191 research outputs found

    Definition of Mafa-A and -B haplotypes in pedigreed cynomolgus macaques (Macaca fascicularis)

    Get PDF
    The major histocompatibility complex (MHC) class I B gene/allelic repertoire was investigated in a pedigreed population of cynomolgus macaques of mixed Indonesian/Malaysian origin. The Mafa-B alleles detected in this cohort are mostly specific for a given geographic area, and only a small number of alleles appears to be shared with other populations. This suggests the fast evolution of Mafa-B alleles due to adaptation to new environments. In contrast to humans, the B locus in Old World monkeys displays extensive copy number variation. The Mafa-B and previously defined -A gene combinations segregate in families and thus allowed the definition of extended haplotypes. In many cases it was possible to assign a particular Mafa-I allele to one of these Mafa-A/B haplotypes as well. The presence of a large number of stable haplotypes in this cohort of animals, which was pedigreed for up to eight generations, looks promising for developing discriminative MHC typing tools that are less cumbersome. Furthermore, the discovery of 53 unreported Mafa-B sequences expands the lexicon of alleles significantly, and may help in understanding the complex organisation of the macaque B region

    Extensive DRB region diversity in cynomolgus macaques: recombination as a driving force

    Get PDF
    The DR region of primate species is generally complex and displays diversity concerning the number and combination of distinct types of DRB genes present per region configuration. A highly variable short tandem repeat (STR) present in intron 2 of nearly all primate DRB genes can be utilized as a quick and accurate high through-put typing procedure. This approach resulted previously in the description of unique and haplotype-specific DRB-STR length patterns in humans, chimpanzees, and rhesus macaques. For the present study, a cohort of 230 cynomolgus monkeys, including self-sustaining breeding groups, has been examined. MtDNA analysis showed that most animals originated from the Indonesian islands, but some are derived from the mainland, south and north of the Isthmus of Kra. Haplotyping and subsequent sequencing resulted in the detection of 118 alleles, including 28 unreported ones. A total of 49 Mafa-DRB region configurations were detected, of which 28 have not yet been described. Humans and chimpanzees possess a low number of different DRB region configurations in concert with a high degree of allelic variation. In contrast, however, allelic heterogeneity within a given Mafa-DRB configuration is even less frequently observed than in rhesus macaques. Several of these region configurations appear to have been generated by recombination-like events, most probably propagated by a retroviral element mapping within DRB6 pseudogenes, which are present on the majority of haplotypes. This undocumented high level of DRB region configuration-associated diversity most likely represents a species-specific strategy to cope with various pathogens

    Improved Xenobiotic Metabolism and Reduced Susceptibility to Cancer in Gluten-Sensitive Macaques upon Introduction of a Gluten-Free Diet

    Get PDF
    A non-human primate (NHP) model of gluten sensitivity was employed to study the gene perturbations associated with dietary gluten changes in small intestinal tissues from gluten-sensitive rhesus macaques (Macaca mulatta).Stages of remission and relapse were accomplished in gluten-sensitive animals by administration of gluten-free (GFD) and gluten-containing (GD) diets, as described previously. Pin-head-sized biopsies, obtained non-invasively by pediatric endoscope from duodenum while on GFD or GD, were used for preparation of total RNA and gene profiling, using the commercial Rhesus Macaque Microarray (Agilent Technologies),targeting expression of over 20,000 genes.When compared with normal healthy control, gluten-sensitive macaques showed differential gene expressions induced by GD. While observed gene perturbations were classified into one of 12 overlapping categories--cancer, metabolism, digestive tract function, immune response, cell growth, signal transduction, autoimmunity, detoxification of xenobiotics, apoptosis, actin-collagen deposition, neuronal and unknown function--this study focused on cancer-related gene networks such as cytochrome P450 family (detoxification function) and actin-collagen-matrix metalloproteinases (MMP) genes.A loss of detoxification function paralleled with necessity to metabolize carcinogens was revealed in gluten-sensitive animals while on GD. An increase in cancer-promoting factors and a simultaneous decrease in cancer-preventing factors associated with altered expression of actin-collagen-MMP gene network were noted. In addition, gluten-sensitive macaques showed reduced number of differentially expressed genes including the cancer-associated ones upon withdrawal of dietary gluten. Taken together, these findings indicate potentially expanded utility of gluten-sensitive rhesus macaques in cancer research

    Genomic plasticity of the MHC class I A region in rhesus macaques: extensive haplotype diversity at the population level as revealed by microsatellites

    Get PDF
    The Mamu-A genes of the rhesus macaque show different degrees of polymorphism, transcription level variation, and differential haplotype distribution. Per haplotype, usually one “major” transcribed gene is present, A1 (A7), in various combinations with “minor” genes, A2 to A6. In silico analysis of the physical map of a heterozygous animal revealed the presence of similar Mamu-A regions consisting of four duplication units, but with dissimilar positions of the A1 genes on both haplotypes, and in combination with different minor genes. Two microsatellites, D6S2854 and D6S2859, have been selected as potential tools to characterize this complex region. Subsequent analysis of a large breeding colony resulted in the description of highly discriminative patterns, displaying copy number variation in concert with microsatellite repeat length differences. Sequencing and segregation analyses revealed that these patterns are unique for each Mamu-A haplotype. In animals of Indian, Burmese, and Chinese origin, 19, 15, or 9 haplotypes, respectively, could be defined, illustrating the occurrence of differential block duplications and subsequent rearrangements by recombination. The haplotypes can be assigned to 12 unique combinations of genes (region configurations). Although most configurations harbor two transcribed A genes, one or three genes per haplotype are also present. Additionally, haplotypes lacking an A1 gene or with an A1 duplication appear to exist. The presence of different transcribed A genes/alleles in monkeys from various origins may have an impact on differential disease susceptibilities. The high-throughput microsatellite technique will be a valuable tool in animal selection for diverse biomedical research projects

    A snapshot of the Mamu-B genes and their allelic repertoire in rhesus macaques of Chinese origin

    Get PDF
    The major histocompatibility complex class I gene repertoire was investigated in a large panel of rhesus macaques of Chinese origin. As observed in Indian animals, subjects of Chinese derivation display Mamu-B gene copy number variation, and the sum of expressed genes varies among haplotypes. In addition, these genes display differential transcription levels. The majority of the Mamu-B alleles discovered during this investigation appear to be unique for the population studied. Only one particular Mamu-B haplotype is shared between Indian and Chinese animals, and it must have been present in the progenitor stock. Hence, the data highlight the fact that most allelic polymorphism, and most of the Mamu-B haplotypes themselves, are of relatively recent origin and were most likely generated after the separation of the Indian and Chinese rhesus macaque populations

    Antibodies Against Human BLyS and APRIL Attenuate EAE Development in Marmoset Monkeys

    Get PDF
    B lymphocyte stimulator (BLyS, also indicated as BAFF (B-cell activating factor) and CD257), and A Proliferation Inducing Ligand (APRIL, CD256) are two members of the TNF superfamily with a central role in B cell survival. Antibodies against these factors have potential therapeutic relevance in autoimmune inflammatory disorders with a proven pathogenic contribution of B cells, such as multiple sclerosis (MS). In the current study we performed a multi-parameter efficacy comparison of monoclonal antibodies against human anti-BLyS and anti-APRIL in a common marmoset (Callithrix jacchus) model of experimental autoimmune encephalomyelitis (EAE). A MS-like disease was induced by immunization with recombinant human myelin/oligodendrocyte glycoprotein (rhMOG) in complete Freund's adjuvant. The results show that the anti-BLyS and anti-APRIL antibody cause significant depletion of circulating CD20+ B cells, but a small subset of CD20 + CD40highB cells was not depleted. Induction of CD20+ B cell depletion from lymph nodes was only observed in the anti-BLyS treated monkeys. Both antibodies had a significant inhibitory effect on disease development, but all monkeys developed clinically evident EAE. Anti-BLyS treated monkeys were sacrificed with the same clinical signs as saline-treated monkeys, but nevertheless displayed significantly reduced spinal cord demyelination. This effect was not observed in the anti-APRIL treated monkeys. The two antibodies had a different effect on T cell subset activation and the profiles of ex vivo released cytokines. In conclusion, treatment with anti-BLyS and anti-APRIL delays the development of neurological disease in a relevant preclinical model of MS. The two mAbs achieve this effect via different mechanisms

    MHC class I A region diversity and polymorphism in macaque species

    Get PDF
    The HLA-A locus represents a single copy gene that displays abundant allelic polymorphism in the human population, whereas, in contrast, a nonhuman primate species such as the rhesus macaque (Macaca mulatta) possesses multiple HLA-A-like (Mamu-A) genes, which parade varying degrees of polymorphism. The number and combination of transcribed Mamu-A genes present per chromosome display diversity in a population of Indian animals. At present, it is not clearly understood whether these different A region configurations are evolutionarily stable entities. To shed light on this issue, rhesus macaques from a Chinese population and a panel of cynomolgus monkeys (Macaca fascicularis) were screened for various A region-linked variations. Comparisons demonstrated that most A region configurations are old entities predating macaque speciation, whereas most allelic variation (>95%) is of more recent origin. The latter situation contrasts the observations of the major histocompatibility complex class II genes in rhesus and cynomolgus macaques, which share a high number of identical alleles (>30%) as defined by exon 2 sequencing

    Controlled Chaos of Polymorphic Mucins in a Metazoan Parasite (Schistosoma mansoni) Interacting with Its Invertebrate Host (Biomphalaria glabrata)

    Get PDF
    Invertebrates were long thought to possess only a simple, effective and hence non-adaptive defence system against microbial and parasitic attacks. However, recent studies have shown that invertebrate immunity also relies on immune receptors that diversify (e.g. in echinoderms, insects and mollusks (Biomphalaria glabrata)). Apparently, individual or population-based polymorphism-generating mechanisms exists that permit the survival of invertebrate species exposed to parasites. Consequently, the generally accepted arms race hypothesis predicts that molecular diversity and polymorphism also exist in parasites of invertebrates. We investigated the diversity and polymorphism of parasite molecules (Schistosoma mansoni Polymorphic Mucins, SmPoMucs) that are key factors for the compatibility of schistosomes interacting with their host, the mollusc Biomphalaria glabrata. We have elucidated the complex cascade of mechanisms acting both at the genomic level and during expression that confer polymorphism to SmPoMuc. We show that SmPoMuc is coded by a multi-gene family whose members frequently recombine. We show that these genes are transcribed in an individual-specific manner, and that for each gene, multiple splice variants exist. Finally, we reveal the impact of this polymorphism on the SmPoMuc glycosylation status. Our data support the view that S. mansoni has evolved a complex hierarchical system that efficiently generates a high degree of polymorphism—a “controlled chaos”—based on a relatively low number of genes. This contrasts with protozoan parasites that generate antigenic variation from large sets of genes such as Trypanosoma cruzi, Trypanosoma brucei and Plasmodium falciparum. Our data support the view that the interaction between parasites and their invertebrate hosts are far more complex than previously thought. While most studies in this matter have focused on invertebrate host diversification, we clearly show that diversifying mechanisms also exist on the parasite side of the interaction. Our findings shed new light on how and why invertebrate immunity develops

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≄20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≀pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≀{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal
    • 

    corecore