781 research outputs found
Temperature measurement at the end of a cantilever using oxygen paramagnetism in solid air
We demonstrate temperature measurement of a sample attached to the end of a
cantilever using cantilever magnetometry of solid air ``contamination'' of the
sample surface. In experiments like our Magnetic Resonance Force Microscopy
(MRFM), the sample is mounted at the end of a thin cantilever with small
thermal conductance. Thus, the sample can be at a significantly different
temperature than the bulk of the instrument. Using cantilever magnetometry of
the oxygen paramagnetism in solid air provides the temperature of the sample,
without any modifications to our MRFM (Magnetic Resonance Force Microscopy)
apparatus.Comment: Submitted to J of Applied Physic
Spin polarization contrast observed in GaAs by force-detected nuclear magnetic resonance
We applied the recently developed technique of force-detected nuclear
magnetic resonance (NMR) to observe 71Ga, 69Ga, and 75As in GaAs. The nuclear
spin-lattice relaxation time is 215 min for 69Ga at K and 4.6
Tesla. We have exploited this long relaxation time to first create and then
observe spatially varying nuclear spin polarization within the sample,
demonstrating a new form of contrast for magnetic resonance force microscopy
(MRFM). Such nuclear spin contrast could be used to indirectly image electron
spin polarization in GaAs-based spintronic devices.Comment: 3 pages, 2 figure
170 Nanometer Nuclear Magnetic Resonance Imaging using Magnetic Resonance Force Microscopy
We demonstrate one-dimensional nuclear magnetic resonance imaging of the
semiconductor GaAs with 170 nanometer slice separation and resolve two regions
of reduced nuclear spin polarization density separated by only 500 nanometers.
This is achieved by force detection of the magnetic resonance, Magnetic
Resonance Force Microscopy (MRFM), in combination with optical pumping to
increase the nuclear spin polarization. Optical pumping of the GaAs creates
spin polarization up to 12 times larger than the thermal nuclear spin
polarization at 5 K and 4 T. The experiment is sensitive to sample volumes
containing Ga. These results
demonstrate the ability of force-detected magnetic resonance to apply magnetic
resonance imaging to semiconductor devices and other nanostructures.Comment: Submitted to J of Magnetic Resonanc
The changing nature of risk and risk management: the challenge of borders, uncertainty and resilience
No abstract available
Joint analysis of stressors and ecosystem services to enhance restoration effectiveness
With increasing pressure placed on natural systems by growing human populations, both scientists and resource managers need a better understanding of the relationships between cumulative stress from human activities and valued ecosystem services. Societies often seek to mitigate threats to these services through large-scale, costly restoration projects, such as the over one billion dollar Great Lakes Restoration Initiative currently underway. To help inform these efforts, we merged high-resolution spatial analyses of environmental stressors with mapping of ecosystem services for all five Great Lakes. Cumulative ecosystem stress is highest in near-shore habitats, but also extends offshore in Lakes Erie, Ontario, and Michigan. Variation in cumulative stress is driven largely by spatial concordance among multiple stressors, indicating the importance of considering all stressors when planning restoration activities. In addition, highly stressed areas reflect numerous different combinations of stressors rather than a single suite of problems, suggesting that a detailed understanding of the stressors needing alleviation could improve restoration planning. We also find that many important areas for fisheries and recreation are subject to high stress, indicating that ecosystem degradation could be threatening key services. Current restoration efforts have targeted high-stress sites almost exclusively, but generally without knowledge of the full range of stressors affecting these locations or differences among sites in service provisioning. Our results demonstrate that joint spatial analysis of stressors and ecosystem services can provide a critical foundation for maximizing social and ecological benefits from restoration investments. www.pnas.org/lookup/suppl/doi:10.1073/pnas.1213841110/-/DCSupplementa
Thinking globally, working locally: employability and internationalization at home
As an approach to the internationalization of higher education, Internationalization at Home (IaH) looks beyond the mobility of a minority of students, emphasizing instead the delivery to all students of an internationally focused curriculum and the embedding of intercultural communication. This can be expanded to include extracurricular activities and building relationships with local cultural and ethnic community groups. The MA in international development at Nottingham Trent University, United Kingdom, has implemented this approach, looking beyond both mobility and curriculum to apply IaH directly to student employability, embracing intercultural competence as a key professional skill. This article explores the efficacy of this combination in the MA’s professional development pathway, which requires students to complete a placement, which demonstrates international and intercultural engagement, usually undertaken “at home,” and to critically reflect not just on their professional skills, but on their ability to engage in the ethical practice, which is a key element of IaH
The VLT-FLAMES Tarantula Survey XVIII. Classifications and radial velocities of the B-type stars
We present spectral classifications for 438 B-type stars observed as part of the VLT-FLAMES Tarantula Survey (VFTS) in the 30 Doradus region of the Large Magellanic Cloud. Radial velocities are provided for 307 apparently single stars, and for 99 targets with radial-velocity variations which are consistent with them being spectroscopic binaries. We investigate the spatial distribution of the radial velocities across the 30 Dor region, and use the results to identify candidate runaway stars. Excluding potential runaways and members of two older clusters in the survey region (SL 639 and Hodge 301), we determine a systemic velocity for 30 Dor of 271.6 ± 12.2 kms-1 from 273 presumed single stars. Employing a 3σ criterion we identify nine candidate runaway stars (2.9% of the single stars with radial-velocity estimates). The projected rotational velocities of the candidate runaways appear to be significantly different to those of the full B-type sample, with a strong preference for either large (≥345 kms-1) or small (≤65 kms-1) rotational velocities. Of the candidate runaways, VFTS 358 (classified B0.5: V) has the largest differential radial velocity (−106.9 ± 16.2 kms-1), and a preliminary atmospheric analysis finds a significantly enriched nitrogen abundance of 12 + log (N/H) ≳ 8.5. Combined with a large rotational velocity (ve sin i = 345 ± 22 kms-1), this is suggestive of past binary interaction for this star
MOA-2009-BLG-387Lb: A massive planet orbiting an M dwarf
We report the discovery of a planet with a high planet-to-star mass ratio in
the microlensing event MOA-2009-BLG-387, which exhibited pronounced deviations
over a 12-day interval, one of the longest for any planetary event. The host is
an M dwarf, with a mass in the range 0.07 M_sun < M_host < 0.49M_sun at 90%
confidence. The planet-star mass ratio q = 0.0132 +- 0.003 has been measured
extremely well, so at the best-estimated host mass, the planet mass is m_p =
2.6 Jupiter masses for the median host mass, M = 0.19 M_sun. The host mass is
determined from two "higher order" microlensing parameters. One of these, the
angular Einstein radius \theta_E = 0.31 +- 0.03 mas, is very well measured, but
the other (the microlens parallax \pi_E, which is due to the Earth's orbital
motion) is highly degenate with the orbital motion of the planet. We
statistically resolve the degeneracy between Earth and planet orbital effects
by imposing priors from a Galactic model that specifies the positions and
velocities of lenses and sources and a Kepler model of orbits. The 90%
confidence intervals for the distance, semi-major axis, and period of the
planet are 3.5 kpc < D_L < 7.9 kpc, 1.1 AU < a < 2.7AU, and 3.8 yr < P < 7.6
yr, respectively.Comment: 20 pages including 8 figures. A&A 529 102 (2011
Constraining the dark energy dynamics with the cosmic microwave background bispectrum
We consider the influence of the dark energy dynamics at the onset of cosmic
acceleration on the Cosmic Microwave Background (CMB) bispectrum, through the
weak lensing effect induced by structure formation. We study the line of sight
behavior of the contribution to the bispectrum signal at a given angular
multipole : we show that it is non-zero in a narrow interval centered at a
redshift satisfying the relation , where the
wavenumber corresponds to the scale entering the non-linear phase, and is
the cosmological comoving distance. The relevant redshift interval is in the
range 0.1\lsim z\lsim 2 for multipoles 1000\gsim\ell\gsim 100; the signal
amplitude, reflecting the perturbation dynamics, is a function of the
cosmological expansion rate at those epochs, probing the dark energy equation
of state redshift dependence independently on its present value. We provide a
worked example by considering tracking inverse power law and SUGRA Quintessence
scenarios, having sensibly different redshift dynamics and respecting all the
present observational constraints. For scenarios having the same present
equation of state, we find that the effect described above induces a projection
feature which makes the bispectra shifted by several tens of multipoles, about
10 times more than the corresponding effect on the ordinary CMB angular power
spectrum.Comment: 15 pages, 7 figures, matching version accepted by Physical Review D,
one figure improve
Microbial transformations of selenite by methane-oxidizing bacteria
Abstract Methane oxidizing bacteria are well known for their role in the global methane cycle and their potential for microbial transformation of wide range of hydrocarbon and chlorinated hydrocarbon pollution. Recently, it has also emerged that methane-oxidizing bacteria interact with inorganic pollutants in the environment. Here we report what we believe to be the first study of the interaction of pure strains of methane-oxidizing bacteria with selenite. Results indicate that the commonly used laboratory model strains of methane oxidizing bacteria, Methylococcus capsulatus (Bath) and Methylosinus trichosporium OB3b are both able to reduce the toxic selenite (SeO32-) but not selenate (SeO42-) to red spherical nanoparticulate elemental selenium (Se0), which was characterised via EDX and EXAFS. The cultures also produced volatile selenium-containing species, which suggests that both strains may have an additional activity that can either transform Se0 or selenite into volatile methylated forms of selenium. Transmission electron microscopy (TEM) measurements and experiments with the cell fractions: cytoplasm, cell wall and cell membrane show that the nanoparticles are formed mainly on the cell wall. Collectively these results are promising for the use of methane-oxidizing bacteria for bioremediation or suggest possible uses in the production of selenium nanoparticles for biotechnology
- …
