lack of consistent research findings to support some of these perceptions and practices
Risk evaluation in professional football
Risk management is composed of three major elements viz., hazard identification, risk
estimation and risk evaluation. The aim of hazard identification and risk estimation is to
identify the outcomes from risk, the magnitude of the associated con&quences from risk, and
the estimation of the probabilities of these outcomes. Previous work focused on hazard
identification and risk estimation and identified the relatively high risks associated with
playing professional football. By adhering to the risk management process, the aim of this
thesis was to determine the significance of these high risks to football clubs and their players.
A theoretical framework was designed to evaluate the influence of player injury on the
financial and playing performance of professional football clubs. This framework was also
used to assess, through use of cost benefit analysis, the practicalities of investing in suitable
injury prevention strategies, to reduce the risks to football clubs and their players. Former
professional footballers were surveyed to investigate the long-term medical and socioeconomic
consequences associated with the high risks of playing professional football.
The results identified the high financial costs associated with player injury on professional
football clubs. Although the high risks of player injury have a relatively minor effect on teamperformance
of the Premier League clubs, this effect still has a relatively major influence on
the financial performance of the club. In contrast, the influence of player injury to teamperformance
was relatively major for Division I and Division 2 clubs, but this had a relatively
minor effect on financial performance. The application of cost benefit analysis to the
investment of specialist personnel to reduce the risks of injury demonstrated that the
proposals were practicable for Premier League and Division I clubs only. In addition, it was
also demonstrated that the high risks associated with playing professional football have a
significant influence on the long-term well-being of foriner players. One-third of former
players had been medically diagnosed osteoarthritic in a lower limb joint. The majority of
players also perceived that injury had a negative influence on their present and future welfare.
The results demonstrate that the consequences associated with the relatively high acute injury
risk also have a significant effect on the financial and playing performance of football clubs
and the future welfare of their players
Geodesic motion around a supersymmetric AdS5 black hole
In this article the geodesic motion of test particles in the spacetime of a
supersymmetric AdS black hole is studied. The equations of motion are
derived and solved in terms of the Weierstrass , and
functions. Effective potentials and parametric diagrams are used to analyze and
characterize timelike, lightlike and spacelike particle motion and a list of
possible orbit types is given. Furthermore, various plots of orbits are
presented.Comment: 15 pages, 13 figure
Mobility, proprioception, strength and FMS as predictors of injury in professional footballers
Background The premise of this study was to investigate if anthropometric variables such as mobility, proprioception, strength and modified Functional Movement Screen (mFMS) could be used as primary indicators of injury risk in an English Championship division football team. This study focused on moderate injuries occurring in the lower extremities, during the 2014/2015 competitive season.
Methods To differentiate between minor, moderate and severe injuries, this study classified moderate injuries as an injury with an average injury severity of 2–28 days. This study is composed of 4 individual investigations. Each variable was assessed against 2 groups: injured (n=6) and non-injured (n=10). The 2 groups were compiled from the first team, with the criteria that each participant of this study required: full preseason assessment and injury history for the time period, 1 July 2014 to 19 March 2015. A Mann-Whitney U test (0.05% significance) was applied to statistically analyse if each variable showed any variation across the 2 groups. Effect size was estimated with Cliff's d.
Results Strength asymmetry displayed significant difference (p=0.007), mobility, proprioception and mFMS did not (p=0.263, p=0.792 and p=0.181, respectively). Mean scores for mobility, proprioception, strength asymmetry and mFMS for injured versus non-injured players (effect size) were: 40.00 vs 38.00 (0.37), 10.33 vs 10.20 (0.10), 61.13 vs 30.40 (0.80) and 7.33 vs 8.90 (−0.4), respectively.
Conclusions This study found no relationship between mobility/proprioception and injury risk; however, strength asymmetry was statistically significant in predicting injury and mFMS exhibited enough positive difference for recommendation of further investigation
Acute caffeine ingestion's increase of voluntarily chosen resistance-training load after limited sleep
- …
