92 research outputs found

    Plant Defensins NaD1 and NaD2 Induce Different Stress Response Pathways in Fungi

    Get PDF
    Nicotiana alata defensins 1 and 2 (NaD1 and NaD2) are plant defensins from the ornamental tobacco that have antifungal activity against a variety of fungal pathogens. Some plant defensins interact with fungal cell wall O-glycosylated proteins. Therefore, we investigated if this was the case for NaD1 and NaD2, by assessing the sensitivity of the three Aspergillus nidulans (An) O-mannosyltransferase (pmt) knockout (KO) mutants (AnDpmtA, AnDpmtB, and AnDpmtC). AnDpmtA was resistant to both defensins, while AnDpmtC was resistant to NaD2 only, suggesting NaD1 and NaD2 are unlikely to have a general interaction with O-linked side chains. Further evidence of this difference in the antifungal mechanism was provided by the dissimilarity of the NaD1 and NaD2 sensitivities of the Fusarium oxysporum f. sp. lycopersici (Fol) signalling knockout mutants from the cell wall integrity (CWI) and high osmolarity glycerol (HOG) mitogen-activated protein kinase (MAPK) pathways. HOG pathway mutants were sensitive to both NaD1 and NaD2, while CWI pathway mutants only displayed sensitivity to NaD

    Molecular characterisation and genetic mapping of candidate genes for qualitative disease resistance in perennial ryegrass (Lolium perenne L.)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Qualitative pathogen resistance in both dicotyledenous and monocotyledonous plants has been attributed to the action of resistance (R) genes, including those encoding nucleotide binding site – leucine rich repeat (NBS-LRR) proteins and receptor-like kinase enzymes. This study describes the large-scale isolation and characterisation of candidate R genes from perennial ryegrass. The analysis was based on the availability of an expressed sequence tag (EST) resource and a functionally-integrated bioinformatics database.</p> <p>Results</p> <p>Amplification of R gene sequences was performed using template EST data and information from orthologous candidate using a degenerate consensus PCR approach. A total of 102 unique partial R genes were cloned, sequenced and functionally annotated. Analysis of motif structure and R gene phylogeny demonstrated that <it>Lolium </it>R genes cluster with putative ortholoci, and evolved from common ancestral origins. Single nucleotide polymorphisms (SNPs) predicted through resequencing of amplicons from the parental genotypes of a genetic mapping family were validated, and 26 distinct R gene loci were assigned to multiple genetic maps. Clusters of largely non-related NBS-LRR genes were located at multiple distinct genomic locations and were commonly found in close proximity to previously mapped defence response (DR) genes. A comparative genomics analysis revealed the co-location of several candidate R genes with disease resistance quantitative trait loci (QTLs).</p> <p>Conclusion</p> <p>This study is the most comprehensive analysis to date of qualitative disease resistance candidate genes in perennial ryegrass. SNPs identified within candidate genes provide a valuable resource for mapping in various ryegrass pair cross-derived populations and further germplasm analysis using association genetics. In parallel with the use of specific pathogen virulence races, such resources provide the means to identify gene-for-gene mechanisms for multiple host pathogen-interactions and ultimately to obtain durable field-based resistance.</p

    Genetic Analysis of the Interaction Between the Host Perennial Ryegrass and the Crown Rust Pathogen (\u3cem\u3ePuccinia Coronata\u3c/em\u3e F.SP. \u3cem\u3eLolii\u3c/em\u3e)

    Get PDF
    Crown rust (Puccinia coronata f.sp lolii) is the most important fungal pathogen of perennial ryegrass (L.perenne L.). The physiological effects associated with infection include reduction of water soluble carbohydrate (WSC) reserves, causing decreased dry matter yield, digestibility and palatability for herbivores reared for meat, milk and wool production. Phenotypic variability of rust-infection in perennial ryegrass is likely to be due to environmental effects, as well as the interaction of defence and resistance genes in the grass and virulence genes in the pathogen. Classical and molecular genetic marker-based studies have previously detected both qualitative and quantitative resistance, due respectively to major genes and quantitative trait loci (QTL). In addition, evidence for physiological race variation has been demonstrated for P. coronata f.sp. avenae, the causative organisms of crown rust in oat, and has been inferred for P. coronata f.sp. lolii. Evaluation of genotypic variation in both the host and pathogen is consequently important for the analysis of the interaction

    High-Density Mapping of Triple Rust Resistance in Barley Using DArT-Seq Markers

    Get PDF
    The recent availability of an assembled and annotated genome reference sequence for the diploid crop barley (Hordeum vulgare L.) provides new opportunities to study the genetic basis of agronomically important traits such as resistance to stripe [Puccinia striiformis f. sp. hordei (Psh)], leaf [P. hordei (Ph)], and stem [P. graminis f. sp. tritici (Pgt)] rust diseases. The European barley cultivar Pompadour is known to possess high levels of resistance to leaf rust, predominantly due to adult plant resistance (APR) gene Rph20. We developed a barley recombinant inbred line (RIL) population from a cross between Pompadour and the leaf rust and stripe rust susceptible selection Biosaline-19 (B-19), and genotyped this population using DArT-Seq genotyping by sequencing (GBS) markers. In the current study, we produced a high-density linkage map comprising 8,610 (SNP and in silico) markers spanning 5957.6 cM, with the aim of mapping loci for resistance to leaf rust, stem rust, and stripe rust. The RIL population was phenotyped in the field with Psh (Mexico and Ecuador) and Ph (Australia) and in the greenhouse at the seedling stage with Australian Ph and Pgt races, and at Wageningen University with a European variant of Psh race 24 (PshWUR). For Psh, we identified a consistent field QTL on chromosome 2H across all South American field sites and years. Two complementary resistance genes were mapped to chromosomes 1H and 4H at the seedling stage in response to PshWUR, likely to be the loci rpsEm1 and rpsEm2 previously reported from the cultivar Emir from which Pompadour was bred. For leaf rust, we determined that Rph20 in addition to two minor-effect QTL on 1H and 3H were effective at the seedling stage, whilst seedling resistance to stem rust was due to QTL on chromosomes 3H and 7H conferred by Pompadour and B-19, respectively

    Ethnobotany and antimicrobial peptide from plants of Solanaceae family: An update and future prospect

    Get PDF
    The Solanaceae is an important plant family that has been playing an essential role in traditional medicine and human nutrition. Members of the Solanaceae are rich in bioactive metabolites and have been used by different tribes around the world for ages. Antimicrobial peptides (AMPs) from plants have drawn great interest in recent years and raised new hope for developing new antimicrobial agents for meeting the challenges of antibiotic resistance. This review aims to summarize the reported AMPs from plants of the Solanaceae with possible molecular mechanisms of action as well as to correlate their traditional uses with reported antimicrobial actions of the peptides. A systematic literature study was conducted using different databases until August 2019 based on the inclusion and exclusion criteria. According to literature, a variety of AMPs including defensins, protease inhibitor, lectins, thionin-like peptides, vicilin-like peptides, and snaking were isolated from plants of the Solanaceae and were involved in their defense mechanism. These peptides exhibited significant antibacterial, antifungal and antiviral activity against organisms for both plant and human host. Brugmansia, Capsicum, Datura, Nicotiana, Salpichora, Solanum, Petunia, and Withania are the most commonly studied genera for AMPs. Among these genera, Capsicum and the Solanum ranked top according to the total number of studies (35%–38% studies) for different AMPs. The mechanisms of action of the reported AMPs from Solanaceae was not any new rather similar to other reported AMPs including alteration of membrane potential and permeability, membrane pore formation, and cell aggregation. Whereas, induction of cell membrane permiabilization, inhibition of germination and alteration of hyphal growth were reported as mechanisms of antifungal activity. Plants of the Solanaceae have been used traditionally as antimicrobial, insecticidal, and antiinfectious agents, and as poisons. The reported AMPs from the Solanaceae are the products of chemical shields to protect plants from microorganisms and pests which unfold an obvious link with their traditional medicinal use. In summary, it is evident that AMPs from this family possess considerable antimicrobial activity against a wide range of bacterial and fungal pathogens and can be regarded as a potential source for lead molecules to develop new antimicrobial agents

    Gene discovery in EST sequences from the wheat leaf rust fungus Puccinia triticina sexual spores, asexual spores and haustoria, compared to other rust and corn smut fungi

    Get PDF
    © 2011 Xu et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.DOI: 10.1186/1471-2164-12-161Background.Rust fungi are biotrophic basidiomycete plant pathogens that cause major diseases on plants and trees world-wide, affecting agriculture and forestry. Their biotrophic nature precludes many established molecular genetic manipulations and lines of research. The generation of genomic resources for these microbes is leading to novel insights into biology such as interactions with the hosts and guiding directions for breakthrough research in plant pathology. Results. To support gene discovery and gene model verification in the genome of the wheat leaf rust fungus, Puccinia triticina (Pt), we have generated Expressed Sequence Tags (ESTs) by sampling several life cycle stages. We focused on several spore stages and isolated haustorial structures from infected wheat, generating 17,684 ESTs. We produced sequences from both the sexual (pycniospores, aeciospores and teliospores) and asexual (germinated urediniospores) stages of the life cycle. From pycniospores and aeciospores, produced by infecting the alternate host, meadow rue (Thalictrum speciosissimum), 4,869 and 1,292 reads were generated, respectively. We generated 3,703 ESTs from teliospores produced on the senescent primary wheat host. Finally, we generated 6,817 reads from haustoria isolated from infected wheat as well as 1,003 sequences from germinated urediniospores. Along with 25,558 previously generated ESTs, we compiled a database of 13,328 non-redundant sequences (4,506 singlets and 8,822 contigs). Fungal genes were predicted using the EST version of the self-training GeneMarkS algorithm. To refine the EST database, we compared EST sequences by BLASTN to a set of 454 pyrosequencing-generated contigs and Sanger BAC-end sequences derived both from the Pt genome, and to ESTs and genome reads from wheat. A collection of 6,308 fungal genes was identified and compared to sequences of the cereal rusts, Puccinia graminis f. sp. tritici (Pgt) and stripe rust, P. striiformis f. sp. tritici (Pst), and poplar leaf rust Melampsora species, and the corn smut fungus, Ustilago maydis (Um). While extensive homologies were found, many genes appeared novel and species-specific; over 40% of genes did not match any known sequence in existing databases. Focusing on spore stages, direct comparison to Um identified potential functional homologs, possibly allowing heterologous functional analysis in that model fungus. Many potentially secreted protein genes were identified by similarity searches against genes and proteins of Pgt and Melampsora spp., revealing apparent orthologs. Conclusions. The current set of Pt unigenes contributes to gene discovery in this major cereal pathogen and will be invaluable for gene model verification in the genome sequence
    corecore