63 research outputs found

    Studying manganese carbonyl photochemistry in a permanently porous metal–organic framework

    Get PDF
    First published 15 Aug 2023. OnlinePublMn(diimine)(CO)₃X (X = halide) complexes are critical components of chromophores, photo- and electrocatalysts, and photoactive CO-releasing molecules (photoCORMs). While these entities have been incorporated into metal–organic frameworks (MOFs), a detailed understanding of the photochemical and chemical processes that occur in a permanently porous support is lacking. Here we site-isolate and study the photochemistry of a Mn(diimine)(CO)₃Br moiety anchored within a permanently porous MOF support, allowing for not only the photo-liberation of CO from the metal but also its escape from the MOF crystals. In addition, the high crystallinity and structural flexibility of the MOF allows crystallographic snapshots of the photolysis products to be obtained. We report these photo-crystallographic studies in the presence of coordinating solvents, THF and acetonitrile, showing the changing coordination environment of the Mn species as CO loss proceeds. Using time resolved experiments, we report complementary spectroscopic studies of the photolysis chemistry and characterize the final photolysis product as a possible Mn(II) entity. These studies inform the chemistry that occurs in MOF-based photoCORMs and where these moieties are employed as catalysts.Rosemary J. Young, Michael T. Huxley, Lingjun Wu, Jack Hart, James O'Shea, Christian J. Doonan, Neil R. Champness and Christopher J. Sumb

    Postsynthetic Metalated MOFs as Atomically Dispersed Catalysts for Hydroformylation Reactions

    Get PDF
    A manganese-based metal-organic framework with dipyrazole ligands has been metalated with atomically dispersed Rh and Co species and used as a catalyst for the hydroformylation of styrene. The Rh-based materials exhibited excellent conversion at 80 °C with complete chemoselectivity, high selectivity for the branched aldehyde, high recyclability, and negligible metal leaching

    High‑Throughput Electron Diffraction Reveals a Hidden Novel Metal–Organic Framework for Electrocatalysis

    Get PDF
    AbstractMetal‐organic frameworks (MOFs) are known for their versatile combination of inorganic building units and organic linkers, which offers immense opportunities in a wide range of applications. However, many MOFs are typically synthesized as multiphasic polycrystalline powders, which are challenging for studies by X‐ray diffraction. Therefore, developing new structural characterization techniques is highly desired in order to accelerate discoveries of new materials. Here, we report a high‐throughput approach for structural analysis of MOF nano‐ and sub‐microcrystals by three‐dimensional electron diffraction (3DED). A new zeolitic‐imidazolate framework (ZIF), denoted ZIF‐EC1, was first discovered in a trace amount during the study of a known ZIF‐CO3‐1 material by 3DED. The structures of both ZIFs were solved and refined using 3DED data. ZIF‐EC1 has a dense 3D framework structure, which is built by linking mono‐ and bi‐nuclear Zn clusters and 2‐methylimidazolates (mIm−). With a composition of Zn3(mIm)5(OH), ZIF‐EC1 exhibits high N and Zn densities. We show that the N‐doped carbon material derived from ZIF‐EC1 is a promising electrocatalyst for oxygen reduction reaction (ORR). The discovery of this new MOF and its conversion to an efficient electrocatalyst highlights the power of 3DED in developing new materials and their applications

    Protecting-group-free site-selective reactions in a metal–organic framework reaction vessel

    Get PDF
    Site-selective organic transformations are commonly required in the synthesis of complex molecules. By employing a bespoke metal-organic framework (MOF, 1·[Mn(CO)3N3]), in which coordinated azide anions are precisely positioned within 1D channels, we present a strategy for the site-selective transformation of dialkynes into alkyne-functionalized triazoles. As an illustration of this approach, 1,7-octadiyne-3,6-dione stoichiometrically furnishes the mono-“click” product N-methyl-4-hex-5’-ynl-1’,4’dione-1,2,3-triazole with only trace bis-triazole side-product. Stepwise insights into conversions of the MOF reaction vessel were obtained by X-ray crystallography, demonstrating that the reactive sites are “isolated” from one another. Single-crystal to singlecrystal transformations of the Mn(I)-metalated material 1·[Mn(CO)3(H2O)]Br to the corresponding azide species 1·[Mn(CO)3N3] with sodium azide, followed by a series of [3+2] azide-alkyne cycloaddition reactions, are reported. The final liberation of the “click” products from the porous material is achieved by N-alkylation with MeBr, regenerating starting MOF 1·[Mn(CO)3(H2O)]Br, and the organic products characterized by NMR spectroscopy and mass spectrometry. Once the dialkyne length exceeds the azide separation, site selectivity is lost, confirming the critical importance of isolated azide moieties for this strategy. We postulate that carefully designed MOFs can act as physical protecting groups to facilitate other site-selective and chemoselective transformations

    Chelation-driven fluorescence deactivation in three alkali earth metal MOFs containing 2,2’-dihydroxybiphenyl-4,4’-dicarboxylate

    Get PDF
    First published online 04 Sep 2013Three new metal-organic frameworks (MOFs) have been synthesised from alkali earth metal ions of increasing ionic radii (Mg, Ca and Sr) and 2,2’-dihydroxybiphenyl-4,4’-dicarboxylic acid (H4diol). The distinct coordination environments, framework topologies and the non-coordinated diol moieties accessed are a result of using differently sized metal ions for MOF synthesis which affects the ability of the diol moieties to chelate the metal. Detailed structural analysis of [Sr3(H2diol)3(DMF)5], [Ca3.5(Hdiol)(H2diol)2(DMF)5] and [Mg(H2diol)(DMF)2] show distinctive variations in variable temperature expansion/contraction properties and porosity. In addition, [Sr3(H2diol)3(DMF)5] and [Ca3.5(Hdiol)(H2diol)2(DMF)5] display a broad fluorescence emission (λmax = ~435 nm) under ultraviolet light due to the presence of non-coordinated biphenyl-diol moieties within the structures, while chelation of Mg by the diol pocket in [Mg(H2diol)(DMF)2] leads to quenching of the ligand fluorescence.Damien Rankine, Tony D. Keene, Christopher J. Sumby and Christian J. Doona

    Does functionalisation enhance CO2 uptake in interpenetrated MOFs? An examination of the IRMOF-9 series

    Get PDF
    The effect of pore functionalisation (-I, -OH, -OCH3) on a series of topologically equivalent, interpenetrated metal-organic frameworks (MOFs) was assessed by both simulation and experiment. Counter-intuitively, a decreased affinity for CO2 was observed in the functionalised materials, compared to the non-functionalised material. This result highlights the importance of considering the combined effects of network topology and chemical functionality in the design of MOFs for enhanced CO2 adsorptionRavichandar Babarao, Campbell J. Coghlan, Damien Rankine, Witold M. Bloch, Gemma K. Gransbury, Hiroshi Sato, Susumu Kitagawa, Christopher J. Sumby, Matthew R. Hill and Christian J. Doona

    Triazolium-containing metal-organic frameworks: Control of catenation in 2-D Copper(II) paddlewheel structures

    Get PDF
    Paper accepted for publication 6th November 2012One approach to exploit MOFs as heterogeneous catalyst platforms requires the development of materials containing groups that can be utilised to anchor a catalytic moiety into the links within the structure. Here we report the synthesis of the first integrated triazolium-containing MOF linker and the first MOFs containing linkers of this type. 1,4-Bis(4-benzoic acid)-1-methyl-1H-1,2,3-triazolium chloride, H₂L1ᴹᵉ, was synthesised in three steps by a 'Click' reaction of methyl 4-ethynylbenzoate with methyl 4-azidobenzoate, methylation using methyl triflate, followed by ester hydrolysis in overall 74% yield. The equivalent neutral triazole precursor, 1,4-bis(4-benzoic acid)-1H-1,2,3-triazole hydrochloride, H₂L1(HCl), was also prepared and a comparison of the chemistry with Zn(NO₃)2·6H₂O and Cu(NO₃)₂·3H₂O is presented. [Zn(L1)₂(H₂O)₂] is a 2-D MOF with infinite chains of zinc carboxylates bridged by L1, while an equivalent structure is not observed for L1ᴹᵉ. In turn, two catenation isomers of [Cu₂(DMF)2(L1ᴹᵉ)2](NO3)₂ were isolated from a single reaction of L1ᴹᵉ and Cu(NO₃)₂·3H₂O. The α-form, a close-packed 3-fold interpenetrated structure, was obtained from reactions undertaken in the presence of nitric acid or at lower temperatures, while undertaking the reaction at higher temperatures leads to a predominance of the 2-fold interpenetrated and potentially porous β-form of the structure. The work presented provides further support for the use of reaction conditions to control interpenetration and additional evidence that charge on structurally similar ligands can drastically alter the types of structures that are accessible due to the requirements for charge balance in the final product.Alexandre M. Burgun, Christian J. Doonan, and Christopher J. Sumb

    Utilising hinged ligands in MOF synthesis: a covalent linking strategy for forming 3D MOFs

    Get PDF
    First published online 04 Mar 2014Here we show that connecting two equivalents of a bis-pyrazolymethane ‘hinged’ link by a carbon–carbon bond characteristically ‘extends’ the 2D layered metal–organic frameworks (MOFs) typically formed with such compounds into 3D MOF materials. 1,1,2,2-Tetrakis[4-(4-carboxyphenyl)-1H-pyrazol-1-yl]ethane (L) was prepared in three steps and upon reaction with late transition metals, namely copper(II), cadmium(II) and zinc(II), gave 3D MOFs [Cu2(L)(H2O)2] 1.4DMF and [M2L]·xDMF (M = Zn, x = 1; M = Cd, x = 1.75). The 3D MOFs display gating behaviour in their adsorption isotherms, consistent with 3rd generation flexible structures. Furthermore, the 3D MOFs showed appreciable affinity for CO2 at 293 K however, due to the larger pore sizes, molecular sieving of CO2/N2 was not observed. Reaction of L with cobalt(II) gave a 3D hydrogen-bonded network incorporating 1D coordination polymer chains that is topologically equivalent to the Zn and Cd MOFs. The strategy outlined here demonstrates a novel route for designing more chemically and thermally robust 3D MOFs from 2D layered materials.Campbell J. Coghlan, Christopher J. Sumby and Christian J. Doona

    Age-related transcriptional changes in gene expression in different organs of mice support the metabolic stability theory of aging

    Get PDF
    Individual differences in the rate of aging are determined by the efficiency with which an organism transforms resources into metabolic energy thus maintaining the homeostatic condition of its cells and tissues. This observation has been integrated with analytical studies of the metabolic process to derive the following principle: The metabolic stability of regulatory networks, that is the ability of cells to maintain stable concentrations of reactive oxygen species (ROS) and other critical metabolites is the prime determinant of life span. The metabolic stability of a regulatory network is determined by the diversity of the metabolic pathways or the degree of connectivity of genes in the network. These properties can be empirically evaluated in terms of transcriptional changes in gene expression. We use microarrays to investigate the age-dependence of transcriptional changes of genes in the insulin signaling, oxidative phosphorylation and glutathione metabolism pathways in mice. Our studies delineate age and tissue specific patterns of transcriptional changes which are consistent with the metabolic stability–longevity principle. This study, in addition, rejects the free radical hypothesis which postulates that the production rate of ROS, and not its stability, determines life span

    Alternative Oxidase Dependent Respiration Leads to an Increased Mitochondrial Content in Two Long-Lived Mutants of the Ageing Model Podospora anserina

    Get PDF
    The retrograde response constitutes an important signalling pathway from mitochondria to the nucleus which induces several genes to allow compensation of mitochondrial impairments. In the filamentous ascomycete Podospora anserina, an example for such a response is the induction of a nuclear-encoded and iron-dependent alternative oxidase (AOX) occurring when cytochrome-c oxidase (COX) dependent respiration is affected. Several long-lived mutants are known which predominantly or exclusively respire via AOX. Here we show that two AOX-utilising mutants, grisea and PaCox17::ble, are able to compensate partially for lowered OXPHOS efficiency resulting from AOX-dependent respiration by increasing mitochondrial content. At the physiological level this is demonstrated by an elevated oxygen consumption and increased heat production. However, in the two mutants, ATP levels do not reach WT levels. Interestingly, mutant PaCox17::ble is characterized by a highly increased release of the reactive oxygen species (ROS) hydrogen peroxide. Both grisea and PaCox17::ble contain elevated levels of mitochondrial proteins involved in quality control, i. e. LON protease and the molecular chaperone HSP60. Taken together, our work demonstrates that AOX-dependent respiration in two mutants of the ageing model P. anserina is linked to a novel mechanism involved in the retrograde response pathway, mitochondrial biogenesis, which might also play an important role for cellular maintenance in other organisms
    corecore