650 research outputs found

    The Hubbard model on a complete graph: Exact Analytical results

    Full text link
    We derive the analytical expression of the ground state of the Hubbard model with unconstrained hopping at half filling and for arbitrary lattice sites.Comment: Email:[email protected]

    Frustration of antiferromagnetism in the t-t'-Hubbard model at weak coupling

    Get PDF
    The perfect-nesting instability towards antiferromagnetism of the Hubbard model is suppressed by next-nearest neighbor hopping t'. The exact asymptotic behavior of the critical coupling U_c(t') at small t' is calculated in dimensions d=2,3 and infinity using Hartree theory, and the order of the transition is determined. A region of stability of a metallic antiferromagnetic phase in d=3 is identified.Comment: 5 pages revtex, 5 eps figures; typos corrected and a discussion about the applicability to two-dimensional organic superconductors adde

    Cost-effectiveness of exercise therapy in the treatment of non-specific neck pain and low back pain:a systematic review with meta-analysis

    Get PDF
    OBJECTIVE: To investigate the cost-effectiveness of exercise therapy in the treatment of patients with non-specific neck pain and low back pain. DESIGN: Systematic review of economic evaluations. DATA SOURCES: The search was performed in 5 clinical and 3 economic electronic databases. ELIGIBILITY CRITERIA FOR SELECTING STUDIES: We included economic evaluations performed alongside randomised controlled trials. Differences in costs and effects were pooled in a meta-analysis, if possible, and incremental cost-utility ratios (ICUR) were descriptively analysed. RESULTS: Twenty-two studies were included. On average, exercise therapy was associated with lower costs and larger effects for quality-adjusted life-year (QALY) in comparison with usual care for subacute and chronic low back pain from a healthcare perspective (based on ICUR). Exercise therapy had similar costs and effect for QALY in comparison with other interventions for neck pain from a societal perspective, and subacute and chronic low back pain from a healthcare perspective. There was limited or inconsistent evidence on the cost-effectiveness of exercise therapy compared with usual care for neck pain and acute low back pain, other interventions for acute low back pain and different types of exercise therapy for neck pain and low back pain. CONCLUSIONS: Exercise therapy seems to be cost-effective compared with usual care for subacute and chronic low back pain. Exercise therapy was not (more) cost-effective compared with other interventions for neck pain and low back pain. The cost-utility estimates are rather uncertain, indicating that more economic evaluations are needed. REGISTRATION: PROSPERO, CRD42017059025

    Charge-order transition in the extended Hubbard model on a two-leg ladder

    Full text link
    We investigate the charge-order transition at zero temperature in a two-leg Hubbard ladder with additional nearest-neighbor Coulomb repulsion V using the Density Matrix Renormalization Group technique. We consider electron densities between quarter and half filling. For quarter filling and U=8t, we find evidence for a continuous phase transition between a homogeneous state at small V and a broken-symmetry state with "checkerboard" [wavevector Q=(pi,pi)] charge order at large V. This transition to a checkerboard charge-ordered state remains present at all larger fillings, but becomes discontinuous at sufficiently large filling. We discuss the influence of U/t on the transition and estimate the position of the tricritical points.Comment: 4 pages, 5 figs, minor changes, accepted for publication in PRB R

    Dynamic optimization of open-loop input signals for ramp-up current profiles in tokamak plasmas

    Get PDF
    Establishing a good current spatial profile in tokamak fusion reactors is crucial to effective steady-state operation. The evolution of the current spatial profile is related to the evolution of the poloidal magnetic flux, which can be modeled in the normalized cylindrical coordinates using a parabolic partial differential equation (PDE) called the magnetic diffusion equation. In this paper, we consider the dynamic optimization problem of attaining the best possible current spatial profile during the ramp-up phase of the tokamak. We first use the Galerkin method to obtain a finite-dimensional ordinary differential equation (ODE) model based on the original magnetic diffusion PDE. Then, we combine the control parameterization method with a novel time-scaling transformation to obtain an approximate optimal parameter selection problem, which can be solved using gradient-based optimization techniques such as sequential quadratic programming (SQP). This control parameterization approach involves approximating the tokamak input signals by piecewise-linear functions whose slopes and break-points are decision variables to be optimized. We show that the gradient of the objective function with respect to the decision variables can be computed by solving an auxiliary dynamic system governing the state sensitivity matrix. Finally, we conclude the paper with simulation results for an example problem based on experimental data from the DIII-D tokamak in San Diego, California

    miR-146a is a significant brake on autoimmunity, myeloproliferation, and cancer in mice

    Get PDF
    Excessive or inappropriate activation of the immune system can be deleterious to the organism, warranting multiple molecular mechanisms to control and properly terminate immune responses. MicroRNAs (miRNAs), ~22-nt-long noncoding RNAs, have recently emerged as key posttranscriptional regulators, controlling diverse biological processes, including responses to non-self. In this study, we examine the biological role of miR-146a using genetically engineered mice and show that targeted deletion of this gene, whose expression is strongly up-regulated after immune cell maturation and/or activation, results in several immune defects. Collectively, our findings suggest that miR-146a plays a key role as a molecular brake on inflammation, myeloid cell proliferation, and oncogenic transformation

    Tricritical Behavior in the Extended Hubbard Chains

    Full text link
    Phase diagrams of the one-dimensional extended Hubbard model (including nearest-neighbor interaction VV) at half- and quarter-filling are studied by observing level crossings of excitation spectra using the exact diagonalization. This method is based on the Tomonaga-Luttinger liquid theory including logarithmic corrections which stem from the renormalization of the Umklapp- and the backward-scattering effects. Using this approach, the phase boundaries are determined with high accuracy, and then the structure of the phase diagram is clarified. At half-filling, the phase diagram consists of two Berezinskii-Kosterlitz-Thouless (BKT) transition lines and one Gaussian transition line in the charge sector, and one spin-gap transition line. This structure reflects the U(1) \otimes SU(2) symmetry of the electron system. Near the U=2VU=2V line, the Gaussian and the spin-gap transitions take place independently from the weak- to the intermediate-coupling region, but these two transition lines are coupled in the strong-coupling region. This result demonstrates existence of a tricritical point and a bond-charge-density-wave (BCDW) phase between charge- and spin-density-wave (CDW, SDW) phases. To clarify this mechanism of the transition, we also investigate effect of a correlated hopping term which plays a role to enlarge BCDW and bond-spin-density-wave (BSDW) phases. At quarter-filling, a similar crossover phenomenon also takes place in the large-VV region involving spin-gap and BKT-type metal-insulator transitions.Comment: 18 pages(REVTeX), 17 figures(EPS(color)), 3 tables, Detailed paper of JPSJ 68 (1999) 3123 (cond-mat/9903227), see also cond-mat/000341

    Modular analysis of the probabilistic genetic interaction network

    Get PDF
    Motivation: Epistatic Miniarray Profiles (EMAP) has enabled the mapping of large-scale genetic interaction networks; however, the quantitative information gained from EMAP cannot be fully exploited since the data are usually interpreted as a discrete network based on an arbitrary hard threshold. To address such limitations, we adopted a mixture modeling procedure to construct a probabilistic genetic interaction network and then implemented a Bayesian approach to identify densely interacting modules in the probabilistic network

    Further insights into the operation of the Chinese number system: Competing effects of Arabic and Mandarin number formats

    Get PDF
    Here we report the results of a speeded relative quantity task with Chinese participants. On each trial a single numeral (the probe) was presented and the instructions were to respond as to whether it signified a quantity less than or greater than five (the standard). In separate blocks of trials, the numerals were either presented in Mandarin or in Arabic number formats. In addition to the standard influence of numerical distance, a significant predictor of performance was the degree of physical similarity between the probe and the standard as depicted in Mandarin. Additionally, competing effects of physical similarity, defined in terms of the Arabic number format, were also found. Critically the size of these different effects of physical similarity varied systematically across individuals such that larger effects of one compensated for smaller effects of the other. It is argued that the data favor accounts of processing that assume that different number formats access different format-specific representations of quantities. Moreover, for Chinese participants the default is to translate numerals into a Mandarin format prior to accessing quantity information. The efficacy of this translation process is itself influenced by a competing tendency to carry out a translation into Arabic format

    The Hubbard model within the equations of motion approach

    Full text link
    The Hubbard model has a special role in Condensed Matter Theory as it is considered as the simplest Hamiltonian model one can write in order to describe anomalous physical properties of some class of real materials. Unfortunately, this model is not exactly solved except for some limits and therefore one should resort to analytical methods, like the Equations of Motion Approach, or to numerical techniques in order to attain a description of its relevant features in the whole range of physical parameters (interaction, filling and temperature). In this manuscript, the Composite Operator Method, which exploits the above mentioned analytical technique, is presented and systematically applied in order to get information about the behavior of all relevant properties of the model (local, thermodynamic, single- and two- particle ones) in comparison with many other analytical techniques, the above cited known limits and numerical simulations. Within this approach, the Hubbard model is shown to be also capable to describe some anomalous behaviors of the cuprate superconductors.Comment: 232 pages, more than 300 figures, more than 500 reference
    corecore