5,311 research outputs found

    A polarity reversal in the large-scale magnetic field of the rapidly rotating Sun HD 190771

    Full text link
    Aims. We investigate the long-term evolution of the large-scale photospheric magnetic field geometry of the solar-type star HD 190771. With fundamental parameters very close to those of the Sun except for a shorter rotation period of 8.8 d, HD 190771 provides us with a first insight into the specific impact of the rotation rate in the dynamo generation of magnetic fields in 1 MM_\odot stars. Methods. We use circularly polarized, high-resolution spectra obtained with the NARVAL spectropolarimeter (Observatoire du Pic du Midi, France) and compute cross-correlation line profiles with high signal-to-noise ratio to detect polarized Zeeman signatures. From three phase-resolved data sets collected during the summers of 2007, 2008, and 2009, we model the large-scale photospheric magnetic field of the star by means of Zeeman-Doppler imaging and follow its temporal evolution. Results. The comparison of the magnetic maps shows that a polarity reversal of the axisymmetric component of the large-scale magnetic field occurred between 2007 and 2008, this evolution being observed in both the poloidal and toroidal magnetic components. Between 2008 and 2009, another type of global evolution occured, characterized by a sharp decrease of the fraction of magnetic energy stored in the toroidal component. These changes were not accompanied by significant evolution in the total photospheric magnetic energy. Using our spectra to perform radial velocity measurements, we also detect a very low-mass stellar companion to HD 190771.Comment: Accepted by Astronomy and Astrophysics (Letter to the Editor

    Magnetic fields and differential rotation on the pre-main sequence I: The early-G star HD 141943 - brightness and magnetic topologies

    Get PDF
    Spectroscopic and spectropolarimetric observations of the pre-main sequence early-G star HD 141943 were obtained at four observing epochs (in 2006, 2007, 2009 and 2010). The observations were undertaken at the 3.9-m Anglo-Australian Telescope using the UCLES echelle spectrograph and the SEMPOL spectropolarimeter visitor instrument. Brightness and surface magnetic field topologies were reconstructed for the star using the technique of least-squares deconvolution to increase the signal-to-noise of the data. The reconstructed brightness maps show that HD 141943 had a weak polar spot and a significant amount of low latitude features, with little change in the latitude distribution of the spots over the 4 years of observations. The surface magnetic field was reconstructed at three of the epochs from a high order (l <= 30) spherical harmonic expansion of the spectropolarimetric observations. The reconstructed magnetic topologies show that in 2007 and 2010 the surface magnetic field was reasonably balanced between poloidal and toroidal components. However we find tentative evidence of a change in the poloidal/toroidal ratio in 2009 with the poloidal component becoming more dominant. At all epochs the radial magnetic field is predominantly non-axisymmetric while the azimuthal field is predominantly axisymmetric with a ring of positive azimuthal field around the pole similar to that seen on other active stars.Comment: 18 pages, 17 figures, accepted by MNRA

    Dynamo Processes in the T Tauri star V410 Tau

    Full text link
    We present new brightness and magnetic images of the weak-line T Tauri star V410 Tau, made using data from the NARVAL spectropolarimeter at Telescope Bernard Lyot (TBL). The brightness image shows a large polar spot and significant spot coverage at lower latitudes. The magnetic maps show a field that is predominantly dipolar and non-axisymmetric with a strong azimuthal component. The field is 50% poloidal and 50% toroidal, and there is very little differential rotation apparent from the magnetic images. A photometric monitoring campaign on this star has previously revealed V-band variability of up to 0.6 magnitudes but in 2009 the lightcurve is much flatter. The Doppler image presented here is consistent with this low variability. Calculating the flux predicted by the mapped spot distribution gives an peak-to-peak variability of 0.04 magnitudes. The reduction in the amplitude of the lightcurve, compared with previous observations, appears to be related to a change in the distribution of the spots, rather than the number or area. This paper is the first from a Zeeman-Doppler imaging campaign being carried out on V410 Tau between 2009-2012 at TBL. During this time it is expected that the lightcurve will return to a high amplitude state, allowing us to ascertain whether the photometric changes are accompanied by a change in the magnetic field topology.Comment: 12 pages, 11 figures, accepted by MNRA

    Eosinophilic ulcer of the tongue - Case report.

    Get PDF
    Eosinophilic ulcer of the oral mucosa is a rare, self-limiting, chronic and benign lesion of unknown pathogenesis that affects the oral mucosa. We present the case of a 65 year-old Caucasian female with a fivemonth history of a painful ulcer on the lateral side of her tongue. The ulcer was not adhered to the underlying structures and there was no evidence of regional lymph node involvement. Laboratory examinations and X-rays revealed no abnormalities. Topical treatments had been performed without any improvement. Histopathological examination showed an ulcerated surface and mixed inflammatory infiltrate with several eosinophils extending into the mucosa and submucosa. No cellular atypia was observed. Based on the patient-s history and mucosal biopsy, a final diagnosis of eosinophilic ulcer of the oral mucosa was made

    Girsanov reweighting for metadynamics simulations

    Get PDF
    Metadynamics is a computational method to explore the phase space of a molecular system. Gaussian functions are added along relevant coordinates on the fly during a molecular-dynamics simulation to force the system to escape from minima in the potential energy function. The dynamics in the resulting trajectory are however unphysical and cannot be used directly to estimate dynamical prop- erties of the system. Girsanov reweighting is a recent method used to construct the Markov State Model (MSM) of a system subjected to an external perturbation. With the combination of these two techniques—metadynamics/Girsanov-reweighting—the unphysical dynamics in a metadynam- ics simulation can be reweighted to obtain the MSM of the unbiased system. We demonstrate the method on a one-dimensional diffusion process, alanine dipeptide, and the hexapeptide Val-Gly- Val-Ala-Pro-Gly (VGVAPG). The results are in excellent agreement with the MSMs obtained from direct unbiased simulations of these systems. We also apply metadynamics/Girsanov-reweighting to a β-hairpin peptide, whose dynamics is too slow to efficiently explore its phase space by direct simulation

    Three-dimensional Simulations of Accretion to Stars with Complex Magnetic Fields

    Full text link
    Disk accretion to rotating stars with complex magnetic fields is investigated using full three-dimensional magnetohydrodynamic (MHD) simulations. The studied magnetic configurations include superpositions of misaligned dipole and quadrupole fields and off-centre dipoles. The simulations show that when the quadrupole component is comparable to the dipole component, the magnetic field has a complex structure with three major magnetic poles on the surface of the star and three sets of loops of field lines connecting them. A significant amount of matter flows to the quadrupole "belt", forming a ring-like hot spot on the star. If the maximum strength of the magnetic field on the star is fixed, then we observe that the mass accretion rate, the torque on the star, and the area covered by hot spots are several times smaller in the quadrupole-dominant cases than in the pure dipole cases. The influence of the quadrupole component on the shape of the hot spots becomes noticeable when the ratio of the quadrupole and dipole field strengths Bq/Bd0.5B_q/B_d\gtrsim0.5, and becomes dominant when Bq/Bd1B_q/B_d\gtrsim1. In the case of an off-centre dipole field, most of the matter flows through a one-armed accretion stream, forming a large hot spot on the surface, with a second much smaller secondary spot. The light curves may have simple, sinusoidal shapes, thus mimicking stars with pure dipole fields. Or, they may be complex and unusual. In some cases the light curves may be indicators of a complex field, in particular if the inclination angle is known independently. We also note that in the case of complex fields, magnetospheric gaps are often not empty, and this may be important for the survival of close-in exosolar planets.Comment: 13 pages, 21 figures, accepted for publication in MNRA

    Surface magnetic fields on two accreting T Tauri stars: CV Cha and CR Cha

    Get PDF
    We have produced brightness and magnetic field maps of the surfaces of CV Cha and CR Cha: two actively accreting G and K-type T Tauri stars in the Chamaeleon I star-forming cloud with ages of 3-5 Myr. Our magnetic field maps show evidence for strong, complex multi-polar fields similar to those obtained for young rapidly rotating main sequence stars. Brightness maps indicate the presence of dark polar caps and low latitude spots -- these brightness maps are very similar to those obtained for other pre-main sequence and rapidly rotating main sequence stars. Only two other classical T Tauri stars have been studied using similar techniques so far: V2129 Oph and BP Tau. CV Cha and CR Cha show magnetic field patterns that are significantly more complex than those recovered for BP Tau, a fully convective T Tauri star. We discuss possible reasons for this difference and suggest that the complexity of the stellar magnetic field is related to the convection zone; with more complex fields being found in T Tauri stars with radiative cores (V2129 Oph, CV Cha and CR Cha). However, it is clearly necessary to conduct magnetic field studies of T Tauri star systems, exploring a wide range of stellar parameters in order to establish how they affect magnetic field generation, and thus how these magnetic fields are likely to affect the evolution of T Tauri star systems as they approach the main sequence.Comment: Accepted for publication by MNRAS: 15 pages, 11 figure

    Surface differential rotation and prominences of the Lupus post T Tauri star RX J1508.6-4423

    Get PDF
    We present in this paper a spectroscopic monitoring of the Lupus post T Tauri star RX J1508.6-4423 carried out at two closely separated epochs (1998 May 06 and 10) with the UCL Echelle Spectrograph on the 3.9-m Anglo-Australian Telescope. Applying least-squares convolution and maximum entropy image reconstruction techniques to our sets of spectra, we demonstrate that this star features on its surface a large cool polar cap with several appendages extending to lower latitudes, as well as one spot close to the equator. The images reconstructed at both epochs are in good overall agreement, except for a photospheric shear that we interpret in terms of latitudinal differential rotation. Given the spot distribution at the epoch of our observations, differential rotation could only be investigated between latitudes 15° and 60°. We find in particular that the observed differential rotation is compatible with a solar-like law (i.e., with rotation rate decreasing towards high latitudes proportionally to sin 2l, where l denotes the latitude) in this particular latitude range. Assuming that such a law can be extrapolated to all latitudes, we find that the equator of RX J1508.6-4423 does one more rotational cycle than the pole every 50 ±10 d, implying a photospheric shear 2 to 3 times stronger than that of the Sun. We also discover that the Hα emission profile of RX J1508.6-4423 is most of the time double-peaked and strongly modulated with the rotation period of the star. We interpret this rotationally modulated emission as being caused by a dense and complex prominence system, the circumstellar distribution of which is obtained through maximum entropy Doppler tomography. These maps show in particular that prominences form a complete and inhomogeneous ring around the star, precisely at the corotation radius. We use the total Hα and Hβ emission flux to estimate that the mass of the whole prominence system is about 10 20g. From our observation that the whole cloud system surrounding the star is regenerated in less than 4 d, we conclude that the braking time-scale of RX J1508.6-4423 is shorter than 1 Gyr, and that prominence expulsion is thus likely to contribute significantly to the rotational spindown of young low-mass stars

    HD 46375: seismic and spectropolarimetric analysis of a young Sun hosting a Saturn-like planet

    Full text link
    HD 46375 is known to host a Saturn-like exoplanet orbiting at 0.04 AU from its host star. Stellar light reflected by the planet was tentatively identified in the 34-day CoRoT run acquired in October-November 2008. We constrain the properties of the magnetic field of HD 46375 based on spectropolarimetric observations with the NARVAL spectrograph at the Pic du Midi observatory. In addition, we use a high-resolution NARVAL flux spectrum to contrain the atmospheric parameters. With these constraints, we perform an asteroseismic analysis and modelling of HD 46375 using the frequencies extracted from the CoRoT light curve. We used Zeeman Doppler imaging to reconstruct the magnetic map of the stellar surface. In the spectroscopic analysis we fitted isolated lines using 1D LTE atmosphere models. This analysis was used to constrain the effective temperature, surface gravity, and chemical composition of the star. To extract information about the p-mode oscillations, we used a technique based on the envelope autocorrelation function (EACF). From the Zeeman Doppler imaging observations, we observe a magnetic field of ~5 gauss. From the spectral analysis, HD 46375 is inferred to be an unevolved K0 type star with high metallicity [Fe/H]=+0.39. Owing to the relative faintness of the star (m_hip=8.05), the signal-to-noise ratio is too low to identify individual modes. However, we measure the p-mode excess power and large separation Delta nu_0=153.0 +/- 0.7 muHz. We are able do constrain the fundamental parameters of the star thanks to spectrometric and seismic analyses. We conclude that HD 46375 is similar to a young version of Alpha-CenB. This work is of special interest because of its combination of exoplanetary science and asteroseismology, which are the subjects of the current Kepler mission and the proposed PLATO mission.Comment: Accepted in Astronomy & Astrophysics. 8 pages, 9 figure

    Toroidal versus poloidal magnetic fields in Sun-like stars: a rotation threshold

    Full text link
    From a set of stellar spectropolarimetric observations, we report the detection of surface magnetic fields in a sample of four solar-type stars, namely HD 73350, HD 76151, HD 146233 (18 Sco) and HD 190771. Assuming that the observed variability of polarimetric signal is controlled by stellar rotation, we establish the rotation periods of our targets, with values ranging from 8.8 d (for HD 190771) to 22.7 d (for HD 146233). Apart from rotation, fundamental parameters of the selected objects are very close to the Sun's, making this sample a practical basis to investigate the specific impact of rotation on magnetic properties of Sun-like stars. We reconstruct the large-scale magnetic geometry of the targets as a low-order (l<10) spherical harmonics expansion of the surface magnetic field. From the set of magnetic maps, we draw two main conclusions. (a) The magnetic energy of the large-scale field increases with rotation rate. The increase of chromospheric emission with the mean magnetic field is flatter than observed in the Sun. Since the chromospheric flux is also sensitive to magnetic elements smaller than those contributing to the polarimetric signal, this observation suggests that a larger fraction of the surface magnetic energy is stored in large scales as rotation increases. (b) Whereas the magnetic field is mostly poloidal for low rotation rates, more rapid rotators host a large-scale toroidal component in their surface field. From our observations, we infer that a rotation period lower than ~12 days is necessary for the toroidal magnetic energy to dominate over the poloidal component.Comment: MNRAS (in press
    corecore