35 research outputs found
Montane Temperate-Boreal Forests Retain the Leaf Economic Spectrum Despite Intraspecific Variability
Trait-based analyses provide powerful tools for developing a generalizable, physiologically grounded understanding of how forest communities are responding to ongoing environmental changes. Key challenges lie in (1) selecting traits that best characterize the ecological performance of species in the community and (2) determining the degree and importance of intraspecific variability in those traits. Recent studies suggest that globally evident trait correlations (trait dimensions), such as the leaf economic spectrum, may be weak or absent at local scales. Moreover, trait-based analyses that utilize a mean value to represent a species may be misleading. Mean trait values are particularly problematic if species trait value rankings change along environmental gradients, resulting in species trait crossover. To assess how plant traits (1) covary at local spatial scales, (2) vary across the dominant environmental gradients, and (3) can be partitioned within and across taxa, we collected data on 9 traits for 13 tree species spanning the montane temperate—boreal forest ecotones of New York and northern New England. The primary dimension of the trait ordination was the leaf economic spectrum, with trait variability among species largely driven by differences between deciduous angiosperms and evergreen gymnosperms. A second dimension was related to variability in nitrogen to phosphorous levels and stem specific density. Levels of intraspecific trait variability differed considerably among traits, and was related to variation in light, climate, and tree developmental stage. However, trait rankings across species were generally conserved across these gradients and there was little evidence of species crossover. The persistence of the leaf economics spectrum in both temperate and high-elevation conifer forests suggests that ecological strategies of tree species are associated with trade-offs between resource acquisition and tolerance, and may be quantified with relatively few traits. Furthermore, the assumption that species may be represented with a single trait value may be warranted for some trait-based analyses provided traits were measured under similar light levels and climate conditions
Black hole accretion disks in the canonical low-hard state
Stellar-mass black holes in the low-hard state may hold clues to jet
formation and basic accretion disk physics, but the nature of the accretion
flow remains uncertain. A standard thin disk can extend close to the innermost
stable circular orbit, but the inner disk may evaporate when the mass accretion
rate is reduced. Blackbody-like continuum emission and dynamically-broadened
iron emission lines provide independent means of probing the radial extent of
the inner disk. Here, we present an X-ray study of eight black holes in the
low-hard state. A thermal disk continuum with a colour temperature consistent
with is clearly detected in all eight sources, down to
. In six sources, disk models exclude a
truncation radius larger than 10rg. Iron-ka fluorescence line emission is
observed in half of the sample, down to luminosities of
. Detailed fits to the line profiles exclude a
truncated disk in each case. If strong evidence of truncation is defined as (1)
a non-detection of a broad iron line, {\it and} (2) an inner disk temperature
much cooler than expected from the relation, none
of the spectra in this sample offer strong evidence of disk truncation. This
suggests that the inner disk may evaporate at or below
.Comment: Accepted for publication in MNRAS, 20 pages, 18 figure
Magnetic Fields of Agns and Standard Accretion Disk Model: Testing by Optical Polarimetry
We have developed the method that allows us to estimate the magnetic field
strength at the horizon of a supermassive black hole (SMBH) through the
observed polarization of optical emission of the accreting disk surrounding
SMBH. The known asymptotic formulae for the Stokes parameters of outgoing
radiation are azimuthal averaged, which corresponds to an observation of the
disk as a whole. We consider two models of the embedding 3D-magnetic field, the
regular field, and the regular field with an additional chaotic (turbulent)
component. It is shown that the second model is preferable for estimating the
magnetic field in NGC 4258. For estimations we used the standard accretion disk
model assuming that the same power-law dependence of the magnetic field follows
from the range of the optical emission down to the horizon. The observed
optical polarization from NGC 4258 allowed us to find the values 10^3 - 10^4
Gauss at the horizon, depending on the particular choice of the model
parameters. We also discuss the wavelength dependencies of the light
polarization, and possibly applying them for a more realistic choice of
accretion disk parameters.Comment: 14 pages, 2 figure
XIPE: the X-ray Imaging Polarimetry Explorer
X-ray polarimetry, sometimes alone, and sometimes coupled to spectral and
temporal variability measurements and to imaging, allows a wealth of physical
phenomena in astrophysics to be studied. X-ray polarimetry investigates the
acceleration process, for example, including those typical of magnetic
reconnection in solar flares, but also emission in the strong magnetic fields
of neutron stars and white dwarfs. It detects scattering in asymmetric
structures such as accretion disks and columns, and in the so-called molecular
torus and ionization cones. In addition, it allows fundamental physics in
regimes of gravity and of magnetic field intensity not accessible to
experiments on the Earth to be probed. Finally, models that describe
fundamental interactions (e.g. quantum gravity and the extension of the
Standard Model) can be tested. We describe in this paper the X-ray Imaging
Polarimetry Explorer (XIPE), proposed in June 2012 to the first ESA call for a
small mission with a launch in 2017 but not selected. XIPE is composed of two
out of the three existing JET-X telescopes with two Gas Pixel Detectors (GPD)
filled with a He-DME mixture at their focus and two additional GPDs filled with
pressurized Ar-DME facing the sun. The Minimum Detectable Polarization is 14 %
at 1 mCrab in 10E5 s (2-10 keV) and 0.6 % for an X10 class flare. The Half
Energy Width, measured at PANTER X-ray test facility (MPE, Germany) with JET-X
optics is 24 arcsec. XIPE takes advantage of a low-earth equatorial orbit with
Malindi as down-link station and of a Mission Operation Center (MOC) at INPE
(Brazil).Comment: 49 pages, 14 figures, 6 tables. Paper published in Experimental
Astronomy http://link.springer.com/journal/1068
X-ray Polarization of the Eastern Lobe of SS 433
How astrophysical systems translate the kinetic energy of bulk motion into
the acceleration of particles to very high energies is a pressing question. SS
433 is a microquasar that emits TeV gamma-rays indicating the presence of
high-energy particles. A region of hard X-ray emission in the eastern lobe of
SS 433 was recently identified as an acceleration site. We observed this region
with the Imaging X-ray Polarimetry Explorer and measured a polarization degree
in the range 38% to 77%. The high polarization degree indicates the magnetic
field has a well ordered component if the X-rays are due to synchrotron
emission. The polarization angle is in the range -12 to +10 degrees (east of
north) which indicates that the magnetic field is parallel to the jet. Magnetic
fields parallel to the bulk flow have also been found in supernova remnants and
the jets of powerful radio galaxies. This may be caused by interaction of the
flow with the ambient medium.Comment: 8 pages, accepted in the Astrophysical Journal Letter
X-Ray Polarimetry of the Dipping Accreting Neutron Star 4U 1624-49
We present the first X-ray polarimetric study of the dipping accreting
neutron star 4U 162449 with the Imaging X-ray Polarimetry Explorer (IXPE).
We report a detection of polarization in the non-dip time intervals with a
confidence level of 99.99%. We find an average polarization degree (PD) of
% and a polarization angle of degrees east of north in the
2-8 keV band. We report an upper limit on the PD of 22% during the X-ray dips
with 95% confidence. The PD increases with energy, reaching from %
in the 4-6 keV band to % in the 6-8 keV band. This indicates the
polarization likely arises from Comptonization. The high PD observed is
unlikely to be produced by Comptonization in the boundary layer or spreading
layer alone. It can be produced by the addition of an extended geometrically
thin slab corona covering part of the accretion disk, as assumed in previous
models of dippers, and/or a reflection component from the accretion disk
The first X-ray polarimetric observation of the black hole binary LMC X-1
We report on an X-ray polarimetric observation of the high-mass X-ray binary
LMC X-1 in the high/soft state, obtained by the Imaging X-ray Polarimetry
Explorer (IXPE) in October 2022. The measured polarization is below the minimum
detectable polarization of 1.1 per cent (at the 99 per cent confidence level).
Simultaneously, the source was observed with the NICER, NuSTAR and SRG/ART-XC
instruments, which enabled spectral decomposition into a dominant thermal
component and a Comptonized one. The low 2-8 keV polarization of the source did
not allow for strong constraints on the black-hole spin and inclination of the
accretion disc. However, if the orbital inclination of about 36 degrees is
assumed, then the upper limit is consistent with predictions for pure thermal
emission from geometrically thin and optically thick discs. Assuming the
polarization degree of the Comptonization component to be 0, 4, or 10 per cent,
and oriented perpendicular to the polarization of the disc emission (in turn
assumed to be perpendicular to the large scale ionization cone orientation
detected in the optical band), an upper limit to the polarization of the disc
emission of 1.0, 0.9 or 0.9 per cent, respectively, is found (at the 99 per
cent confidence level).Comment: 12 pages, 9 figures, 4 tables. Accepted for publication in MNRA
Tracking the X-ray Polarization of the Black Hole Transient Swift J1727.8-1613 during a State Transition
We report on a campaign on the bright black hole X-ray binary Swift
J1727.81613 centered around five observations by the Imaging X-ray
Polarimetry Explorer (IXPE). This is the first time it has been possible to
trace the evolution of the X-ray polarization of a black hole X-ray binary
across a hard to soft state transition. The 2--8 keV polarization degree slowly
decreased from 4\% to 3\% across the five observations, but
remained in the North-South direction throughout. Using the Australia Telescope
Compact Array (ATCA), we measure the intrinsic 7.25 GHz radio polarization to
align in the same direction. Assuming the radio polarization aligns with the
jet direction (which can be tested in the future with resolved jet images),
this implies that the X-ray corona is extended in the disk plane, rather than
along the jet axis, for the entire hard intermediate state. This in turn
implies that the long (10 ms) soft lags that we measure with the
Neutron star Interior Composition ExploreR (NICER) are dominated by processes
other than pure light-crossing delays. Moreover, we find that the evolution of
the soft lag amplitude with spectral state differs from the common trend seen
for other sources, implying that Swift J1727.81613 is a member of a hitherto
under-sampled sub-population.Comment: Submitted to ApJ. 20 pages, 8 figure
XIPE: the x-ray imaging polarimetry explorer
XIPE, the X-ray Imaging Polarimetry Explorer, is a mission dedicated to X-ray Astronomy. At the time of writing XIPE is in a competitive phase A as fourth medium size mission of ESA (M4). It promises to reopen the polarimetry window in high energy Astrophysics after more than 4 decades thanks to a detector that efficiently exploits the photoelectric effect and to X-ray optics with large effective area. XIPE uniqueness is time-spectrally-spatially- resolved X-ray polarimetry as a breakthrough in high energy astrophysics and fundamental physics. Indeed the payload consists of three Gas Pixel Detectors at the focus of three X-ray optics with a total effective area larger than one XMM mirror but with a low weight. The payload is compatible with the fairing of the Vega launcher. XIPE is designed as an observatory for X-ray astronomers with 75 % of the time dedicated to a Guest Observer competitive program and it is organized as a consortium across Europe with main contributions from Italy, Germany, Spain, United Kingdom, Poland, Sweden