2,616 research outputs found
Stick-Fixed Maneuver Points in Roll, Pitch, and Yaw and Associated Handling Qualities
The stick-fixed pitch maneuver point is an important measure of aircraft longitudinal dynamic response and handling quality characteristics, and includes effects of both aerodynamic and inertia properties of the aircraft about the pitch axis. In the present work, the existence of stick-fixed roll and yaw maneuver points is demonstrated, which are determined from the lateral forces, moments, and inertial properties of the aircraft. These stick-fixed roll and yaw maneuver points are directly related to the predicted lateral handling qualities. Example results are included for several aircraft that demonstrate the importance of this parameter when predicting the dynamic response of the aircraft. A better understanding of stick-fixed roll, pitch, and yaw maneuver points can inform aircraft design during early stages to ensure adequate handling qualities for both longitudinal and lateral modes
Scattering statistics of rock outcrops: Model-data comparisons and Bayesian inference using mixture distributions
The probability density function of the acoustic field amplitude scattered by
the seafloor was measured in a rocky environment off the coast of Norway using
a synthetic aperture sonar system, and is reported here in terms of the
probability of false alarm. Interpretation of the measurements focused on
finding appropriate class of statistical models (single versus two-component
mixture models), and on appropriate models within these two classes. It was
found that two-component mixture models performed better than single models.
The two mixture models that performed the best (and had a basis in the physics
of scattering) were a mixture between two K distributions, and a mixture
between a Rayleigh and generalized Pareto distribution. Bayes' theorem was used
to estimate the probability density function of the mixture model parameters.
It was found that the K-K mixture exhibits significant correlation between its
parameters. The mixture between the Rayleigh and generalized Pareto
distributions also had significant parameter correlation, but also contained
multiple modes. We conclude that the mixture between two K distributions is the
most applicable to this dataset.Comment: 15 pages, 7 figures, Accepted to the Journal of the Acoustical
Society of Americ
Dynamics of semiclassical Bloch wave - packets
The semiclassical approximation for electron wave-packets in crystals leads
to equations which can be derived from a Lagrangian or, under suitable
regularity conditions, in a Hamiltonian framework. In the plane, these issues
are studied %in presence of external fields using the method of the coadjoint
orbit applied to the ``enlarged'' Galilei group.Comment: 15 pages, Talk given at Nonlinear Physics. Theory and Experiment.
IV,Gallipoli (Lecce), Italy - June 22 - July 1, 200
More on the Tensorial Central Charges in N=1 Supersymmetric Gauge Theories (BPS Wall Junctions and Strings)
We study the central extensions of the N=1 superalgebras relevant to the
soliton solutions with the axial geometry - strings, wall junctions, etc. A
general expression valid in any four-dimensional gauge theory is obtained. We
prove that the only gauge theory admitting BPS strings at weak coupling is
supersymmetric electrodynamics with the Fayet-Iliopoulos term. The problem of
ambiguity of the (1/2,1/2) central charge in the generalized Wess-Zumino models
and gauge theories with matter is addressed and solved. A possibility of
existence of the BPS strings at strong coupling in N=2 theories is discussed. A
representation of different strings within the brane picture is presented.Comment: 26 pages, 2 figures, 1 reference added, typos corrected, Sec. 9.3
expanded. Final version accepted for publication in Phys.Rev.
A microscopic model for thin film spreading
A microscopic, driven lattice gas model is proposed for the dynamics and
spatio-temporal fluctuations of the precursor film observed in spreading
experiments. Matter is transported both by holes and particles, and the
distribution of each can be described by driven diffusion with a moving
boundary. This picture leads to a stochastic partial differential equation for
the shape of the boundary, which agrees with the simulations of the lattice
gas. Preliminary results for flow in a thermal gradient are discussed.Comment: 4 pages, 3 figures. Submitte
Inter-model comparison of global hydroxyl radical (OH) distributions and their impact on atmospheric methane over the 2000–2016 period
The modeling study presented here aims to estimate
how uncertainties in global hydroxyl radical (OH) distributions, variability, and trends may contribute to resolving discrepancies between simulated and observed methane (CH4) changes since 2000. A multi-model ensemble of 14 OH fields was analyzed and aggregated into 64 scenarios
to force the offline atmospheric chemistry transport model
LMDz (Laboratoire de Meteorologie Dynamique) with a
standard CH4 emission scenario over the period 2000–2016.
The multi-model simulated global volume-weighted tropospheric mean OH concentration ([OH]) averaged over 2000–2010 ranges between 8:7*10^5 and 12:8*10^5 molec cm-3.
The inter-model differences in tropospheric OH burden and
vertical distributions are mainly determined by the differences in the nitrogen oxide (NO) distributions, while the spatial discrepancies between OH fields are mostly due to differences in natural emissions and volatile organic compound (VOC) chemistry. From 2000 to 2010, most simulated OH fields show an increase of 0.1–0:3*10^5 molec cm-3 in the tropospheric mean [OH], with year-to-year variations much smaller than during the historical period 1960–2000. Once
ingested into the LMDz model, these OH changes translated
into a 5 to 15 ppbv reduction in the CH4 mixing ratio
in 2010, which represents 7%–20% of the model-simulated
CH4 increase due to surface emissions. Between 2010 and
2016, the ensemble of simulations showed that OH changes
could lead to a CH4 mixing ratio uncertainty of > 30 ppbv.
Over the full 2000–2016 time period, using a common stateof-
the-art but nonoptimized emission scenario, the impact
of [OH] changes tested here can explain up to 54% of the
gap between model simulations and observations. This result
emphasizes the importance of better representing OH abundance and variations in CH4 forward simulations and emission optimizations performed by atmospheric inversions
Genome-wide Associations Reveal Human-Mouse Genetic Convergence and Modifiers of Myogenesis, CPNE1 and STC2
Acknowledgements The authors would like to acknowledge Dr David A. Blizard for his role in the development of the ideas that led to this study and feedback on the manuscript, Professor Helen Macdonald for valuable advice on study design, Dr Leslie R. Noble for help with the UK Biobank data, and Dr Joseph P. Gyekis for help genotyping cohort 2 mice. The authors would like to acknowledge funding from the University of Aberdeen for the Maxwell computer cluster, the Elphinstone and IMS studentship for AIHC; a Schweppe Foundation Career Development Award (AAP), and the NIH (NIAMS (AL: R01AR056280) and NIDA (AAP:R01DA021336, AAP:R21DA024845, AAP:T32MH020065, NMG:F31DA03635803), NIGMS (NMG:T32GM007197), NHGRI (MA:R01HG002899))Peer reviewedPostprin
Lynx X-Ray Observatory: An Overview
Lynx, one of the four strategic mission concepts under study for the 2020 Astrophysics Decadal Survey, provides leaps in capability over previous and planned x-ray missions and provides synergistic observations in the 2030s to a multitude of space- and ground-based observatories across all wavelengths. Lynx provides orders of magnitude improvement in sensitivity, on-axis subarcsecond imaging with arcsecond angular resolution over a large field of view, and high-resolution spectroscopy for point-like and extended sources in the 0.2- to 10-keV range. The Lynx architecture enables a broad range of unique and compelling science to be carried out mainly through a General Observer Program. This program is envisioned to include detecting the very first seed black holes, revealing the high-energy drivers of galaxy formation and evolution, and characterizing the mechanisms that govern stellar evolution and stellar ecosystems. The Lynx optics and science instruments are carefully designed to optimize the science capability and, when combined, form an exciting architecture that utilizes relatively mature technologies for a cost that is compatible with the projected NASA Astrophysics budget
The antiaging protein Klotho enhances oligodendrocyte maturation and myelination of the CNS
We have previously shown that myelin abnormalities characterize the normal aging process of the brain and that an age-associated reduction in Klotho is conserved across species. Predominantly generated in brain and kidney, Klotho overexpression extends life span, whereas loss of Klotho accelerates the development of aging-like phenotypes. Although the function of Klotho in brain is unknown, loss of Klotho expression leads to cognitive deficits. We found significant effects of Klotho on oligodendrocyte functions, including induced maturation of rat primary oligodendrocytic progenitor cells (OPCs) in vitro and myelination. Phosphoprotein analysis indicated that Klotho\u27s downstream effects involve Akt and ERK signal pathways. Klotho increased OPC maturation, and inhibition of Akt or ERK function blocked this effect on OPCs. In vivo studies of Klotho knock-out mice and control littermates revealed that knock-out mice have a significant reduction in major myelin protein and gene expression. By immunohistochemistry, the number of total and mature oligodendrocytes was significantly lower in Klotho knock-out mice. Strikingly, at the ultrastructural level, Klotho knock-out mice exhibited significantly impaired myelination of the optic nerve and corpus callosum. These mice also displayed severe abnormalities at the nodes of Ranvier. To decipher the mechanisms by which Klotho affects oligodendrocytes, we used luciferase pathway reporters to identify the transcription factors involved. Together, these studies provide novel evidence for Klotho as a key player in myelin biology, which may thus be a useful therapeutic target in efforts to protect brain myelin against age-dependent changes and promote repair in multiple sclerosis
Population Genomics of Mycobacterium tuberculosis in Ethiopia Contradicts the Virgin Soil Hypothesis for Human Tuberculosis in Sub-Saharan Africa
Colonial medical reports claimed that tuberculosis (TB) was largely unknown in Africa prior to European contact, providing a "virgin soil" for spread of TB in highly susceptible populations previously unexposed to the disease [1, 2]. This is in direct contrast to recent phylogenetic models which support an African origin for TB [3-6]. To address this apparent contradiction, we performed a broad genomic sampling of Mycobacterium tuberculosis in Ethiopia. All members of the M. tuberculosis complex (MTBC) arose from clonal expansion of a single common ancestor [7] with a proposed origin in East Africa [3, 4, 8]. Consistent with this proposal, MTBC lineage 7 is almost exclusively found in that region [9-11]. Although a detailed medical history of Ethiopia supports the view that TB was rare until the 20(th) century [12], over the last century Ethiopia has become a high-burden TB country [13]. Our results provide further support for an African origin for TB, with some genotypes already present on the continent well before European contact. Phylogenetic analyses reveal a pattern of serial introductions of multiple genotypes into Ethiopia in association with human migration and trade. In place of a "virgin soil" fostering the spread of TB in a previously naive population, we propose that increased TB mortality in Africa was driven by the introduction of European strains of M. tuberculosis alongside expansion of selected indigenous strains having biological characteristics that carry a fitness benefit in the urbanized settings of post-colonial Africa
- …